Sections
Plus some supplements/complements.
(a_0/a)=z+1 and so at z_rec ≅ 1100, a/a_0 ≅ 1/1100.
(Ω_r/Ω_m) ≅ (a_e/a) = (t_e/t)**(2/3)
(Ω_r/Ω_m)_rec ≅ (a_e/a_rec) = (t_e/t_rec)**(2/3) = (1/8)**(2/3) = 1/4
So at the recombination era
radiation is ∼ 1/4 of matter in
mass-energy.
However,
E_rad = a*T**4 = a*4000**4 = [(7.56573345 ...)*10**(-23)]*256*10**12 = 2.5*10**(-8) J/m**3
E_matter_thermal ≅ (3/2)*nkT = (3/2)*(5*10**8)*(1.380649*10**(-23) J/K)*4000
= 10**(-14)*4000 J/m**3
= 4*10**(-11) J/m**3
(see Wikipedia: Chronology of the universe: Tabular summary;
Wikipedia: Ideal gas law,
Wikipedia: Ideal gas law:
Energy associated with a gas,
Boltzmann contant
k = 1.380649*10**(-23) J/K = (8.617333262 ... )*10**(-5) eV/K (exact) ≅ 10**(-4) eV/K
≅ 10**(-10) MeV/K;
Wikipedia: blackbody spectrum,
radiation density constant
a=(4σ/c) = (7.56573345 ... )*10**(-15) J/*m**3/K**4 (exact)).
So it seems that radiation energy must overwhelingly dominate the thermal energy at recombination. The matter thermal energy can only be a perturbation.
a_e=(omega_r_0_p/omega_m_0_p)*a_0_cosmic ! Radiation era end a(t).
omega_e=omega_r_0_p*(a_0_cosmic/a_e)**power_r
Ω_e = omega_e
t_e = (4/3)(sqrt(2)-1)/[H_0*sqrt(2Ω_e)]
sqrt(Ω_r_0)*H_0*t
=c1*x*(1+c0*x)**(1/2)+c2*((1+c0*x)**(3/2)+c3
where c0=omega_m_0_p/omega_r_0_p
c1=2/c0
c2=-(4/3)/c0**2
c3=-c2
x=a/a_0
sqrt(Ω_r_0)*H_0*t for x << 1 which is needed for a < ∼ 10**(-8) for numerical accuracy
=(1/2)*x**2-(1/6)*c0*x**3