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MEMBRANE RESISTIVITY ESTIMATED FOR THE 
PURKINJE NEURON BY MEANS OF A PASSIVE 

COMPUTER MODEL 

D. I-‘. SHELTON 

Department of Physics, University of Toronto, Toronto, Ontario, Canada MSS lA7 

Abstract-A multicompartment passive electrotonic computer model is constructed for the cerebellar 
Purkinje cell of the guinea-pig. The model has 1089 coupled compartments to accurately represent the 
morphology of the Purkinje cell. In order that the calculated behavior of the model fit the published 
electrophysiological observations of somatic and dendritic input conductance, the neural membrane 
resistivity must be spatially non-uniform. The passive electrical parameter values for which the model best 
fits the observations of input conductances, pulse attenuation and current-clamp voltage transients are 
r m,dcnd = 45,740 Qcm2,, [,,,, = 760 Rem*, ri = 225 Rem and c, = 1.16 pF/cm’ (the membrane and cyto- 
plasm specific resistivtties and membrane specific capacitance, respectively). The model with these 
parameter values is electrically compact, with electrotonic length X = 0.33 and dendritic dominance ratio 
p = 0.44. 

Analysis of the calculated voltage transient of the multicompartment model by the methods of 
equivalent-cylinder cable theory is shown to result in very different and unreliable conclusions. The 
signficance for neuronal function of the estimated electrical parameter values is discussed. The possible 
effect of active conductances on these conclusions is assessed. 

The transmembrane leakage conductance of a neuron 
plays an important role in determining the extent 
of the passive spread of synaptic potentials and 
therefore bears on the question of what sort of 
integration is performed by the dendritic tree of a 
neuron.32~4’~42~45~5’ Estimates of the membrane leakage 
resistivity, r,,,, for a variety of neurons have been 
made using both an equivalent-cylinder analysis40~43~9* 
and multicompartmental models.4”‘*95 Often the anal- 
ysis assumes a morphologically simplified model of 
the cell and uses “effective” parameter values which 
cannot be given a straightforward physical inter- 
pretation. We wish to construct a computer model of 
a neuron which is accurate in terms of morphology 
and electrical properties, and whose behavior is con- 
sistent with electrophysiological observations. The 
immediate objective is to estimate the passive proper- 
ties of the neuron being modelled. This passive 
neuron model would form the substrate for exten- 
sions which would treat more complex properties. 

We choose to model the Purkinje neuron for several 
reasons. Firstly, both the morphologyb’2~25~26~ss~*s and 
electrophysiology 26~5~5*~85~go of the cerebellum and the 
Purkinje cell have been extensively and intensively 
studied. This provides a wide base of information to 
draw on. Secondly, we require detailed and complete 
information on the anatomy of the particular neuron 
being modelled. The form of the Purkinje cell den- 
dritic tree, a flat fan, is ideal for mapping out the 
entire dendritic tree of a particular cell. Thirdly, the 
organization of the cerebellar cortex is relatively 
simple and constant, both over the extent of the 
cortex in any one animal and also between different 

species. This uniformity facilitates synthesis of the 
results obtained in different preparations. Also, since 
the sole output channel for the Purkinje cell is its 
axon (and perhaps its extracellular micro- 
environment@), one may simply interpret function in 
terms of effect seen at the soma, without the added 
complication of local circuits.‘* Finally, the part of 
the dendritic tree of the Purkinje cell which is thought 
to be essentially passive forms a very large fraction of 
the total membrane surface area of the cell. This will 
tend to make estimates of the passive membrane 
properties more reliable. 

One must note however, that the presence of 
various active conductances, which manifest them- 
selves for even small depolarizations from 
rest,3~20~s7~58~6’~83 requires that the suitability of a passive 
model be regarded as an assumption rather than a 
foregone conclusion. This caveat applies to all 
neurons, but is most difficult to dismiss in the case of 
a neuron with a complicated dendritic tree which may 
be partly active. 

EXPERIMENTAL PROCEDURES 

In order to accurately estimate the membrane resistivity 
for a neuron, one must meet several requirements. Firstly, 
one must have a model which faithfully represents the 
electrotonic structure of the neuron. Secondly, one must be 
able to specify all the morphological parameters required by 
the model. Thirdly, one must be able to fix, or at least 
constrain, the values of the electrical parameters which 
enter the model, such that only the membrane resistivity is 
a free parameter. Lastly, one requires suitable experimental 
measurements to which to fit the model. We consider each 
of these points in turn. 

111 



112 D. P. Shelton 

Compartmental model and computational method 

We have used a compartmental mode131~45.5i.56,68~69.92~94 for 
the Purkinje neuron since this type of model is the most 
flexible and has the fewest built-in assumptions. The basic 
assumptions are, that the dendrites are a system of con- 
nected membrane cylinders in which the intracellular cur- 
rent flow is essentially parallel to the cylinder axis of each 
compartment, and that the resistance of the extracellular 
circuit is negligible. The first assumption is valid when the 
transmembrane impedance is very large compared to the 
resistivity of the cytoplasm. The second assumption requires 
that the resistivity of the extracellular medium be com- 
parable to or less than the resistivity of the cytoplasm, and 
that the volume for current flow in the extracellular loop be 
much less restricted than in the intracellular circuit. Even 
during synchronous activation of cortical neurons, the 
extracellular potential gradients are much smaller than the 
intracellular gradients.” When a small current is injected 
into a single neuron, as is the case in this study, then a very 
large extracellular volume will effectively contribute to the 
extracellular loop and the potential gradients are expected 
to be entirely negligible.38J’J2 

The branching of the Purkinje cell dendrites is incor- 
porated into the compartmental model in a very direct 
fashion. The dendritic tree is dissected into simple, un- 
branched cylinders by cutting it at all its branch points. The 
compartments of the model are taken to be the dendritic 
segments extending between branch points. For each com- 
partment of the model, we specify the length, diameter and 
connections with the rest of the network. The average length 
of the compartments in our model is about 12 pm and the 
average electrotonic length of the compartments, for 
rm = lo4 Rcm2 and r, = 100 ncm, is about 0.02. Thus, dis- 
section of the dendritic tree at the branch points yields 
compartments which are electrotonically very short. Since 
the compartments are short, we may represent each com- 
partment to sufficient accuracy with lumped resistors and 
capacitorsJ6,68*69 
tions,5’,45,7”75.77.95 

rather than using the finite cable equa- 

The complete specification of a compartment in terms of 
lumped electrical elements is comprised by the axial re- 
sistance of the cytoplasm in the cylindrical compartment, R, 
the total transmembrane conductance of the compartment, 
G, the equilibrium potential of the transmembrane con- 
ductance, VQ, and the total membrane capacitance of the 
compartment, C. For a smooth, right-circular cylindrical 
compartment with passive membrane, one has: 

R = 4Lr,l?rD2, 

G = rrLD/r,, 

C = xLDc,, 

where r, is the cytoplasm reistivity, r,,, is the membrane 
passive leakage resistivity, c, is the membrane specific 
capacitance, L is the cylinder length and D is the cylinder 
diameter. In the case of the spiny dendrites, the surface area 
of the compartment is increased from nDL to 
nDL + N,A, L, where N, is the linear density of spines and 
A, is the su J ace area of a spine. The expressions for G and 
C are modified accordingly. In addition to the membrane 
leakage contribution to G for the compartment, one may 
include parallel conductances due to synaptic activation, 
voltage-sensitive channels or a current-injecting micro- 
electrode. The total conductance G is then the sum of all the 
individual contributions: 

G= CC,, LI 1 
and the resultant equilibrium voltage for the total conduc- 
tance G is: 

In the present model, the only contributions to G come from 
the membrane leakage and the recording microelectrode. 

Once the electrical parameters and connectivity of each 
compartment have been specified, two calculations may be 
carried out. The first calculation determines the output 
conductance of the model neuron, measured at a specified 
position on the soma or dendrites. The second calculation 
finds the voltage transient in response to switching on a 
constant current which is injected into the model neuron at 
a specified location. The compartmental model and the 
computational method are illustrated in Fig. 1. 

The output conductance calculation uses the recursive 
procedures shown in Fig. l(C), (D), starting at the dendritic 
terminal segments and moving inwards to the chosen output 
node.4,72,95 The most general pattern of connectivity for a 
dichotomously branched network is shown in Fig. l(B), 
where the orientation of each compartment is defined such 
that the segment output end is nearest to the chosen output 
node. All terminal segments are assumed to have sealed 
ends-the sealed ends have zero conductance and the axial 
current is zero at the terminus. The steady-state compart- 
ment voltages may be calculated by a similar recursive 
procedure, working from the output node up to the den- 
dritic terminals instead. These calculations are com- 
putationally very fast. 

The calculation of the network voltage time evolution is 
done by integrating the coupled differential equations of the 
sort shown in Fig. l(E). 56,68~69.92 The initial voltages are 
obtained from a steady-state calculation. The stimulus is a 
constant current switched on at t = 0. Because of the 
manner in which the dendritic tree is dissected into compart- 
ments in our model, many of the segments are very short. 
Numerical stability with a direct integration method such as 
Euler’s rule requires time steps ranging down to a few 
nanoseconds. This is unfavorably short compared to the 
time scale of a few milliseconds for the network voltage 
variations. An implicit integration method, the trapezoidal 
rule, is stable for all step sizes and so is more suitable for 
such “stiff’ problems. 24~30 Integration was done by the 
trapezoidal method. The size of the time step used was 
varied according to the accuracy desired and was typically 
of order 10 ns. A single time step of the full model with 1089 
compartments, described below, required about 1 s on a 
VAX 1 l/780 computer. 

Morphology 

The detailed anatomy of our model is based mainly on the 
dimensions and topology measured for a particular Golgi- 
stained Purkinje cell from an adult rat. Comparison of 
Go&$-stained and horseradish peroxidase-injected Purkinje 
cells indicates that the entire dendritic arbor is visualized in 
the Golgi preparation. 9.‘o.‘2.55 Because of the thin, flat, 
fan-shaped form of the dendritic tree, measured segment 
lengths and diameters will be substantially unaffected by 
foreshortening. The original drawing of our examplar cell is 
given in Fig. 6 of Ref. 6. This cell is depicted in Fig. 2, before 
and after pruning off the spiny branchlets. The connectivity 
and dimensions for all the dendritic segments of this neuron 
are shown in Figs 3 and 4. The model neuron exhibits purely 
dichotomous branching, in agreement with observations.‘,’ 
In any case, the computational model is insensitive to the 
topological distinction between several closely spaced bifur- 
cations and a single node of higher branching order. Two 
questions must be borne in mind when evaluating the 
morphological adequacy of our model. The first question is 
whether this single cell is an adequate exemplar. The second 
question is whether the morphological parameters of the 
given cell can be sufficiently accurately determined. We will 
defer discussion of these questions until later. 

While we have detailed anatomical information for the 
rat Purkinje cell, the most detailed electrophysiological 
measurements have been made on the larger guinea-pig 
Purkinje cell. 57.58 One may ask whether it is possible to use 
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Fig. 1. Compartmental model and computational method. (A), (B) The membrane cylinders composing 
the dendritic tree are dissected at branch points to give the compartments of the network representing 
the neuron. (C), (D) In the steady-state analysis, successive applications of the recursive procedure shown 
contracts the network until it is represented by a single conductance. (E) In the dynamic simulation, each 

time step involves integrating the differential equation shown, for every compartment in turn. 

the anatomical information pertaining to the rat Purkinje 
cell to describe the guinea-pig Purkinje cell as well. Com- 
paring Plate 1 of Ref. 57 and Fig. 4 of Ref. 58 with our Fig. 
2, one sees that the rat and guinea-pig Purkinje cells are 
qualitatively similar in appearance. Furthermore, the count 
of 73 spiny networks feeding the smooth dendritic tree 
shown in Fig. 4 of Ref. 58 for the guinea-pig is in close 
agreement with the value of 86 for the number of spiny 
networks for the rat cell shown in Fig. 2, especially when 
allowance is made for ambiguity in partitioning the spiny 
networks. The pattern and complexity of dendritic bran- 

ching appears to be similar for Purkinje cells of the two 
species. 

One may compare the relative size of the Purkinje cells of 
the two species on the basis of four measures: (1) the depth 
of the molecular layer, (2) the soma diameter, (3) the 
diameter of the largest dendritic branch point and (4) the 
maximum dendritic length from the soma to a dendritic 
terminal. For our rat Purkinje cell the values of these four 
dimensions are 240, 22, 8 and 236pm, respectively. The 
depth of the molecular layer in the guinea-pig is 300 pm.39 
Using this depth to set the scale of Fig. 4 of Ref. 58, we 
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240pm 

Fig. 2. Morphology of a rat Purkinje cell. (A) The smooth dendrites and soma arc shown stippled, while 
the spiny dendrites are indicated simply as lines. The inset shows a portion of spiny dendrite magnified 
20 x . The top and bottom boundaries of the molecular layer are indicated by the horizontal lines. (B) 
All branches of Strahler order 3 or less have been removed to reveal the smooth dendritic tree. The labels 
for the points of attachment of the amputated spiny networks are ordered counterclockwise around the 

dendritic perimeter. The region taken to be the soma is shown hatched. 
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Fig. 3. Network representing the smooth dendritic tree of the rat Purkinje cell depicted in Fig. 2. The 
length and diameter (L., D in units of pm) of each compartment is as shown. The smooth dendritic 
segments are drawn as heavier lines and the attachment points for the spiny networks are marked by 
circled numbers. The guinea-pig Purkinje cell model uses the same smooth network with the dimensions 

of its compartments multiplied by a scale factor of 1.36. 
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Fig. 4. Spiny dendritic networks for the rat Purkinje cell depicted in Fig. 2. The length (L in units of pm) 
of each compartment is as shown. The circled numbers which label the spiny networks correspond to the 
labels in Figs 2 and 3. The guinea-pig Purkinje cell model uses the same spiny networks with the lengths 

of their compartments multiplied by a scale factor of 1.36. 
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Table 1. Summary of the morphology of the guinea-pig Purkinje cell compartmental 
model 
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Total segment Average segment 
Strahler Number of length diameter Segment 

order segments @m) @m) description 

1 544 7361 1.00 Spiny dendrites* 
2 314 2981 1.40 Spiny dendrites* 
3 144 1208 2.00 Spiny dendrites* 
4 52 558 2.76 Smooth dendrites 
5 24 466 5.22 Smooth dendrites 
6 8 156 6.57 Smooth dendrites 
7 3 78 13.67 Soma and initial 

axon segment 

*4.4 spines/pm. 

find the values for the other three parameters for the 
guinea-pig to be: soma diameter 34 pm, maximum dendritic 
branch point diameter 11 pm and maximum dendritic path 
length 300 urn. The ratios of these four measures for the two 
species (ratios 1.25, 1.55, 1.38, 1.27; average ratio 
1.36 f 0.14) are suthciently consistent that, as a first approx- 
imation, one may take the guinea-pig Purkinje cell to be just 
a scaled up version of the rat Purkinje cell. Our model of 
the guinea-pig Purkinje cell uses the dendritic networks 
shown in Figs 3 and 4, but applies a multiplicative scale 
factor of 1.36 to all the dimensions shown in those figures. 
The lengths and diameters given in Figs 3 and 4 for the 
dendritic segments were measured directly from the drawing 
of the Golgi-stained rat neuron6 while the dimensions of the 
axon initial segment were obtained from the results of a 
serial electron micrographic reconstruction.86 Note that 
histological shrinkage of the smooth dendrites and soma is 
accounted for since the scale of the model is set using the 
depth of the molecular layer measured in living tissue.” 

The dendritic tree of our model has been partitioned into 
spiny branches of Strahler order 1, 2 and 3 with the 
remainder of the dendritic tree being composed of smooth 
branches. In support of this assignment we call upon several 
lines of evidence. Micrographs show an abrupt transition 
between smooth and spiny branches2*12 and it has been noted 
that the transition from spiny to smooth dendrites occurs at 
branches of the fourth Strahler order.37 Electron micro- 
graphic spine counts vs branch diameter are consistent with 
transition at this order of branching.M The appearance of the 
dendritic tree after trimming off the first, second and third 
order branches agrees with the appearance of the smooth 
dendrites in degree of branching and spatial extent.)’ The 
climbing fiber, which contacts the smooth dendrites exclu- 
sively, also shows branching patterns which match our 
pruned dendritic tree. ‘2.37~55.56 Finally, since most of the total 
dendritic length falls on branches of the first and second 
Strahler order (Table 1), the estimate of the total number of 
dendritic spines is fairly insensitive to the exact choice of the 
spiny-to-smooth boundary position. 

It is found that the diameters of the terminal dendritic 
segments are tightly clustered around 1.0 pm, and that the 
segments of the distal dendritic tree are untapered and have 
a branching power of 2.0.36 This implies that the cross- 
sectional area of the dendritic segments is conserved at each 
branch point. Since we know the number of spiny branches 
of each order for our model (Table I), we may use the 
conservation of cross-sectional area and the average termi- 
nal branch diameter to deduce the average dendritic di- 
ameters for the spiny branches of each order. We obtain 1.0, 
1.4 and 2.0 pm as the dendritic diameters of the first, second 
and third order segments. 

In addition to the length and diameter of each spiny 
branch, one must specify the number and form of the spines 
which are attached to its surface. The measured linear 
density of spines is constant at 4.4 spines/pm for mouse,% 

cat” and man.26 Only when one considers the primitive 
cerebellum of the frog does the spine density fall to a 
significantly lower value (1.1 spines/pm).87. Accordingly, we 
have assumed that the spiny dendrifes of our model are 
uniformly covered with 4.4spineslpm of dendritic length. 
The form of the spines is taken to be that of a spherical 
head 0.5pm in diameter attached to the dendrite by a 
cvlindrical stalk 0.7 urn lona and 0.14 nm in diameter.48,55 
Each spine adds 1.1 pm2 to the total ‘surface area of the 
dendritic segment on which it resides. The spiny branch 
diameters, spine density and spine dimensions are assumed 
to be the same for both rat and guinea-pig Purkinje cells. 
While it is difficult to quantitatively assess such factors as 
shrinkage because of the diverse sources for the above data, 
the self-consistency of the final model indicates that no 
gross errors have been incurred. Our guinea-pig Purkinje 
cell model is invested with 50,846 spines, within the range 
of experimental estimates for the total number of spines per 
Purkinje ~ell.~.~~“’ The surface area of the spines alone 
comprises nearly half the total cell membrane surface area 
of 118846 nm2, while the spiny dendrites altogether com- 
prise 84% of the total area. The smooth dendrites and soma 
comprise 13.2 and 2.8%, respectively. 

Electrical parameters and electrophysiological observations 

Membrane capacitance. The passive model of a neuron is 
characterized by the specific capcitance, resistivity and 
resting potential of the cell membrane and by the resistivity 
of the cytoplasm. The first of these parameters, the specific 
capacitance of the membrane, c,, is of the nature of a 
biological constant. The value of c,,, is set by the near 
constant thickness and dielectric constant of the hydro- 
phobic core of the ubiquitous bilayer membrane (proteins 
make up about half the weight of biological membranes but 
have nearly the same polarizability as the lipids70). In all 
preparations where c, has been accurately determined, the 
specific capacitance has been found to have a value near 
l.OpF/cm 2.19.28.28a,31*33.8’ Experimental estimates of c, sub- 
stantially greater than this value4,89.95 are most likely the 
result of having underestimated the membrane surface area. 
We initially assume c, = 1.0 ~FF/cm* for our model guinea- 
pig Purkinje cell, giving a total cell capacitance of 1188 pF. 
In the final analysis c, is allowed to vary to give the best 
fit to the data. In this case, a substantial deviation of the 
calculated value of c,,, from 1 .O pF/cm2 will invalidate the 
model. 

Cytoplasm resistivity. The other electrical parameters are 
functions of internal and external electrolyte composition 
and membrane permeability. For the in vitro slice prepara- 
tion the extracellular ionic composition is that of the 
bathing solution. In the experiments57,58 with which we 
intend to compare our model, the principal ions in the 
bathing solution were Na+ (150 mM), K+ (6.2 mM), Cll 
(131 mM) and HCO; (26 mM). From measurements on 
other neurons bathed in similar extracellular solutions,29.35 
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and assuming no electro-diffusive potential for Cl- across 
the resting membrane,84 we estimate the main intracellular 
ions to be Na+ (30mM), K+ (130mM), Cl- (IOmM) and 
organic anions (150 mM). From the tabulated conduc- 
tivities of electrolyte solutionsrs one may readily estimate 
the resistivity of the extracellular fluid to be 50Qcm (at 
37°C). Similarly, one estimates the resistivity of the intra- 
cellular fluid to be 67&m (at 37°C). assuminz that all the 
ions are free and that the mobility of the organic anions is 
about one-fifth as large as that of Cl-. The resistivity of 
the intracellular electrolyte may be increased somewhat 
from this value by the presence of a large concentration of 
organic solutes and by binding of some of the intracellular 
organic anions.‘6.‘7 

However, the resistivities of the extracellular and intra- 
cellular compartments are not solely determined by the 
electrolyte solutions filling those compartments. One must 
also account for the very complex geometrical structure of 
the compartments. The extracellular medium resembles the 
liquid portion of a foam with a characteristic thickness (the 
intercellular space) of about 0.02 pm, while the intracellular 
medium is filled with various organelles whose membranes 
are not electrically transparent. Measurements of the 
diffusion of ions which do not leave the extracellular space 
show that the combined effects of tortuosity and volume 
fraction hinder the diffusion of ions in the extracellular 
medium of the cerebeilar cortex by a factor of I2.‘8.66 If 
current were confined to the extracellular space. then the 
resistivity of the extracellular medium would also be 
increased by a factor of 12, from 50 to 6OORcm. Direct 
measurements of the resistivity of the molecular layer show 
that its resistivity is anisotropic but homogenous with an 
average value of about 400 Qcm.65.99 The anisotropy of the 
resistivity and its reduction from the value deduced from 
the diffusion experiments is due to current crossing into the 
intracellular compartment. The alignment of the core 
conductors (e.g. axons and dendrites) in preferred direc- 
tions accounts for the anisotropy, while the larger volume 
fraction available for current flow reduces the observed 
resistivity.65.76 As an added complication, the observed 
resistivity of the medium will depend on the length scale 
over which it is measured. both because of the non-zero 
scale for the structure of the medium66 and because of a 
characteristic length scale for current crossing out of the 
extracellular spacea7* The tip of a fine microelectrode probes 
the extracellular resistivity on a length scale (about 0.5 pm 
for a 0.1 pm diameter tip*‘) intermediate between the size 
of the 0.02 km intercellular soace within which the diffusion 
cofficients ‘approach their t?ee solution values, and the 
diameter of about 6 pm over which the structure of the 
extracellular medium seems to be averaged out.” The 
resistivity as seen by this microelectrode will lie somewhere 
between the corresponding values of 50 and 600 fkm, near 
250 Qcm. 

Similar considerations apply to the intracellular medium 
though direct measurements of its resistivity are more 
difficult to come by. Axoplasm appears to be less highly 
structured than cytoplasm,r6 and its measured resistivity for 
a number of vertebrate and invertebrate species ranges from 
20 to 160 Qcm (one to four times larger than the resistivity 
of the intracellular electrolyte solution).‘6,19,“‘.8’ The mea- 
sured resistivities of somatic cytoplasm are even more 
variable, falling between 70 and 390&m (one to eight 
times larger than the resistivity of the intracellular electro- 
lyte solution). 4~16~17.81 Therefore, only the lower bound 
r, 3 67 &rn is fairly certain D priori for the Purkinje cell. 
The value of ri = IOOQcm has been assumed by other 
authors.4t@‘*92 We also take 100 Qcm as a starting point, 
bearing in mind that ri may in fact fall in the range 
67-540 f&m. We assume that r, is constant over the neuron, 
though it is entirely possible that it has different values for 
the axon, soma and dendrites. Our model is mainly sensitive 
to the value of the cytoplasmic resistivity of the dendrites. 

It is important to consider the systematic errors which 
may be introduced into intracellular measurements by the 
non-negligible and possibly variable resistance of the glass 
microelectrodes used to make the measurements. The 
resistance of a micropipette microelectrode is composed of 
intraelectrode and extraelectrode components in se- 
ries.27~80.8’ The intraelectrode component is the parallel 
combination of the glass surface conductivity (important 
for diameters of 0.1 pm or less)” and the volume conduc- 
tivity of the concentrated electrolyte filling solution (diluted 
at the tip by diffusion). 49~7’~80~*’ The extraelectrode com- 
ponent of the electrode resistance is due to the convergence 
resistance of the relatively high resistivity medium sur- 
rounding the microelectrode tip.rl.si A microefectrode filled 
with 3 M potassium acetate, having tip taper angle 5” and 
resistance 70 MQ (in Ringer’s solution) will have an inside 
tip diameter of about 0.06,um (outside tip diameter of 
about 0.10 pm). ‘3~‘8~“~8’ An important feature of such a fine 
microelectrode in our context is that the electrode resistance 
is sensitive to the resistivity of the medium in which it is 
immersed (chiefly through the convergence resistance term; 
iontophoresis also alters the electrode resistance when 
current is passed”), so that the bridge circuit used to allow 
simultaneous current injection and voltage recording with 
a single microelectrodes1~s9 cannot remain balanced both 
before and after impalement of a neuron unless I, = r,.*’ 
Conversely, if the microelectrode-bridge circuit remains 
near balance both intra~llularly and extr~ellularly, as 
appears to be the case for the experiments which we will 
consider (see Figs 3 of Refs 57 and 58), then the difference 
Ire-r, 1 must be small (in order that the change in 
electrode resistance upon impalement is small compared to 
the input resistance of the neuron being probed). For the 
70 MO electrode considered above, increasing the resistivity 
of the bath by 100 Rem will increase the electrode resistance 
by about 5 MR. Therefore, the intra- and extracellular 
bridge balance observed for 15 MR Purkinje cells implies 
that the extra~llular resistivity of the cortex and the 
cytoplasmic resistivity of the Purkinje cell differ by less than 
about 50 f&m. These considerations favor an estimate of ri 
near 250&m. Calculations were done for a range of ri 
values. 

Resting pote~t~i, input c~nd~ct~~re and ~p~ie~e~t leak. 
The Goldman equatior? gives the resting membrane 
potential as a function of the external and internal ionic 
composition and the relative permeability of the membrane 
for the two principal permeant ions, Na + and K+. 
M~surements of the resting potential’~20~2’~*3~*9~9~ for several 
representative neuron types are consistent with the perme- 
ability ratio P,,+/P,+ = 0.02.“,R3 Assuming this perme- 
ability ratio, we calculate the resting potential for the 
Purkinje neurons in Llinas and Sugimori’s experiments57~58 
to be - 72 mV, h~~ola~z~ with respect to the measured 
values. However, there is reason to suspect that the resting 
potential of the cell is significantly perturbed by the 
measurement process, in particular by the transmembrane 
leakage conductance due to imperfect sealing or damage at 
the site of impalement by the measuring microel~trode.4’ 
Accordingly, we will explicitly include the microelectrode 
leak in our model, in order that we may directly compare 
our calculations with the experimental observations. 

For data we may consult the several recent intracellular 
studies of the Purkinje ceU?“3~39~“s8~” The relevant electro- 
physiolo~cal observables for our purposes are the input 
conductance, G,,,, and the resting potential, V,,,, measured 
for intrasomatic and intradendritic penetrations. The best 
experimental estimates of these quantities for the guinea-pig 
Purkinje cell are Gin,,_ = 69.2 + 5.1 nS, V,,,, = - 66.7 i 
0.8mV (Table 2, Ref. 57, n = IO), G,o,Lnd = 50.9 _S 6.2nS 
and Vm,dend = -59.0 f 1.5 mV (Table 1, Ref. 58, n = 5). 
These measurements were obtained for the cerebellar slice 
preparation and so are uncontaminated by synaptic con- 
ductances. The inequality of the intrasomatic and intra- 
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dendritic input conductances (Gur,+_/Gh,dcn = 1.36 + 0.19) 
and of the intrasomatic and intradendritic resting potentials 
(Vrcatdead - V,,,,,, = 7.7 + 1.7 mV) are both‘ highly 
s&&cant results (95 and 99% confidence levels, re- 
spectively, Student’s t-test). But the tip diameter of the 
70 MfZ microelectrodes used in the measurements is 
sufficiently small that there should be no significant system- 
atic error introduced into the measurements by the 
difference in diameter of somatic and dendritic impalement 
sites.” And, since systematic errors in bridge balancing 
would result in uniform misestimates of all the input 
conductances, the conductance ratio would be substantially 
unaffected by small balancing errors. To account for the 
unequal measured resting potentials one is forced to make 
some assumptions about the size of the impalement leak. 

The impalement leakage conductance will appear in 
parallel with the output conductance of the cell at the 
impalement site to give the experimentally measured input 
conductance. If the impalement leak is not ion selective 
(reversal pot~tial of 0 mV) and the resting potential of the 
unperturbed cell is V,, = -72 mV, then an impalement leak 
of Gieat.loma = 5.1 nS for somatic penetrations and 
G kak,dend = 8.6 nS for dendritic penetrations will account for 
the observed resting potentials. In neurons penetrated by 
mi~roel~trodes of similar tip resistance (tip diameter) the 
impalement leakage conductance was found to be 5.2 nS,’ 
in close agreement with our estimate for G,ealr.roma. The 
larger value estimated for Gleak,dend is consistent with the 
greater difficulty in obtaining satisfactory penetrations at 
dendritic impalement sites. 57 Blind penetration of the den- 
drites, giving deeper impalement and resulting in a larger 
hole in the cell membrane because of the substantial 
microelectrode tip taper, may account for the larger leak. 
Therefore, in our model we assume that the passive 
membrane resting potential is -72 mV, and that the 
neuron has been impaled by an imperfectly sealing micro- 
electrode with G,,, = 5.1 or 8.6 nS depending on whether 
the impalement site is somatic or dendritic. 

Membrane resistivity and further electrophysiological ob- 
servations. At this point we note that all the passive 
electrical parameters of the model neuron have been 
specified, with the exception of the membrane resistivity pm. 
All that is left to be done is to vary r,,, for the model neuron 
until the calculated input conductance agrees with the 
experimental values given above. The model allows one to 
separately set the membrane resistivity for each of the 
anatomically distinct regions of the Purkinje cell (i.e. soma, 
smooth dendrites and spiny dendrites). There is evidence 
that the soma membrane differs from the dendritic mem- 
brane,‘s*N*4’ but the question of the possible non-uniformity 
of the dendritic membrane passive resist&y has been more 
difficult to address. We have assumed that the dendritic 
membrane is uniform, with a transmembrane resistivity 
r,,,dend which may differ from the value of the soma 
membrane resistivity r,,, SOmB. 

The voltage transient in response to an input current step 
is also to be calculated and compared with the observed 
voltage transient, as a check. The experimentally observed 
final relaxation time constant following an intrasomatic 
hyperpolarizing current step is q, = 22 f 5 ms (from Figs 
3A, 6C and 9D of Ref. 57), with a similar value observed 
for intradendritic stimulation.” The observed voltage tran- 
sient is not a simple exponential relaxation; it varies much 
faster initially than exp (-t/s,). Peeling’4,74,98 records of 
voltage transients (Ref. 57 and R. LIinQs and M. Sugimori, 
unpublished) shows that about 0.5 of the total amplitude 
of a voltage step is contributed by fast transients with time 
constants of about 3 and 0.5 ms (with the fastest component 
having an amplitude about seven times larger than that of 
the slower component). The accuracy of these experimental 
estimates is limited by the low time resolution of the records 
at short times and by slow active processes (e.g. causing 

*. >.. . . 

The final electrophysiological observations are to do with 
the attenuation of long and short voltage pulses as they 
propagate from the soma into the dendrites. The voltage 
attenuation of a long pulse has been observed for a Purkinje 
cell (in guinea-pig oerebehar slice) which was simulta- 
neously impaled by a pair of microelectrodes (R. Lhnb and 
M. Sugimori, unpublished). A rectangular current pulse of 
1.5 nA (duration 60 ms) injected at the soma was observed 
to produce a voltage step of 15.0 mV at the soma and 
10.7mV at the ad-dend~tic recording site. Thus, the 
steady-state voltage attenuation factor (AVs/AVn), for this 
double-impaled neuron with Gb,,, = 100.0 nS, is 1.38 
between soma and middle dendrites. In contrast, soma 
action potentials (duration 0.6ms full width at half max- 
imum amplitude, Fig. IC of Ref. 57) are attenuated by a 
factor of about 7.5 as observed at a mid-dendritic location 
(Fig. 4 of Ref. 58 and R. Llinas and M. Sugimori, 
unpublished). The voltage attenuation factors for our 
model will be calculated and compared with these observed 
values. 

RESULTS 

Static ~alcu~~tio~ 

The results of the first set of calculations are those 
values of the dendritic membrane resistivity (rm,& 
and somatic membrane resistivity (rm,soma) which are 
compatible with the ex~~men~lly measured value 
of the input conductance at the soma 

(Gin,sama = 69.2 nS). For each choice of soma mem- 
brane resistivity and cytoplasm resistivity (ri), the 
value of rm,*“* was varied until the calculated value 

of G..,, agreed with the measured value. In Fig. 5 
we have plotted r,,, dend as a function of rm,Wma and ri 
(each of the curves’in Figs 5, 7, 8 and 9 was obtained 
using at least six evenly spaced points). The systems 

’ - Gin,-* -69.2n.5 rm.m.KLcm2)= - 

_ 670 

ri /S1cm 

Fig. 5. Dendritic membrane resistivity as a function of 
cytoplasmic resistivity, ri, and somadendritic conductance 
distribution. The input conductance at the soma has been 
held fixed, so rmdend and r, ~y)mB are inversely related, as are 
r, and ri. Systems with uniform membrane resistivity fall 
along the dashed curve. The estimated value of r,,,dea,, is 
much more sensitive to the soma-dendritic conductance 
distribution than to the cytoplasmic resistivity. Further . . 

voltage sag) at tong ttmes. details in the text. 
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Table 2. Comparison of final exponential decay time con- 
stant (measured at the soma) with average membrane time 
constant, for several somadendritic conductance distribu- 

tions 

517 
74710 

0.00 0.00 20.68 17.10 
670 

331176 
0.29 0.26 18.95 16.89 

1000 0.92 a.79 17.13 16.23 
2000 20,403 2.85 2.17 15.40 15.17 

14,880 14,880 27.61 8.41 14.00 14.00 
co 14,245 co 12.57 13.79 13.79 

r, = 100 Rem, c, = 1 .O p F/cm2, G ,n.WmB = 69.2 nS, 
G kak IOma = 5.1 nS. 

*Dend&ic dominance ratio for the neuron not including the 
impalement leak, as defined by Rall.7’~74 

TDendritic dominance ratio with the impalement leak in- 
cluded as part of the total soma conductance. 

value of rm,dend increases without bound as 

r,. SOma = 5 17 Qcm* is approached. The labels “total 
dendritic dominance” and “total somatic domi- 
nance” refer to the unperturbed neuron; the impal- 
ement leak on the soma will bias the degree of 
dendritic dominance of the impaled neuron in the 
direction of somatic dominance, as may be seen in 
Table 2. 

where the soma conductance is zero are represented 
by the bottom curve of Fig. 5, labelled “total den- 
dritic dominance”, which is also the locus of the 
smallest values of r,,,&d compatible with the mea- 
sured input conductance of the cell. Systems with 
uniform soma-dendritic membrane resistivity fall 
near the limit of total dendritie dominance and have 
a membrane resistivity of about 1.5 k&m*. As the 
soma conductance increases (T~,~~,,,~ decreases), less of 
the total cell conductance is contributed by the 
dendrites. For T,,,+,~~ = 517 Rem*, the sum of the 
soma conductance and impalement leak conductance 
is equal to Gin,sona (“total somatic dominance”). The 

The next set of calculations evaluates the input 
conductance at the dendrites (Gin.dsnd) for the same 
model systems as were used to calculate the results in 
Fig. 5. Since the calculated input conductance for 
dendritic impalement sites varies from site to site, we 
have selected 20 dendritic positions at random (as 
shown in Fig. 6) and have calculated G,n,dend as the 
average over these 20 sites. The spread of the den- 
dritic input conductances is about ri: IOnS for a 
typical choice of parameter values rm and r, . The ratio 

Gin,soma/Gin,dend is plotted in Fig. 7 as a function of 
r m,suma and r,. In the limit r,+O, the cell becomes 
isopotential and all the curves in Fig. 7 must converge 
to a single point. As the cytoplasm resistivity in- 
creases or as the transmembrane conductance be- 
comes localized on the soma, the difference between 
the input conductances measured at the soma and 
dendrites increases, causing the curves in Fig. 7 to 
diverge. Only the wedge-shaped region between the 
total somatic dominance and the total dendritic 

16 I I 

Gin,mlw = 
69 26 

OOo 
I I I I I 

50 100 150 200 250 

c/Qcm 

Fig. 6. The 20 dendritic positions at which the dendritic 
input conductance is evaluated are indicated by the dots. 
The square. marks the somatic impalement site. The den- 
dritic impalement sites were chosen at random by laying a 
coarse grid over the drawing and marking the places where 
grid intersections fell on the smooth dendrites (mimicking 
blind impalement by a microelectrode). Also shown are the 
sites, marked S and D, which most closely approximate the 
locations of the microelectrodes for the double-impaled 
neuron (R. Llinas and M. Sugimori, unpublished) from 

Fig. 7. The ratio of somatic and dendritic input conduc- 
tances as a function of cytoplasmic resistivity, r,, and 
soma-dendritic conductance distribution. The input con- 
ductance at the soma has been held fixed. The curves 
converge to a value smaller than 1.0 as r, goes to zero 
because the microelectrode leak at dendritic impalement 
sites is slightly larger than the leak at the somatic impal- 
ement site. Systems with uniform membrane resistivity fall 
along the dashed curve. The dotted rectangle marks the 
lower bound of r, (= 67 Qcm) and the average and unccr- 
tainty of the experimental estimate of G,n,soma/G,n,dend 
(= 1.36 + 0.19) for the Purkinje cell. The model best agrees 
with experiment when its membrane conductance is concen- 
trated on the soma and the cytoplasmic resistivity is greater 

which pulse attenuation measurements were taken. than 150 Rem (upper-right corner of the diagram). 
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dominance curves of Fig. 7 is accessible to the model 
systems satisfying Gin,soma = 69.2 nS. Systems with 
uniform soma-dendritic membrane fall close to the 
lower boundary of the accessible region, where the 
input conductances at the soma and dendrites are 
nearly equal. Near the upper boundary of the 
accessible region, where Y,,,,,,+ 5 17 S2cm2 and 
r,,,,dcnd+ coQcm2, one finds that the curves for systems 
with Y m,dcnd 2 lo6 Qcm* will differ very little from the 
curve in Fig. 7 for the limiting case of total somatic 
dominance. This indicates that the largest value of 
r,,,,knd which may be reliably estimated using our 
model is about 106Qcm2. For ri = 10052cm, even in 
the total somatic dominance limit, the model barely 
agrees with the measured input conductance ratio to 
within its experimental uncertainty. In order to ob- 
tain the observed ratio, values of ri > 140.&m are 
required. The rough estimate of ri x 250 !&m made 
from considerations of bridge balance and extra- 
cellular resistivity (see experimental procedures) 
seems more consistent with the input conductance 
ratio measurements than does our originally assumed 
value of 1OOQcm. However, for either choice of ri, 
soma-dominant models are favored. 

The next calculation evaluates the steady-state 
voltage attenuation, A VsiA V,, between the soma and 
a mid-dendritic location on the Purkinje cell model 
when current is injected at the soma. The two record- 
ing sites (marked S and D in Fig. 6) were chosen to 
match as closely as possible the sites used in the 
actual experiment (R. Llinb and M. Sugimori, un- 
published). Impalement leaks of 5.1 and 8.6 nS for 
the soma and dendritic microelectrodes, respectively, 
were included. At each value of ri the values of r,,,dend 

and r,,,,, were found such that the model gave 

Gin,soma = 100.0 nS and AVs/A VD = 1.38, as observed. 
The variation of Y,,,,, as a function of r, for these 
systems is shown in Fig. 8 by the curve labelled 
“attenuation correct”. One may obtain an estimate of 
ri by combining the information on voltage attenu- 
ation with that for the input conductance ratio. Thus, 
for each value of r, we solved for Y,,~~~ and r,,,, 

such that Gin,soma = 100.0 nS (with both impalement 
leaks in place) and (Gio,soma/Gin.dcnd)b*~ = 1.52 (aver- 
aged over the usual 20 dendritic positions shown in 
Fig. 6 but with the impalement leaks set to zero). The 
“bare” conductance ratio was used since it eliminated 
the difference between the double-impaled neuron 
and the single-impaled neurons for which the conduc- 
tance ratio was actually measured. The variation of 
r,,,,, as a function of Y, for this calculation is shown 
in Fig. 8 by the curve labelled “conductance ratio 
correct”. The intersection point of the two curves in 
Fig. 8 defines the double-impaled neuron model 
which fits both the observed attenuation factor and 
conductance ratio; the value of r, = 225 Zlcm at which 
this occurs provides an estimate of the cytoplasmic 
resistivity. Since the curves cross at a large angle, this 
estimate of rr is relatively insensitive to errors in the 
experimental measurements (the alternative con- 

straint for the “conductance ratio correct” curve, 

Gin,wma/Gm,dcnd = 1.36 with a single impalement leak, 
would change the estimate of ri to 220&m). 

Given the above value of ri, one may immediately 
determine the parameters for a model which best fits 
the steady-state data for the average neuron 

(Gin,soma = 69.2 nS and Gin,soma/Gin,dend = 1.36). The 
best average neuron model parameters are 
rm,dend = 45,740 Qcm*, rm,sama = 760 Qcrn2 and 
r, = 225 Qcm. The values of rm for which the model 
is compatible with the experimental measurements, to 
within the experimental un~~~nties, covers a range 
extending a factor of two above and below the 
average values; this probably reflects the real vari- 
ability of the population of neurons being sampled. 
Other static properties for the best average model are 
the steady-state voltage attenuation, A V,/A V, = 1.23 
(with a pair of leaky microelectrodes included), and 
the “bare” dendritic dominance ratio, p = 0.50 (when 
the soma impalement leak is included, p = 0.44). The 
steady-state attenuation factor and input conduc- 
tance ratio are both sensitive to the value of rm.dand. 

However, the calculated input conductance, conduc- 

OoO loo 200 300 400 500 
rj &cm 

Fig. 8. The two curves show r,,,,,,, as a function of ri for 
the double-impaled neuron models which satisfy one or 
another pair of three possible constraints. In both cases 
GilW~ was held constant at lOO.OnS (this includes the 
impalement leaks at sites S and D of Fig. 6). while the 
soma-dendritic conductance distribution and ri were al- 
lowed to vary. in the case marked “conductance ratio 
correct” it was also required that (G~,~~=/G~*~~~ = I.52 
when. for this calculation o&v. the imnalement leaks were 
set to zero. Solutions were not possible-for r, < 100 fkm. In 
the case marked “attenuation correct” the second constraint 
was that the steady-state attenuation of a voltage step 
applied at S and observed at D was AVs/AVD = 1.38. 
Solutions were not possible for rl < 120 Rem. As one moves 
along the “conductance ratio correct” curve I_ rl_rl decreases 
from4Ok Qcmz at r,= 150&m to r,tid=7.2kQcm2 at 
r: = 500 Qcm. while for the “attenuation correct” curve 
r,,,,,, increases from 12 to 120 k Qcn? over the same range 
of ri. The point where the two curves cross marks the system 
whtch satisfies all three constraints simultaneously. The 
model parameters in this case are rm,dead = 19,900 0zm2, 

r,,,, = 650 &m* and ri = 225 Rem. 
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tance ratio and attenuation of the model are all 
insensitive to the way that the membrane conduc- 
tance of the dendritic compartment is divided be- 
tween the smooth and spiny dendrites. Shifting the 
dendritic membrane conductance of the best average 
neuron model entirely onto the smooth dendrites 

(rrn,,,,,th z 7.5 k Qcm’ and rmTspiny > IO6 C?cm’, for the 
smooth and spiny dendrites respectively) leaves the 
calculated properties of the model essentially un- 
changed. 

Dynamic calculations 

One may now ask whether the results of dynamic 
calculations support the estimates of r,,, derived on 
the basis of the static analysis given above. The 
dynamic behavior of the passive neuron model was 
investigated by injecting a 0.5 nA hyperpolarizing 
current step into the soma of the model and calcu- 
lating the ensuing time evolution of the trans- 
membrane voltage over the next 20 ms or more. From 
the soma voltage vs time, one may then obtain the 
final exponential relaxation time constant at the 
soma, t,,. The value of t0 is about 20ms (about 
the same time constant is calculated for dendritic 
impalements). The precise value of t0 obtained in 
such a calculation depends on the values of the 
parameters r, and r,. In Fig. 9 are plotted the curves 
of r0 as a function of ri and rm,somtir for the same model 
systems as used in the static calculations. Just as in 
Fig. 7, the q, curves converge to a point as r,+O, and 
the accessible region on the plot is a wedge bounded 
by the soma-dominant and dendrites-dominant 
curves. The models which best agree with the ob- 
served average value of t0 = 22 + 5 ms are essentially 
the same as those which satisfy the constraints on the 
static calculations (Fig. 9). The value of q, = 19.0 ms 
is obtained for the best static neuron model with 
c, = 1 .O pF/cm*. This calculated z,, is 1.16 times 
smaller than the observed value, which may be 
interpreted as being due to experimental uneer- 
tainties, an underestimate of the neuron surface area, 
or an underestimate of the membrane specific capac- 
itance. In the last case the model may be made to fit 
the observations by simply setting c, = 1.16 p F/cm2. 
In any case, the 16% discrepancy is small enough that 
the results of the dynamic calculation tend to confirm 
the accuracy and self-consistency of the model. 

Fig. 9. The final exponential relaxation time constant at the 
soma as a function of cytoplasmic resistivity, r,, and 
soma-dendritic conductance distribution. The input con- 
ductance at the soma has been held fixed. Systems with 
uniform membrane resistivity fall along the dashed curve. 
The dotted rectangle marks the lower bound of r, 
(= 67 S&cm) and the average and uncertainty of the experi- 
mental estimate of q, (= 22 + 5 ms) for the Purkinje cell. 
The model best agrees with experiment when its membrane 
conductance is concentrated on the soma and the cyto- 
plasmic resistivity is greater than 15ORcm (upper-right 

The shape of the calculated current-clamp voltage 
transients is not completely described by a single 

exponential relaxation, but may be approximated as 
the sum of several successively faster decaying ex- 
ponential terms as shown in Fig. 10. For our best 
average neuron model (Fig. 10) the fast transient 
terms account for 0.38 of the total amplitude of the 
voltage step, close to the observed value of about 0.5. 
The time constants of the fast transient terms are 
calculated to be 3.25,0.84 and 0.142 ms as compared 
to the observed values of about 3 and 0.5 ms. The 
calculations and observations are seen to be in agree- 
ment when it is understood that the poor time 
resolution of the experimental records will not allow 
the two fastest calculated components to be dis- 
tinguished. They will instead be seen as a single 
component with an average decay time near 0.5 ms. 
Also in agreement with the observations, the fastest 
component is calculated to have an amplitude six 
times larger than that of the next fastest component. 
Thus, the voltage transient calculated with our best 
average neuron model (where ri = 225 Qcm) seems to 

comer of the diagram). 

Fig. 10. Decomposition of a current-clamp voltage transient into a sum of exponential decays. (A) Soma 
voltage (dots) following a 0.5 nA hyperpolarizing current step applied to the soma. The model parameters 
are r_knd = 45,740 km*, rm.pomB = 760 Qcm’, ri = 225 Qcm, c, = 1.0 pF/cm* and GleaLroma = 5.1 nS. The 
applied current drives the soma voltage from the resting value V(0) to a new steady-state value V(a). 
(B) The voltage transient may be approximated as the sum of the four exponential decays shown. (C) 
On a semilogarithmic plot, it is seen that an exponential decay (straight line) with time constant z, 
accurately represents the final approach of the soma voltage (dots) to its new steady-state value V(a). 
(D) Subtracting out the final exponential decay reveals a faster decay, with time constant 7,. (E), (F) 

Repeating this peeling procedure successively reveals two more exponential decay terms. 
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Table 3. Comparison of electrotonic lengths, X, for the full model and the equivalent-cylinder approximation, for several 
soma-dendritic conductance distributions 

Description 

% GJ 
P 71 Cl x, 

(including rL! CZ X, 
leak) ri X modei 

(Al) (-) (ms) t-) 
Dendrites dominant* 14,245 100 12.57 13.79 5.11 

m 0.95 0.34 1.074 0.325 
0.085 1.12 0.495 
- - 

Soma dominant* m 100 0.00 20.68 5.88 
517 1.10 0.30 0.744 0.052 

0.075 1 .oo 0.379 
- - 

Best model* 45,740 22s 0.44 19.00 4.47 
760 3.25 0.33 1.427 0.333 

0.84 0.33 1.351 
0.142 2.05 0.818 

Best model with larger bakt 92,200 233 0.20 21.90 4.52 
800 3.60 0.31 I .393 0.255 

0.90 0.33 1.301 
0.142 2.Q3 0.761 

A’, = rrn/,/‘~ is the eq~vaIent~yiinder electrotonic length. 
c,,, = 1 .O wF/cm2, Gi, _mll = 69.2 nS. ._ _.,-..._ 

;;;=::;;: 
= 5.1 nS, V,,, = -72 mV. 
= 16.8 nS, Vss, = -88 mV. 

agree well with the shape of the observed transient. 
Furthermore, as may be seen from Table 3, all the 
models with ri = 100 Rem produce initial transients 
which are too fast and too small. The initial transients 
are sensitive to r, but not to r,, and the calculated 
transients are consistent with the observations for 
r, = 225 Qcm but not for r, = 100 Rem. 

One may also calculate the response of the model 
to short current pulses (duration 0.4ms) applied to 
the soma to roughly simulate soma action potentials. 
For the double-impaled neuron model (ri = 225 Qcm, 
c, = 1.0 pF/cm*) the resulting soma voltage pulse 
(0.4ms full width at half maximum amplitude) is 
attenuated by a factor of 7.8 in amplitude as observed 
at the mid-dendritic recording site, in close agreement 
with the observed attenuation factor of about 7.5. 
When the calculation is repeated for the best average 
neuron model the attenuation factor is found to be 
7.5, almost unchanged in spite of more than a factor 
of two increase in r, dend. This indicates that the main 
load for fast transients is capacitive rather than 
resistive. Thus, the attentuation of fast transients is 
determined by c, and ri , while the steady-state atten- 
uation is determined by rm and ri. Because of the 
strong attenuation of fast pulses with distance into 
the dendritic tree, the soma action potential only 
drives a small fraction of the total cell capacitance, 
greatly reducing the requiring transmembrane cur- 
rents at the soma for a given spike amplitude. 

Eflect of larger electrode leak 

Our estimates of V,,, and Glcak are not independent. 
So far, we have assumed VRst = -72 mV for the 
unperturbed cell in order to derive the estimates 

G kslt_,ma = 5.1 nS and Gleak.dcnd = 8.6 nS. However, the 
value of V,, could be much more negative than 
-72 mV if the leak channel was impermeable to 
Na + , and as the assumed value of k’,,, becomes more 
negative the estimated size of GIeak increases as well. 
If we assume Y,,, = - 88 mV for the unperturbed cell, 
then our electrode leak estimates increase to 
G kak.smm. = Gkak.dcnd = 16.8 nS. In order to assess the 
effect of a large impalement leak on the parameter 
estimates derived for our model we have repeated the 
entire analysis assuming Gkak = 16.8 nS. 

The results of this analysis are given in Table 3 as 
the “best model with larger leak”. The electrical 
parameters defining this model are rm,dend = 
92.2 k f&m2 r 9 m,soma = 800 Qcm’ and ri = 233 Qcm; the 
value of c, which makes the model exactly fit the 
measured time constant TV = 22.0 ms is 
c, = 1.01 ~FJcrn’. Compared with the “best model” 
in Table 3, one sees that the only significant change 
in the model is that the estimate of rm.dend doubles 
when the larger value of Gkak is assumed. This 
indicates that the “best model” parameter estimates, 
except r,,,dend, are very stable with respect to per- 
turbations of the model, and that the value of r,,,,&nd 
for the “best model” is more likely to be an under- 
estimate than an overestimate. 

Equivalent-cylinder analysis 

Finally, one may ask what the results will be of 
applying the same sort of eq~valent-cylinder analysis 
to our model as is applied to real neurons.4~14~~~43~a9~qs.y* 
In such an analysis, the neuron is treated as if it were 
an unbranched membrane cylinder of constant di- 
amefer,41,42,72-75 and the membrane resistivity, rm, and 



Passive Purkinje cell model 125 

the electrotonic length, X, of the cell are obtained 
from the measurements of successive exponential 
time constants74 in a current-clamp experiment. We 
may find the exponential time constants character- 
izing our model by applying the “peeling of ex- 
ponentials” method74 to the computed voltage vs time 
for the model, as illustrated in Fig. 10. 

In the case of a uniform cable, the final decay time 
constant, T,, is just equal to the membrane time 
constant, ~~ = r,c,. 74 In the equivalent cylinder anal- 
ysis, one assumes that r0 = 7,,, and obtains the mem- 
brane resistivity from the relation r,,, = z,/c,,,. The 
estimate of r,,, so obtained is accurate only when the 
equality r,, = 7,,, is a good approximation. Since the 
membrane resistivity of the model neuron is non- 
uniform, one must generalize the definition of 7, in 
order to assess the accuracy of the estimate of r,,, 
obtained through the equivalent cylinder analysis. A 
suitable generalization for 7,,, is given by 
T m,Bv = CIOIB,/GIOIB,, where Ctota, and G,,,, are the total 
transmembrane capacitance and conductance of the 
cell (including the impalement leak). Note that in the 
case of non-uniform r,, it is the average membrane 
conductivity and not the average resistivity that is the 
relevant quantity. In the limit as ri+O, the cell interior 
becomes isopotential and the final decay time con- 
stant is just 7, = rrn,+” for either uniform or non- 
uniform membrane. For a uniform membrane cylinder 
with ri # 0, one has t0 = ~~ = t,,,,. The values of z,, 

and =,.,, for our model are compared in Table 2. For 
the systems with nearly uniform soma-dendritic 
membrane (near the bottom of Table 2), 7,, = T,,,,,, is 
a good approximation and the estimate r,,, = Q/C,,, will 
be accurate (once Glsak is accounted for). As the 
membrane conductance becomes localized on the 
soma (ascending Table 2), the difference between T,, 

and L,, increases, making the estimate r,,, = 7,,/c, less 
reliable. For r, = 100 Rem the estimated and the 
actual average membrane conductivities differ by at 
most 20%, but this difference increases linearly with 
ri. Thus, the equivalent cylinder analysis yields only 
a fair estimate of the average membrane properties 
when they are spatially very non-uniform. 

The second quantity obtained in the equivalent- 
cylinder analysis is the electrotonic length. For a 
uniform cable, the voltage transient following a 
current step may be expressed as 
V(r) = V(co) + Znm-0 C, exp( - Z/Z,), where the r, are 
given by a relation in terms of only T,, and the 
electrotonic length X. Invertin this relation one 
obtains X = X, = nn/ J----g74 (z&) - 1. In Table 3 we 
compare the equivalent-cylinder electrotonic length 
estimates, X,, with the actual electrotonic length of 
the model, Xmode, (averaged over the three principal 
dendritic branches). The values X, are comparable to 
estimates obtained for real neurons.4@*43s95*98 How- 
ever, even in the case where the membrane resistivity 
is essentially uniform over the model neuron 
(dendrites-dominant example), the equivalent- 
cylinder electrotonic length is substantially different 
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from the actual electrotonic length of the model; the 
estimate X, calculated from the first two decay time 
constants is in error by a factor of three. In the case 
of total somatic dominance, where the membrane 
resistivity is highly non-uniform, the equivalent- 
cylinder analysis overestimates the electrotonic length 
by a factor of ten, and for our best model the 
electrotonic length is overestimated by a factor of 
four. These erroneously large estimates for the elec- 
trotonic length will misleadingly confirm the assump- 
tion of spatial uniformity for r,,, which is built into the 
equivalent-cylinder approximation. It appears that 
the equivalent-cylinder electrotonic length will be 
very unreliable when the membrane is non-uniform 
or the branching power differs from 3/2. A symptom 
of this problem is that the successive estimates X,, are 
not equal. 

DISCUSSION 

Main conclusions and internal checks 

The first conclusion one may draw from the results 
of the computer model is that the somatic and 
dendritic passive membrane resistivities are very 
different for the Purkinje cell. This conclusion follows 
directly from the experimentally observed inequality 
of the dendritic and somatic input conductances, and 
is very robust in the sense that essentially the same 
conclusion will be reached in spite of large changes in 
the electrical and morphological parameters of the 
model. The electrical parameters determining the 
input conductance of the model are just ri and r,. 
From Fig. 7 it is clear that the results of the model 
with uniform membrane resistivity are inconsistent 
with the observed inequality of the soma-dendritic 
input conductances, for all values of ri . To examine 
the effect of morphological perturbations of the 
model, consider the effect of changing its overall size. 
Shrinking the model neuron by 25% causes the ratio 

Gin,soma/Gin.dend to increase by 7% for the soma- 
dominant case but has essentially no effect for the 
dendrites-dominant case. To significantly alter the 
conclusion that the cell exhibits soma dominance, the 
size of the neuron must be misestimated by a factor 
of two or more; subtle morphological inaccuracies of 
the model are likely to have an even weaker effect 
than this. The underlying reason that allows one to 
derive such a firm conclusion about the spatial distri- 
bution of r, is that the surface area of the dendrites 
of the F’urkinje cell is vastly larger than the surface 
area of the soma. To obtain the observed ratio of 
input conductances, the total conductance of the 
dendrites must be smaller than that of the soma; 
because of the disproportionately larger dendritic 
area, this further requires that r,,,dmd>>r,,,_a. The 
deduction of the non-uniformity of r,,, hinges on the 
availability of both somatic and dendritic input con- 
ductance measurements. 

The second result of our computer simulations is 
the quantitative estimation of the values of the pas- 
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sive membrane resistivities. In order to assess the 
accuracy of these estimates, we again consider the 
morphological adequacy of our computer model. 
First, we argue that it is reasonable to expect that a 
computer model based on the mo~hology of a single 
cell will adequately represent the whole class of 
Purkinje cells. The Purkinje neurons are relatively 
homogenous in size and shape over the entire cere- 
bellar cortex and highly stereotyped compared to 
other neurons.8s While no two will have precisely the 
same dendritic arbor, it appears that the differences 
are random variations on a theme, where each Pur- 
kinje cell grows to maximize its synaptic contacts with 
the uniformly packed parallel fibers which cross its 
discrete, sheet-like dendritic doma.in.7~*~2S The very 
complexity of the dendritic tree of a single Purkinje 
cell makes it likely that each cell contains a good 
sample of all the possible random dendritic sub- 
networks, and that the detailed differences between 
individual arbors are averaged out in the evaluation 
of simple properties such as the input conductance. 
There is a precedent for our assertion that a single 
model may accurately represent the morphology and 
function of a class of neurons, in the case of identified 
neurons in an invertebrate.3’ 

The other aspect of morphological adequacy which 
bears on our quantitative electrical parameter esti- 
mates is the accuracy with which the dimensions of 
the particular model are determined. Since most of 
the total passive conductance of this neuron lies on 
the soma, it follows that the soma membrane conduc- 
tivity is, except for a factor near unity, just the whole 
cell conductance divided by the soma area. The 
smooth, simple shape of the soma means that its size 
and surface area may be quite accurately determined 
(though it is not certain that the anatomically defined 
soma will exactly coincide with the region of en- 
hanced membrane conductivity). We estimate that 
our determination of the average soma membrane 
resistivity, rm,aoma = 760Qcm2, has an uncertainty of 
~4 50%. The accuracy of r,,,,, depends on the accu- 
racy of the membrane surface area estimate for the 
very compfex dendritic tree of the Purkinje cell, but 
this is probably not the limiting factor (the agreement 
of calculated and measured values of to supports an 
assessment that the error in the dendritic area esti- 
mate is of order 20% or less). The accuracy of r,,,,,,, 
is limited by the experimental uncertainty of the ratio 

Gi~,*~~~Gj~ d~ti from which the dendritic dominant of 
the model-is deduced. On this basis we estimate that 
the average dendritic membrane resistivity, 
r m,dend = 46 kRcm2, has an uncertainty of about a 
factor of two. However, this estimate ignores the 
possible non-uniformity of r, within the dendritic 
~mp~tment itself. Since the conductance density of 
the fully activated coupled Ca’+-K+ channel system 
is found to be quite large, about 20mS/cm2 
(L‘rm” = 50 f2cm2) in another preparation,52 and since 
the active conductances on the smooth dendrites may 
be partially activated even at rest (Fig. 3E of Ref. 58), 

it is quite plausible that an active conductance con- 
tribution makes rm,smoorh K r,,,spiny. And since modi- 
fying the parameters of the best average model to 
rm,unoorh z 7.5 k&n* and r,,,,,i,, > lo* szCm2 would 
leave the model compatible wrth all the obse~ations, 
it is possible that the value rm,Cnd = 46 kQm* under- 
estimates the true passive membrane resistivity by 
one or more orders of magnitude. 

The accuracy of our estimate of ri depends on the 
accuracy of the measured lengths and diameters of 
the smooth dendritic segments, but since the smooth 
dendrites are quite stout, the measurements of their 
dimensions should be relatively accurate. An error in 
ri proportional to tissue shrinkage is possible, but 
shrinkage should be accounted for in the construction 
of our model. We estimate that our value of 
r, = 225 Qcm is reliable to +207,. Our deduction of 
a value for rj hinges on the availability of somatic and 
dendritic input conductance and pulse attenuation 
measurements. 

Active conductances 

The above discussion assumes that a passive model 
for the Purkinje cell near rest is essentially correct. 
However, the presence of active conductances on the 
dendrites57a58 calls this assumption into question. 
There are two aspects to consider. Firstly, one may 
ask whether the membrane conductances are essen- 
tially constant during small hyperpolarizing voltage 
steps, so that a linear analysis is adequate. The 
observed linearity of the current-voltage relation in 
the hyperpolarizing direction, for both soma and 
dendrites, supports the adequacy of the passive 
model. The second aspect has to do with whether the 
estimated membrane resistivities represent truly pas- 
sive channels or whether they represent the near 
linear behaviour of a collection of voltage-sensitive 
channels over a restricted voltage range. In this 
regard, one observes that the response for small 
voltage displacements from rest is essentially un- 
changed by pharmacological block of the Na+ and 
Car+ active conductances.57~s8 This supports the 
notion that truly passive conductances dominate the 
electrical behaviour of the Purkinje cell for mem- 
brane potentials at or below -60 mV. Also, the effect 
of the microelectrode leak will tend to linearize the 
response of the neuron,4’ and this coupled with the 
relatively small value of the dendritic membrane 
conductivity will make our estimates of r,.,,,, r, and 
c, very insensitive to a possible active contribution to 

bdcnd. For exactly the same reason the uncertainty 
iu the Vahe Of r,,,&d is large. For a more rigorous 
assessment of the possible active contributions to 
r,,,dcnd a model incorporating dendritic active conduc- 
tances is probably necessary. 

Supporting evidence 

Estimates of r,,, which have been made for other 
mammalian neurons typically fall in the range 
t-20 kRcm2,4~‘4~20~43~s1~83~8p~ps~p8 which is somewhat lower 
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than our estimate of r m,dend for the guinea-pig Purkinje 
cell. However, these estimates of r,,, have been ob- 
tained under the assumption of uniform membrane 
resistivity, and accordingly they should be compared 
with the membrane resistivity of 17 kQcm* for our 
best model suitably averaged over the entire cell. As 
we have seen from the application of the equivalent- 
cylinder analysis to our model, electrophysiological 
measurements at the soma alone will give little or no 
indication of the spatial non-uniformity of the mem- 
brane resistivity, even when the non-uniformity is 
extreme. Furthermore, the fast components of the 
membrane voltage transients, upon which estimates 
of the electrotonic length are based, are subject to 
systematic errors in the usual single 
microelectrode-balanced bridge recording arrange- 
ment.27.81~*9 Thus, the present results are not incom- 
patible with the work of other authors. Neither is our 
high estimate of rm,dend without precedent, since the 
measured soma membrane resistivity for bovine 
chromaffin cells is 50 k&m*,**” while that for ApIy~iu 
neurons is r,,, = 550 kRcm2.32 The magnitude of the 
intrinsic resistivity of artificial bilayer membranes, in 
the range 107-108Rcm2,47~63~88~9’ forms a strict upper 
bound on r,,, which is easily compatible with our 
estimate of rm,dend. 

Finally, our estimate of rm,soms is confirmed by 
evidence derived from the measurements of K + efflux 
from guinea-pig Purkinje cell somata.38 Having 
assumed r,,, = 2500 Rem* for the soma, the increase in 
the K+ concentration in the extracellular space 
around the soma of a Purkinje cell during a dendritic 
spike was calculated to be 0.06 mM, whereas the 
observed increase was much larger, near 0.3 mM (see 
p. 385 and Fig. 4 of Ref. 38). The transmembrane K+ 
conductance which is necessary to account for the 
observed K+ concentration change at the soma is 
thus five times larger than that originally assumed in 
the calculation. During the dendritic spike the soma 
membrane was depolarized by about 30mV from 
rest, to near - 35 mV. This is only 5 mV above the 
threshold for firing somatic spikes (before they are 
blocked by the prolonged depolarization due to the 
dendritic spike), so the fast somatic K+ channel will 
be near or below threshold.3 Assuming that the entire 
transmembrane K+ efflux of the soma during the 
dendritic spike is due to the passive membrane con- 
ductivity, one obtains r,,,,,, = 500 &cm*, in good 
agreement with our estimate of 760 Qcm* + 50%. 

SigniJicance of @dings 

The conclusion that r,,,,,, x 50 k&m* for the Pur- 
kinje cell dendrites (with the true passive resistivity 
possibly much higher) has significant implications for 
neuronal integration if it may be extended to other 
neuron types. Consider the motoneuron, where the 
distal dendritic processes are very long (500 pm) and 
thin (0.5 pm). 4*96,97 Given the values r, = 2500 f&m* 
and ri = 70 fIcm which have been estimated for the 
motoneuron,4 the electrotonic length of such a den- 

dritic cable is about 2.4. This is so long that a 
synaptic current injected near the terminal end of the 
cable will be dissipated as it propagates down the 
cable. Seen from the soma, these fine terminal pro- 
cesses will appear to be useless since passive spread 
of signals from the terminal processes to the soma is 
ineffective. However, if the membrane resistivity of 
this dendritic cable is 50 kRcm* instead, then its 
electrotonic length falls from 2.4 to 0.5 and the 
situation becomes very different. The dendritic cable 
is now so electronically short that even synaptic 
currents injected at the terminal end of the dendrite 
will travel the length of the cable with little dissi- 
pation; because of the distributed capacitance of the 
cable, a current pulse onto the cable will have its 
amplitude reduced and its duration correspondingly 
increased as it travels along the cable.5@“,42*77 Seen 
from the soma, distal and proximal synapses on the 
dendrite will appear equally effective, though in 
different roles. The short, high amplitude pulses from 
proximal synapses will be most effective in eliciting 
immediate action potentials, while the longer, lower 
amplitude pulses from distal synapses will be most 
effective in integrating temporally asynchronous in- 
puts. We have framed an extreme example here, but 
the argument applies to a wide range of neuron types 
(e.g. motoneurons, pyramidal cells, stellate cells36) 
which have fine, long terminal dendritic processes. 

The non-uniformity of the “passive” membrane 
resistivity is highly plausible in the light of functional 
considerations. The high value of rm,dend may be 
readily understood as a specialization which opti- 
mizes the dendrites for signalling with minimum 
attenuation. The low value of rm,soma may be viewed 
instead as a specialization to maintain stability of the 
soma membrane voltage in the face of the large 
high-threshold fast Na+ and low-threshold slow 
Na+ conductances.57 These voltage-dependent Na+ 
channels provide positive feedback to membrane 
voltage fluctuations and have the potential for ex- 
plosive instability. This instability is used to good 
effect to generate the action potential but must be 
controlled by a large, hyperpolarizing background 
conductance. 

There is evidence that the resting potential is 
actually set by a specific mixed Na+-K + conduc- 
tance channel which behaves as if it were a passive 
leakage conductance near Vresl.*‘@ If this is so, then 
it may be that the intrinsic membrane leakage con- 
ductivity is relatively constant over the cell and close 
to the intrinsic leakage conductivity of a pure lipid 
bilayer. Any conductivity above this very small in- 
trinsic conductivity would then be due to specific ion 
channels “deliberately” inserted into the membrane. 
The spatial non-uniformity of r,,, would be merely a 
consequence of the well-documented non-uniform 
distribution of specific ion channels on neurons,57-59 
and not an intrinsic property of the membrane at all. 

So far we have considered the significance of the 
large value of the dendritic membrane resistivity 
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deduced with our model in the context of a neuron 
with synaptic inputs sparsely distributed over its 
surface. But the firing rates of the neurons, axons and 
synapses in the cerebellar cortex is of order 
50 Hz.*~,~**~ Consider a portion of spiny dendrite 
l.Opm in diameter, with a synaptic density of 4.4 
synapses/pm (on spines) and with each synapse firing 
at an average rate of 10 Hz. If we take the integrated 
conductance of each synaptic pulse to be 4.0 nS rns5 
and ignore for the moment the effect of the spine 
stem, then the effect of the synapses is to produce an 
average transmembrane conductance density of 
5.6 mSlcm* (“r,,,” = 180Bcm*) for this dendrite. In 
the case of dense synaptic input, with r,,, as large as 
5OkSkm*, the properties of the dendritic cable will 
be determined by its average synaptic input and the 
passive membrane conductivity of 0.02 mS/cm2 will 
be only a negligibly small ~rturbation. Similarly, for 
the smooth dendrites one may expect active conduc- 
tance densities of a few mS/cm’ for the coupled 
Ca*+-K+ system (at a transmembrane voltage of 
about -40 mVs2 as in a functioning Purkinje 
CX#~‘~~~), again swamping the passive membrane con- 
ductivity. The Purkinje cell dendrites are able to 
generate spikes under some circumstances, by means 
of a slow Ca*+ active conductance.s3,54.58 Dendritic 
spikes and active graded responses may act as a 
booster mechanismS3,‘* to overcome the electrotonic 
lengthening of the dendrites due to synaptic activa- 
tion. The coupled Ca2+-K+ dendritic conductances 
may also serve more subtle integrative and regulatory 

functions such as have been observed elsewhere medi- 
ated by the calcium ion. W~46s2,53*78 Clearly, the passive 
leakage conductance of the dendrites is ignorable in 
comparison with the tonic synaptic and active con- 
ductances present on a functioning Purkinje cell. 

The large value of the cytoplasmic resistivity de- 
duced with our model has significant consequences. 
For r, = 225 Qcm the resistance of the stem of a spine 
(0.7 pm long and 0.14 pm diameter) will be about 
100 MQ, as compared with the peak conductance of 
about 15 nS (67 MB)’ for an activated synapse. Thus, 
the conductance pulse for a synapse-on-spine will be 
only about half as large as for the synapse directly on 
a dendrite. This may be important in preventing 
dense synaptic input from overloading a dendritic 
cable and also in possibly providing a postsynaptic 
means for modulating synaptic conductances. The 
other aspect of a large r, is that it provides the various 
neuronal compartments with some electrical auton- 
omy. It is metabolically cheaper to produce electro- 
tonic isolation by increasing ri rather than by de- 
creasing r,, and the isolation so obtained may be 
overridden by means of active responses (e.g. a 
dendritic spike) when required. Such flexibility may 
be desirable for central neurons in order to allow 
both local processing of information as well as inte- 
gration of inputs at the soma. 
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