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PHYSICAL REVIEW A

Rotational hyperpolarizability of a homonuclear diatomic molecule
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The rotational hyperpolarizability of a homonuclear diatomic molecule is calculated for all off-
resonance third-order nonlinear optical processes. The treatment of rotations is fully quantum
mechanical. The classical limit of the expression obtained for the dc Kerr effect agrees with the
classical calculation in the static limit, but differs by a factor of % at optical frequencies.

Nonlinear optical phenomena have attracted much in-
terest in recent years.!~* The third-order nonlinear sus-
ceptibility X**’ mediates a wide range of nonlinear opti-
cal processes, and is the macroscopic expression of the
microscopic second hyperpolarizability tensor y. Per-
turbation theory gives a single expression for y, and the
hyperpolarizabilities corresponding to each of the vari-
ous nonlinear optical processes are just special cases of
this general expression, differing only in their frequency
arguments.’~’ However, each process has a character-
istically different balance of contributions from the elec-
tronic, vibrational, and rotational degrees of freedom of
each molecule. In order to compare and combine the re-
sults of experiments based on different nonlinear optical
|

processes, it is necessary to disentangle the various con-
tributions to . A basis for the comparison of the non-
resonant electronic contributions to the hyperpolarizabil-
ities of atoms and molecules has been presented,8 and
the vibrational contributions to ¥ have been considered
for homonuclear diatomic>!® and linear'! molecules.
Below we will obtain and examine expressions for the
off-resonance rotational contributions to ¥ for homonu-
clear diatomic molecules. The derivation follows closely
that presented in Ref. 9.

The starting point is the quantum-mechanical
perturbation-theoretic expression due to Orr and Ward,’
appropriate when damping may be ignored and suitable
even in the static limit
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where 3 , denotes the sum of the 24 terms generated by
permuting the frequencies and their associated spatial
subscripts, w,=w;+w,+w;, |g) is the initial (ground)
state of the system and p, is the a Cartesian component
of the electric dipole-moment operator.

The separation of y into rotational, vibrational, and
electronic contributions is as follows: (a) y” is all terms
which involve a pure rotational level of the ground elec-
tronic manifold as an intermediate state, (b) y’ is all
terms which involve a vibration-rotation level of the
ground electronic manifold as an intermediate state, and
(c) ¥¢ is everything else. Making use of the fact that the
dipole matrix elements vanish for the pure rotational
transitions of a nondipolar molecule, the rotational hy-
perpolarizability of a homonuclear diatomic molecule is
given by
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where g —n is a pure rotational transition, and where
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is the static limit of the Raman transition polarizability.
Equation (2) is a good approximation for field frequen-
cies small compared to electronic transition frequencies,
and is exact in the static limit.’

The y" for a molecule in a particular free-rotor state
| JM ) may be related to the experimentally observable
quantity by performing an ensemble average. This is
most easily done by expressing Eq. (2) in spherical tensor
form, averaging over the degenerate M sublevels with
the aid of the Wigner-Eckart theorem, and averaging
over J by introducing the normalized population distri-
bution function p(J).!? Proceeding as in Ref. 9 one ob-
tains
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where aQ(K) is the Qth component of the Kth-rank
spherical tensor and G)fsyﬁ is a scalar angular factor (as
previously defined’) evaluated for electric field polariza-
tions along afyd Cartesian axes. For a linear rotor the
polarizability tensor is diagonal and the only nonvanish-
ing spherical tensor components are a,'® and ay'?.
Furthermore, one may show that the only nonvanishing
matrix elements for AJ =0 transitions are just those for
the JM —JM transitions, which are excluded from the
n(sg) summation in Eq. (2). Therefore AJ =0 transi-
tions do not contribute to ¥". The only contribution to
y" comes from AJ=x=2 transitions mediated by
ag¥'=(2)""*(a—a,), where a; and a, are the polariza-
bilities parallel and perpendicular to the molecular axis,
respectively. Aside from the additional simplification for
the rotational case, the substitution of the values of the
Wigner 3j symbols and the summation over J', K, and
permutations P follows exactly the same pattern as given
in Ref. 9. The final result is
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where the frequency factors 6D*(Q), evaluated in Table I
for various combinations of the field polarizations, are
expressed in terms of the function
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To delineate the region of validity of Eq. (5) we have

also repeated the derivation including damping (using
another expression given by Orr and Ward,® valid when
there is no “proper dephasing” in the sense of Ref. 7).
One finds that the final result is the same as in Eq. (5)
except that D(Q;w) of Eq. (6) is replaced by
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where T, is the half width at half maximum (HWHM)
of the transition with frequency {2,,. The difference be-
tween Eqgs. (6) and (7) is not significant unless I' R ().
This condition will be satisfied for pressures above 300
atm. in N,, for example, at which point the rotational
Raman spectrum begins to collapse and the free-rotor
description becomes inappropriate. For less extreme
conditions Eq. (5) should be a good approximation.

Equation (5) describes (y”") for any off-resonance
third-order nonlinear optical process. To illustrate its
application we will consider the hyperpolarizability
mediating the dc Kerr effect,
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D)= Lz . 6) Using Eq. (5), the rotational contribution to ¥ 4. ger, may
0 —w be expressed as
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where rigid rotor energy levels and transition frequencies
E(J)=J(J +1)#B and Q;,;,,=(6+4J)B have been as-
sumed, and damping has been ignored. It is especially
instructive to consider the classical limit of this expres-
sion, obtained when #B /kT <<1 and J >>1. Assuming
a thermal population distribution, expanding in powers

TABLE 1. The frequency factors 6D*( Q) have been evalu-
ated for the four combinations of field polarizations needed to
completely describe a general isotropic fourth rank tensor.
The terms D,, D,, and D; are defined as D(Q;0,+w,),
D(Q;0,+w3), and D(Q;w,+ w3), respectively, where D(Q;w) is
defined by Eq. (6).
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xxyy 3(Dy+D,+D;)—5D;
Xyxy 3(D,+D,+D;3)—5D,
Xyyx 3(D+D,+D;3)—5D,

I

of #iB /kT, and neglecting the weak J dependence of
(@;—a,), one obtains the following simple result for the
classical limit of Eq. (9):
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where the mean effective transition frequency is

Q,, =4B (kT /#B)'"? when o >>Q. For comparison, ig-
noring the dispersion of a the classical result is just
¥ de Km=(a“—a1)2/5kT. 3=15 The zero-frequency limit
of Eq. (10) agrees exactly with the classical result. How-
ever, at optical frequencies where w >>Q, Eq. (10) gives
3 times the classical result. Thus, Egs. (9) and (10)
disagree with the classical dc Kerr result and also with
the previously calculated quantum result for the dc Kerr
effect.!* The linear rotor is not a pathological special
case, since the classical limit of a calculation (similar to
that presented here) for the more general case of a sym-
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metric top molecule also disagrees with the classical re-
sult. On this basis it appears that Buckingham’s ansatz
for calculating the dc Kerr birefringence in terms of a
perturbed refractive index is only valid in the static lim-
it.!"*15  Further investigation to determine the precise
reason for the discrepancy is warranted, as well as an ex-

3463

perimental test to establish which calculation is in fact
correct.
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