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The frequency dependence of the hyperpolarizability (y) of the nonrelativistic hydrogen atom is
calculated for a range of third-order nonlinear optical processes using an expansion in Sturmian
functions. It is shown that the quantitative relations between the various nonlinear optical pro-
cesses are made much clearer when 7 is treated as a function of an effective frequency w;. The
detailed, systematic exploration of the dispersion of y of the hydrogen atom presented here should
serve as a guide in the analysis and interpretation of experimental or theoretical results for less ac-

cessible systems.

INTRODUCTION

There has been much recent interest in third-order
nonlinear optics, "> and since the nonlinear susceptibility
of an optical medium governs its nonlinear response to
incident electric fields, the susceptibility has in turn be-
come the focus of much study. In gases, a wide range of
third-order nonlinear optical phenomena may be under-
stood in terms of either the macroscopic susceptibility
X3 or the closely related microscopic second hyperpo-
larizability y of the constituent atoms or molecules.**
Fourth-order perturbation theory gives an explicit ex-
pression for ¥ which applies for all third-order nonlinear
optical processes, so all these optical processes are in
fact intimately related.’~7 However, v is a fourth-rank
tensor function of three applied field frequencies and po-
larizations, with contributions from electronic, vibration-
al, and orientational degrees of freedom of a molecule. >®
Because of these complexities it is not clear in practice
precisely what will be the form of the relations between
the hyperpolarizabilities for different nonlinear optical
processes. While symmetry considerations may greatly
reduce the number of independent tensor elements of y,*
even for a spherical atom the relations between the hy-
perpolarizabilities for different processes are fairly un-
constrained. Thus it would be instructive to examine the
relations which actually exist for some particular simple
atom or molecule.

Experimental measurements give only fragmentary
and rather inaccurate data on the relations between y
for various nonlinear optical processes.*® And though
there have been many calculations of y performed for a
range of atoms and molecules, the results of these calcu-
lations are almost as fragmentary and inaccurate as the
experimental results.'®!" The only systems for which ab
initio calculations with an accuracy of a few percent or
better have been performed are the hydrogen and helium
atoms and the H,* and H, molecules. The static ¥ of
the nonrelativistic hydrogen atom is known exactly, >3
while the best static calculations for the helium atom
agree to better than 1%.'%~!7 The accuracy of the best
static results for H,* and H, is probably better than
1%.'8722 Accurate dynamic calculations of y have been
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reported for the H and He atoms. The dynamic calcula-
tion of y for third-harmonic generation (THG) in hydro-
gen is essentially exact.?®> The dynamic calculations of y
for the dc Kerr effect, electric-field-induced second-
harmonic generation (ESHG) and THG in helium are
thought to be accurate to about 1%, but the calculated
values of y were only reported at a few points. ¢!’
More accurate and complete results for He would be
most useful, especially for the calibration of experimen-
tal measurements, but a very accurate calculation of y
for He is likely to be difficult. On the other hand, essen-
tially exact results are easily obtained for the hydrogen
atom by extending the method of Mizuno.?* In what
follows we will calculate the frequency dependence of
the hyperpolarizability of the hydrogen atom as a guide
to the behavior which may be seen in more complicated
systems.

STURMIAN EXPANSION FOR y 4

The hyperpolarizability of the ground-state hydrogen
atom is most readily calculated using the Sturmian
Coulomb Green’s function.?* The Sturmian expansion is
preferable to the basis of hydrogenic radial functions,
which they closely resemble, because the Sturmian func-
tions form a complete discrete basis without continuum
functions.?* The Sturmian function S,,,(r) satisfies

1 d? I(Il+1) na
—————4+——————E |S,.(r)=0, (1)
dr? 2r2 r !
where
a=(—2E)"? . )

Atomic units, fi=e =pu=1, will be used throughout.
The normalization is chosen as

(Snla | r“l |Sn'la)= fow Snla(r)r—]Sn'Ia(r)dr =8nn’ . (3)

The S,,,(r) are related to the normalized hydrogenic ra-
dial functions u,;(Zr) for an atom with nuclear charge Z
by

Suar)=—nZ "y, (nar) . (4)
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Equation (1) differs from the Schrodinger equation for
the hydrogen atom in that E is a fixed constant. For ex-
ample, when considering the static hyperpolarizability,
we choose E to be the hydrogenic atom ground-state en-
ergy, E=—1Z2

Applying diagrammatic perturbation theory,>® ignor-
ing damping,” and expanding in a basis of Sturmian
Coulomb Green’s functions and spherical harmonics,?
and noting that A/ =1 for dipole-allowed transitions,
the hyperpolarizability of the ground-state hydrogen

atom may be written as
Yaﬂyﬁ( —'wo;wl)wz’w3)

= ZP 2 2 z 2 C(aﬁyﬁlz )F(n1n2n391920312) )

ny ny ny Iy
(5)

where P is the permutation operator and Y, P denotes
]

summation over the 24 terms obtained by permuting the
frequencies ( —w,,w,w;,w;) along with their associated
spatial subscripts (a,3,7,6). The frequency of the in-
duced polarization w, i w,=w;+w,+ws3;. The factor
C(afBybl,) contains the angular dependence of ¥ and is
given by

C(aBy812)=222<00|?‘a| 1m1)<1m1 [?5|lzm2)

my mym;y
X{Iym,y |, | 1m3){1m; |T5|00) ,
(6)

where the spherical harmonics Y, (6,¢) appearing in
the expectation values of the various Cartesian com-
ponents T, of the unit vector T are denoted |/m ). Be-
cause of the Al selection rule, C (af3y8l,) vanishes unless
I,=0 or 2. The dynamics are contained in the final fac-
tor,

(S10z |7 180,10, 10, |7 [ Sny1,0,)(Sny00a, |7 1 Sny1a,)(Snytay | 7| S10z)

F 0,0,051,)=2Z R 7
(n1712136,0:0512) (1 101—Z)nray—2Z)nsas—27) @
where
a =all)), 6,=w;+w,+w; (8a)
azza(92), 92:(01+CL)2 (8b)
azy=al(f;), 032(01 (8c)
and
al@)=(Z22-20)""? . 9)

The extra factor Z appears because .S oz (r) has been substituted for u 1o(Zr).
The hyperpolarizability tensor of an isotropic system such as the spherically symmetric hydrogen atom has at most
three independent components.* To completely specify ¥ in this case, it is sufficient to consider the set of four tensor

components which satisfy the relation

’}/ZZZZ :‘VZZXX +VZXZX +VZXXZ N

(10)

The values of C(aBydl,) required for the calculation of these tensor components of y are given in Table I. The ma-
trix elements required for the evaluation of Eq. (7) may be expressed as

(Sn1a|r ,Sn’Oa')
2 111/2 n -2 n'—1 ’ 2 ’ I2%%
_[(n"=1nn’] S (— 1) n—2] s (1 [r [4J§H+vl (2a)(2a3) 4 : Qa)(2a)”
4 u=0 L s +u (a+a') (a+a’)? | (a+a’#HY
and
[(n2_4)(n2_1)(n:2__l)nn:]l/Z n—3 n_3]n’—2 . n'—Z] [6+,u-}—v] 1
)= 1) -1 - -
(Snaa |7 | Snriar) 4 EO( A PR ID VRt 3+u ) dtpGrp)
(2a)*(2a’)? 4 2a)*(2a’)¥
(a+a’) (a+a')? | (a4a’ Pty
(12)

The nonzero matrix elements form a band when a=a’.
The exact static hyperpolarizability (a=a’=Z) is given
as the sum of a finite number of terms (n,n,,n; <5).

TREATMENT OF APPARENT DIVERGENCES

In the case that no pair of the frequencies sums to
zero, Eq. (5) may be used as it stands. With afy8=zzzz

—~
and w;=w,=w; one obtains just the previously derived

expression for THG.?* However, if any pair of frequen-
cies w,w,,w; does sum to zero, then at least one of the
permuted terms in Eq. (5) will have 6,=0 and a,=2Z.
Then, for n,=1, a factor (n,a,—2Z)=0 appears in the
denominator and the term diverges. We will show that
such divergent terms cancel and that Eq. (5) may be put
in a form which may be used even in the static limit.
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TABLE 1. Numerical values of the angular factor
C(aPBydl,) appearing in the expression for the atomic hyper-
polarizability.

45 C(afpydl,)
afBys 1,=0 I, =2
222z 5 4
2zXX 5 -2
zxzx 0 3
zxxz 0 3

Note that the apparent divergences cannot arise if all
three input frequencies are different in magnitude.

Our consideration will be restricted to processes with
at most two distinct input field frequencies. The treat-
ment becomes simpler because it is sufficient to consider
just the two tensor components ¥ ., and ¥, in this
case. For each value of /; (=0 or 2) the terms in the ex-
pression for y,.,, may be grouped into three subsets ac-
cording to the factor C(afy6l,) they contain. Thus all
those permuted terms for which P6,==*(w;+w,) con-
tain the common factor C(zzxxl,). This subset of 3 P
has eight terms and will be denoted ¥'P. Similarly, the
subset of eight terms for which P8, =+(w;+w3) has the
common factor C(zxxzl,), and the final subset of eight
terms for which P6,==*(w,+w;) has the common factor
C(zxzxl,). For vy,,,, all subsets of 3 P have the same
common factor C(zzzzl,).

When n,=1, [, =0 the first subset of terms becomes

G(n 1 1n3910930): elimOF(n 1 ln36192930)
) —
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C(zzxx0) > > 3'PF(n,1n,6,6,650) , (13)
nyon3
with similar expressions for the other subsets. If 6,=0
every term in Eq. (13) diverges, but one finds that the
divergent terms within a subset pair off and cancel in
such a way as to give a finite result.
The divergent factor F is treated by taking the limit

Zf(6,)
6y0 | a(6,)—Z
Zf(6,) f(8,) Z¥f(6,)
=]' — —
dim, 5, T3 a0, ,  (14)
where
f(92)=271[a(92)—Z]F(n11n39192930) . (15)

When the permuted terms of Eq. (13) are written out
and rearranged, the divergent first term on the right-
hand side of Eq. (14) cancels identically. The derivative
appearing in Eq. (14) is evaluated using the relations

d o
g-&—,(sn,awsmal):(za) VS 1a | 7 | Saow) (16)
and
d
_J;(Snla|r ISIOa')

2
:_(za)*]/z(sn1a|r iSZOa')_;(Snla|r |SIOa’)y

which follow from Eq. (11). The final result is an

2 2
nia, yA nias
=—1f0){|=— ] |4 -1 — | |4+—=
Zf )! g + nlal——Z + la3 ’ + n3a3—Z
— z |2 (Sn 10,17 | S20z) — 2 (Sn ey |7 [ S20z)
+V2 | | = ’ + Z = (18)
a; (Sn 1,17 | S102) as (Sn1a, |7 | Si0z)

In order to evaluate Eq. (5) one simply replaces F by
G in those terms for which (n,a;,—Z)=0. It is con-
venient to compute separately the terms with [/, =0,
n,=1 (which may have apparent divergences), /, =0,
n,>2 and /,=2,n,>3. The sums over n; and n; run
from 2 to an upper limit n,, chosen large enough to en-
sure convergence (the same upper limit is used for the n,
summation). The computations are done in double pre-
cision. Only the results for the hydrogen atom (Z=1)
have been calculated since the results for hydrogenic
ions may be obtained by scaling: y simply varies as
Z 19 if all field frequencies are simultaneously scaled by
z2

RESULTS AND DISCUSSION

The optical processes that will be specifically con-
sidered are listed in Table II. Any optical process with

’; most two distinct input field frequencies may be
thought of as a special case of one or the other of the
last two processes listed: the ac Kerr effect or coherent
anti-Stokes Raman scattering (CARS). To begin with we
will consider the four processes involving a single optical
field [the dc Kerr effect, degenerate four-wave mixing
(DFWM), ESHG and THG], mapping out the frequency
dependence and the convergence of the calculated results
for v,,,, and the ratio ¥ ,,, /¥ .xx;- [The expression for
electric-field-induced optical rectification (EOR) is iden-
tical to that for the dc Kerr effect.] The first few excited
levels of the hydrogen atom lie 3, %, 1, and £ a.u.
above the ground state, and y will be resonant if w is
equal to one of these energy differences. For DFWM
and ESHG resonances will also occur when 20 matches
a transition frequency; and for THG, resonances occur
when o, 2w, or 3w matches a transition frequency. For
the dc Kerr effect we have calculated ¥ up to and past
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TABLE II. Third-order nonlinear optical processes with at most two distinct input field frequen-

cies.
Independent Number of
Fiequency tensor laser Apparent

Process arguments components fields divergences
Static (0;0,0,0) 1 0 yes
EOR (O;w, —®,0) 2 1 yes
dc Kerr® (—w;0,0,w) 2 1 yes
ESHG (—2w;w,w,0) 2 1 no
THG (—3w;m,w,w) 1 1 no
DFWM (—w)e, 0, —) 2 1 yes
ac Kerr? ( ~ws301, —wi,03) 2 2 yes
CARS (—2w,+w3;a)1,w,,—w3) 2 2 no

?The experimentally measurable quantity is actually (¥ ..., — ¥ zxxz )

the first two resonances, nearly to the ionization thresh-
old at w=0.5 a.u. For DFWM, ESHG, and THG the
calculations stop at the first resonance. Since damping is
not included, the calculation will fail for frequencies too
close to resonance. The value n,, =10 was used as the
upper limit of the n,n,,n; summations unless conver-
gence could be obtained with a smaller value of n,,.

The results of the ¥,,,, and 7 ,,,, /¥ ,xx. calculations are
presented in Table III. Using a fixed upper limit on the
number of terms in the summations, the accuracy of the
calculation is seen to decrease as the ionization threshold
is approached, as is most clearly illustrated by the dc-
Kerr-effect results. The increase in y,,,, as resonance is
approached and the change in the relative size of y,,,
and 7,.,, both differ greatly for the various processes.
However, it is difficult to see any simple quantitative re-
lation between the results for the dc Kerr effect,
DFWM, ESHG, and THG as they are presented in
Table III.

On the basis of a crude model it has been suggested
thatzghe low-frequency dispersion of y,,,, obeys the rela-
tion

Yzzzz( _wa;(‘)lrwbwl):7/2222(0;0’0)0)( 1+ Aw%.) ’ (19)

where A4 is some constant which applies for all processes
in a given atom, and where

0} =0l +ol+wit ol (20)
defines the effective ‘““laser” frequency w; for any partic-
ular optical process. The effective frequencies for the dc
Kerr effect, DFWM, ESHG, or THG are w} =207, 402,
6w?, or 12w? and the first resonance in Y occurs at
3 =0.28125, 0.140 625, 0.2109375, or 0.1875, respec-
tively. Since y,,, will diverge at different values of w}
for these four processes, Eq. (19) clearly must fail at
some point. However, even if Eq. (19) is only valid at
very low frequencies it could still be useful in organizing
the results for y,,,,. This suggests that we calculate y as
a function of w? rather than as a function of w.

The results for ¥,,,, and V.., /¥, calculated at
several values of w? are presented in Table IV. The re-
sults for y,,,, and y,,,, for the dc Kerr effect, DFWM,
ESHG, and THG are also plotted as functions of w? in

Figs. 1 and 2. It is immediately apparent that the
dispersion is very nearly the same for all four processes
for 7,,,, considered as a function of w?, but not for
Y zxxz+ PIOtting Y 2222 /Yzzzz, dcKerr VEISUS wi in Flg 3 al-
lows one to examine in more detail the relative disper-
sion of the various processes. One sees that the smallest
dispersion in fact occurs for THG at small values of w?,
but at higher w7 the dc Kerr effect has the smallest
dispersion. DFWM has the largest dispersion at all
values of w?. The ratio ¥,,,, /¥ 1x, is plotted versus w?
in Fig. 4. This ratio has been experimentally measured
by ESHG for the series of inert-gas atoms, and it is in-
teresting to note that while the experimental ratio for He
slopes downward in agreement with the calculated re-
sults for H, the ratio in the case of the heavier inert-gas
atoms slopes upward.?’

Treating ¢ as a function of w? seems to be a good way
of relating the results for the various nonlinear optical
processes. Since the motivation for this parametrization
came from the attempt to use a power series to represent
v, it is interesting to inspect the coefficients of the power
series which fits the calculated results for hydrogen. The
coefficients of the power-series expansions of y,,, and
Y2222 /Y 2xxz are given in Table V. While it is difficult to
accurately obtain the higher coefficients because the
number of significant terms in the power-series expan-
sion increases very rapidly for w? >1072, the first
coefficient may be obtained with little difficulty. To ac-
curately determine the leading coefficients of the fit, ad-
ditional untabulated points in the range
0} =5X107%-1x 107 with 12-significant-figure accura-
cy have been used. To within the uncertainty of *+1 in
the last decimal place, the leading coefficient A4 in the
power-series expansion of ¥, is the same for all four
processes considered, which validates Eq. (19). The lead-
ing coefficient in the expansion of the ratio ¥,,,, /¥ zxxz
also shows an interesting regularity. The coefficients 4’
for DFWM, ESHG, and THG are given to within *+1 in
the last decimal place if one multiplies the 4’ for the dc
Kerr effect by —2, —1, or O, respectively. The conver-
gence of these power-series expansions is illustrated by
considering the results for the dc Kerr effect. The power
series with the fitted coefficients has an error of 107%%
at w? =0.001 and 1% at w? =0.03 for ¥,,,,, and an error
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FIG. 1. Variation of y,,,, normalized to its static value, is
shown as a function of w} for the dc Kerr effect, DFWM,
ESHG, and THG. The dashed straight line is the lowest-order
dispersion term from Table V.

of 107%% at w? =0.005 and 1% at w7 =0.1 for the ratio
Y22z /Y zxxz- 1f only the lowest-order dispersion term is
retained, giving expressions with the form of Eq. (19),
one obtains the results shown as the dashed lines in Figs.
1 and 4. The lowest-order dispersion formula is fairly
good for the ratio ¥ .., /¥ ,«, but it is quite poor for

3 T
DFWM
Q ESHG
s
%
=
>
s
>~ 2f THG .
% dc Kerr
x
x
>
| - 1
0.00 0.05 0.10
2
(L)L(u u)

FIG. 2. Variation of y,,,,, normalized to its static value, is
shown as a function of w? of the dc Kerr effect, DFWM,

ESHG, and THG.

1.02

1.0l -

)’ZZZZ/ ylZZZ‘dC Kerr

dc Kerr

1.00 :
:
1
0.00 0.05 0.10

w? (au)

FIG. 3. Variation of y,,,, normalized to y,, for the dc
Kerr effect, is shown as a function of w} for the dc Kerr effect,
DFWM, ESHG, and THG. The results presented in Figs. 5
and 6 are calculated at the value of w?} indicated by the verti-

cal dashed line.

¥ 1222 €Xcept at very small values of w?. If one wishes to
accurately extrapolate experimental dispersion measure-
ments one should bear this in mind.

The four processes so far considered are just particu-
lar special cases of the ac Kerr effect or CARS. To in-
vestigate the wider range of processes we will vary o,

35 T
tied dc Kerr
. s
x ,,
]
=~
X 30
N . THG
X Y
X S el ESHG
DFWM e
25 ™ ]
0.00 0.05 0.10
W? (aw)
L

FIG. 4. Variation of ¥ ..., /¥ .xx: is shown as a function of w?}
for the dc Kerr effect, DFWM, ESHG, and THG. The dashed
straight lines are the lowest-order dispersion terms from Table
V.
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TABLE V. Coefficients of the power-series expansions (V... /¥ sz saic)=(1+ Ao} +Bow} +Col +Dw}) and
1/3(Y 2222 /Y 2xxz ) =1+ A’} +B'0w} + C'w} + D'} ) for the dc Kerr effect, DFWM, ESHG, and THG.
Process A B C D A’ B’ C’ D’
dc Kerr 9.722617 67.893 405 2.4%10° 1.453243 4.213 13 4% 10!
DFWM 9.722616 69.916 464 3.5%10° —2.906 485 —7.329 —21 —7x%10'
ESHG 9.722617 67.893 416 2.6 10° —1.453242 —3.848 —10 —3x10!
THG 9.722616 67.221 408 2.6x10° 0 0 0 0

and w; while holding w? constant. The results of such
calculations will be presented for the single selected
value w? =0.05, corresponding to the vertical dashed
line across the center of Fig. 3. For the ac Kerr effect,
y(—w3;0,, —o,03) the constraint of constant w? re-
quires that

(21)
$0 0= (w3/w; )* £ 1 parametrizes the range of possible ac
Kerr processes. For CARS, y(—20w,4w30,,0;, —03),
the constraint of constant w3 requires that

o1=1w; (o] —203)'?], (22)

with solutions for 0= (w;/w;)*<3. For CARS, for a
given value of w; there are two possible solutions for w;.
The solutions will be labeled wi” or wi according to
whether the 4+ or — sign is chosen in Eq. (22). The in-

put frequency arguments of the CARS processes on the
wi branch for 0= (w;/w; )*< 1 all have the same sign,
and such processes may be termed sum-wave mixing
(SWM). For both the ac Kerr effect and CARS we have
assumed that w; is positive. Since y is unchanged when
the signs of all its frequency arguments are reversed to-
gether, there is no loss of generality by this assumption.
The results for v,,,, and ¥,,,, /¥ ,xx;, for the ac Kerr
effect and CARS at w? =0.05 are presented in Table VI
and plotted in Figs. 5 and 6 as functions of (w;/w; )2
For the ac Kerr effect the curves for ¥ ..., /¥ ..: acKerr
and ¥ ,,,, /Y zxx; are both symmetric about (w;/wp )" =+
and both curves are nearly parabolic in shape. For
CARS the curves are more complicated in shape, partic-
ularly that for ¥ ..., /¥ 222, dckerr in Fig. 5. From Fig. 5
one sees that the value of y,,,, at w? =0.05, for any pro-
cess with at most 2 input field frequencies, will fall be-
tween the corresponding values for DFWM as an upper

TABLE VI. Results for ¥,,,, and ¥,,,, /¥ .xx: calculated as functions of (w3;/w; )* at constant w} =0.05 a.u. for the ac Kerr effect

and CARS. Special cases of the ac Kerr effect are EOR at (w3;/w;)*=0, DFWM at (w;/w; )*=1

7> and the dc Kerr effect at

(w3/w.)*=1%. On the wi" branch for CARS, (w3/w;)*=0 gives ESHG and (w;/w; )??=1 gives DFWM. The o branch of CARS

for 0= (w3/w; )*< L corresponds to the sum-wave-mixing processes of ESHG, THG, and the dc Kerr effect when (w;/w; )*=0

and 1, respectively.

1
v 12°

YZZZZ (a'u') YZZZZ /)/ZXXZ
(w3/wy )? ac Kerr CARS, wi" branch CARS, wi branch ac Kerr CARS, wi branch CARS, wj branch
0.00 2299.469 590 2304.726 105 2304.726 105 3.25517505 2.74891701 2.74891701
0.01 2309.439931 2301.907 724 2.671328 59 2.83338523
0.02 2311.900478 2301.244 624 2.64195298 2.869 640 69
0.05 2310.189 185 2317.371 196 2300.592 708 3.28259137 2.58971692 2.942514 88
0.10 2318.925 868 2323.676 139 2300.498 277 3.304496 79 2.542 625 65 3.02398740
0.15 2325.387 822 2327.733 366 2300.550020 3.32046762 2.516947 56 3.084 006 49
0.20 2329.355857 2329.989 107 2300.516915 3.33018350 2.503 82752 3.13140213
0.25 2330.69391 2330.69391 2300.377076 3.333444 75 2.499 874 67 3.16953875
0.30 2329.355857 2330.056 451 2300.161 617 3.33018350 2.503 44695 3.20003101
0.35 2325.387 822 2328.278 855 2299916914 3.32046762 2.513706 20 3.223 68891
0.40 2318.925 868 2325.567516 2299.691 462 3.304 496 79 2.53029032 3.240 84590
0.45 2310.189 185 2322.136 817 2299.529962 3.282591 37 2.553199 84 3.25147253
0.50 2299.469 590 2318.210919 2299.469 590 3.25517505 2.582799 63 3.25517505
0.55 2314.025914 2299.536 266 2.619936 38 3.251078 15
0.60 2309.834 332 2299.738915 2.66627329 3.23749052
0.65 2305.916012 2300.057 811 2.72525076 3.210944 41
0.70 2302.609 252 2300.413071 2.805857 19 3.16242507
0.73 2301.121 741 2300.547 571 2.878 502 55 3.108 85623
0.74 2300.752 706 2300.547 540 2.91483871 3.078 848 45
0.75 2300.487 778 2300.487 778 3.000 00000 3.000 00000
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FIG. 5. Variation of y,,,, at ©? =0.05 a.u. and normalized
t0 V... for the dc Kerr effect, is shown as a function of
(w3/wy )* for the ac Kerr effect (dashed curve) and CARS
(solid curve). The part of the wi branch for CARS which cor-
responds to sum-wave mixing has been drawn with a heavier
line. The open circles mark particular special cases of the ac
Kerr effect and CARS.

limit and the dc Kerr effect as a lower limit. Referring
to Fig. 4, it seems likely that this is the situation for all
% >0.042, while for w? £0.042 the lower limit of ¥,
is given by the value for THG instead. In Fig. 6 two
points labeled DFWM appear. The point on the ac Kerr
curve has frequency arguments permuted with respect to
the definition given in Table II, and so corresponds to
the tensor component ¥, by that definition. From
Fig. 6 it would seem that the value of ¥,,,, /¥ ,xx, for any
process with at most 2 distinct input field frequencies
will fall between V..., /¥ 1xxz and ¥ 52, /¥ 2x2x for DFWM.

The more general case where the magnitude of all
three input frequencies are different has not been sys-
tematically explored, but the results for processes with a
nearly degenerate pair of input frequencies may be ex-
pected to lie near the results calculated here, when the
comparison is made at a common value of o?. The two
processes for which only a single input field frequency is
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FIG. 6. Variation of ¥,,,; /¥ ;xx:, at @3 =0.05 a.u., is shown
as a function of (w3/w; )?* for the ac Kerr effect (dashed curve)
and CARS (solid curve). The part of the w; branch for CARS
which corresponds to sum-wave mixing has been drawn with a
heavier line. The open circles mark particular special cases of
the ac Kerr effect and CARS.

involved are DFWM and THG. It seems a reasonable
conjecture, for the hydrogen atom at small values of w?,
that DFWM and THG will give the upper and lower
bounds for v,,,, and that the ratios ¥ .., /¥ zxx»
Yiazzz /Y zxzx> @NA V00 /Vxx: fOr any process will fall
within the range spanned by V..., /¥ ;xzx a0d ¥ 100 /Y 2xxz
for DFWM.
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