next up previous
Next: Bra-ket notation Up: Linear Operators Previous: Basis functions

Expansion in terms delta function normalized functions

In many applications it is convenient to express a physical amplitude $ \Psi({\bf r})$ not as an expansion of normalized basis functions (as in Eq. ([*]), but in terms of the following functions

 \begin{displaymath}v_{_{\bf p}}({\bf r}) \equiv {1 \over ({2 \pi \hbar})^{3/2} }
\exp(i {\bf p} \cdot {\bf x} ).
\end{displaymath} (1.18)

Note that the integral,

 \begin{displaymath}\int d^{3}{\bf r} \vert v_{p}({\bf r}) \vert^2 = \infty
\end{displaymath} (1.19)

is undefined, and so these functions do not represent true physical states. Nevertheless they are useful since, according to Fourier theory, any physical amplitude $ \Psi({\bf r})$ can be expressed in terms of them, i.e.

 \begin{displaymath}\Psi({\bf r}) = \int d^{3}{\bf p} \, v_{\bf p}({\bf r})
{\overline\Psi}({\bf p})
\end{displaymath} (1.20)

where

 \begin{displaymath}{\overline\Psi}({\bf p}) = \int d^{3}{\bf r}
\, v^{*}_{\bf p}({\bf r}) \Psi({\bf r})
\end{displaymath} (1.21)

is the Fourier transform of $ \Psi({\bf r})$. Now according to definition ([*]), $ {\overline\Psi}({\bf p}) = (v_{\bf p},\Psi) $ and inserting into ([*]) we get

 \begin{displaymath}\Psi({\bf r}) = \int d^{3}{\bf p} \, v_{\bf p}({\bf r}) (v_{\bf p},\Psi).
\end{displaymath} (1.22)

This relation is similar to that given by Eq. ([*]), indeed if we consider $ v_{{ \bf p}}({\bf r}) $to be a basis function then the above relation is expansion ([*]), except for the replacement of the discrete index i, and its sum, with that of a continuous index ${\bf p}$ and an integral. (Actually, in this example, I used three continuous indices, $ {\bf p} \equiv \{p_{1},p_{2},p_{3} \} $ and three integrals $\int d^{3}{\bf p}$. Using the definition of the delta function we find,

 \begin{displaymath}\int d^{3}{\bf r} v^{*}_{\bf p}({\bf r}) v_{\bf p'}({\bf r})
= (v_{\bf p}, v_{\bf p}') = \delta^{3}({\bf p} - {\bf p}')
\end{displaymath} (1.23)

a generalization of the normalization conditions exhibited by the basis functions ui discussed above. The functions $ v_{\bf p} $ are said to obey delta function normalization.

We can construct a table, analogous to the one given for the basis functions ui, that is appropriate for the improper basis functions $ v_{\bf p} $. pt
improper basis functions, or vectors $ v_{\bf p} $
delta function normalization $(v_{ \bf p},v_{ \bf p'})=\delta^{3}
({\bf p-p'})$
State expansion in basis $\Psi = \int d^{3} {\bf p}
\, c_{{\bf p}} \, v_{{\bf p}}$
Expansion coefficients $c_{{\bf p}}=(v_{{\bf p}},\Psi)$
Closure $ \int d^{3}{\bf p} \, v^{*}_{{\bf p}}({\bf r}')
\, v_{{\bf p} }({\bf r})= \delta^{3}({\bf r'}-{\bf r})$


next up previous
Next: Bra-ket notation Up: Linear Operators Previous: Basis functions
Bernard Zygelman
1999-09-21