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The second hyperpolarizability (γ ) of carbon disulfide (CS2) is measured by gas-phase electric-field-induced
second-harmonic generation for laser wavelengths in the range 765–1064 nm. The observed hyperpolarizability
is decomposed into electronic (γ e) and vibrational (γ v) contributions, and the dispersion curve for γ e is extrapo-
lated to the static limit, with the result of γ e

0 = 12558± 93 atomic units = 7.83± 0.06× 10−61 C4m4J−3 =

6.33± 0.05× 10−36 esu (Taylor series convention). The results of this experiment agree with other recent
nonlinear optical measurements and theoretical calculations. ©2020Optical Society of America

https://doi.org/10.1364/JOSAB.394315

1. INTRODUCTION

Carbon disulfide is a molecule that has been extensively studied,
is widely used for its nonlinear optical (NLO) properties, and
is literally the textbook example for many NLO processes [1].
Liquid CS2 is often used in applications, or as a reference stand-
ard for NLO measurements, due to its transparency and large
nonlinear refractive index. It has a strong response on the ps time
scale due to molecular reorientation, libration, and translation,
and a smaller response on the fs time scale due to electronic and
vibrational contributions [2–6]. However, the complicated
time, frequency, and polarization-dependent response for CS2

makes its use as a reference problematic [2,6], which has moti-
vated investigations of the individual contributions to better
understand the combined NLO response for CS2.

The fast, fs NLO response for CS2 is governed by the
electronic and vibrational contributions to the molecular
hyperpolarizability, γ = γ e

+ γ v . The first measurements of
the molecular hyperpolarizability for CS2 used the DC Kerr
effect in the gas phase [7] and electric-field-induced second-
harmonic generation (ESHG) in the liquid phase [8]. Following
these experiments, there has been a succession of theoretical
calculations of increasing sophistication for γ of CS2 [9–12],
none of which agrees with the early experimental results. Only
recently have there been further experiments making absolute
measurements of γ in the gas phase [13,14] and liquid phase
[2,3] for CS2. The results of these recent experiments contradict
the earlier experimental results and are close to the theoretical
calculations.

The experimental study in this work presents measurements
of γ for CS2 made with high accuracy using the technique of
gas-phase ESHG with periodic phase matching [15–18], over a

range of wavelengths to produce a dispersion curve. The exper-
iment is described first and the results are presented. Then, the
experimental dispersion curve is combined with the results of
recent theoretical calculations to decompose the hyperpolar-
izability into electronic and vibrational contributions. Finally,
the results of the present experiment are compared to the other
experimental measurements and the theoretical calculations.

2. EXPERIMENT

The ESHG experimental method is similar to that previously
described [15,17]. Second-harmonic light is generated by the
laser beam in a gas sample when a transverse static electric field
is applied to the gas. In this experiment, a spatially alternating
static electric field is applied to the gas by a periodic array of N
electrode pairs, and the ESHG signal is increased by a factor of
N2 when the coherence length in the gas is adjusted to match
the longitudinal period of the electrode array. The gas density
ρ controls the coherence length, and ρ is scanned to find the
phase-matching density and maximum second-harmonic sig-
nal S(2ω). The ratio of hyperpolarizabilities γ for two gases is
determined from measurements of the peak signal S(2ω) and gas
density ρ at phase-match for each of the gases, where CS2 and
N2 are the sample and reference gases in the present experiment.
The hyperpolarizability ratio is given by [17]

γCS2

γN2

=

[
S(2ω)CS2

S(2ω)N2

]1/2 [
ρCS2n′CS2

VCS2

ρN2n′N2
VN2

]−1

, (1)

where

n′ = (n4
0n3
ωn2ω)

1/6, (2)

0740-3224/20/061769-06 Journal © 2020Optical Society of America

https://orcid.org/0000-0002-0854-7073
mailto:shelton@physics.unlv.edu
https://doi.org/10.1364/JOSAB.394315


1770 Vol. 37, No. 6 / June 2020 / Journal of the Optical Society of America B Research Article

Fig. 1. Schematic diagram of the experimental apparatus
described in the text, using (a) a cw Ti:sapphire laser for wavelengths
765–900 nm, or (b) a pulsed Nd:YAG laser at 1064 nm. The inset
shows the path of the focused linear polarized laser beam between
cylindrical electrodes with alternating polarity in the gas cell.

nω is the gas refractive index at frequency ω, and V is the
electrode array voltage.

Figure 1 shows schematic diagrams of the experimental
apparatus. A cw Ti:sapphire laser (folded linear resonator with
0.5–0.9 W output power and <1 GHz bandwidth) was used
for measurements in the 765–900 nm wavelength range, and
a pulsed Nd:YAG (yttrium aluminum garnet) laser (0.4 mJ,
100 ns pulses, 4 kHz repetition rate, 20 GHz bandwidth) was
used for measurements at 1064 nm. The Ti:sapphire laser fre-
quency was measured with a scanning Michelson wavemeter
(Burleigh WA-20).

A laser beam with the desired linear polarization state (optical
field polarized parallel to the static electric field) is prepared
by the prism polarizer (POL), lens L1 focuses the beam to
20 cm confocal parameter with a waist at the center of the gas
cell (CELL), and a red glass filter (Schott RG645 or RG780)
blocks any light at the second-harmonic wavelength that may
be present in the incident beam before it enters the gas cell.
ESHG occurs as the laser beam passes between the electrodes in
the gas cell (Fig. 1 inset). The transmitted fundamental beam
and coaxial second-harmonic beam generated in the gas cell are
collimated by lens L2 and separated by a sequence of spectral
filters. The filters for the cw laser experiment [Fig. 1(a)] are a
laser mirror (HR) with high reflectivity for the fundamental and
high transmission for the second harmonic, a tandem Brewster
prism spectrometer (P1, P2), and a band pass interference filter
for the second-harmonic light (BP). The filters for the pulsed
laser experiment [Fig. 1(b)] are similar, except that the prism
spectrometer is replaced by several infrared absorbing glass
filters (Schott KG3). The second-harmonic beam is detected by
a photon-counting photomultiplier tube (PMT).

The coherence length for SHG, lc = π/|2kω − k2ω| where
kω = 2πnω/λω, is determined by the refractive index disper-
sion. The coherence length for SHG in a gas is proportional to
λ3ρ−1 [19], so an electrode array with a shorter period requires a
higher gas density to reach phase match, but it generates a larger
ESHG signal. In these experiments, the period of the electrode
array is constrained by the 360 Torr vapor pressure for CS2 at
room temperature. The array for the cw laser measurements

has 82 pairs of cylindrical electrodes with 3.18 mm diameter
and 5.08 mm spacing (Fig. 1 inset), and phase match for the
765–900 nm laser wavelength range occurs at 100–300 Torr
CS2 gas pressure. The maximum applied field was limited to
avoid breakdown in the gas, so the array voltage increased from
1 to 3 kV and the ESHG photon count signal increased from 10
to 30 s−1 over this wavelength range for CS2. The breakdown
voltage and ESHG signal were larger for the N2 reference gas.
For a typical N2 measurement, the phase match pressure, array
voltage, and ESHG signal were 4000 Torr, 5 kV and 200 s−1.

The first measurements for CS2 were made at 1064 nm with
the pulsed laser, and since the dispersion was uncertain, an
array with a very long period was constructed to ensure that
phase match would be possible. The array for the pulsed laser
measurement also had 82 pairs of cylindrical electrodes with
3.18 mm diameter and 5.08 mm spacing, but they were elec-
trically connected in groups of six to increase the period. The
1064 nm measurements were made at 251 Torr for CS2, using
the phase-match peak at three times the density of the lowest-
density phase-match peak [15]. The pulsed laser ESHG signal
with 1 kV array voltage was about 1000 s−1 for both CS2 and
N2. The usual correction was made for photon counting dead
time {Eq. (7) in Ref. [17]}.

Alternating measurements (ABABA. . . ) were made for the
sample and reference gas to cancel the effect of slow signal drift
during the measurements. Hyperpolarizability ratios were
determined from triplets of measurements: each signal ratio
was the sample signal divided by the average of the reference
signals immediately before and after that sample signal mea-
surement. The small incoherent background was measured and
subtracted. Coherent background was assessed by reversing the
array polarity [17] and found to be negligible (<0.1% of signal).
The sample and reference beam paths are slightly different due
to the different refractive indices for the sample and reference
gas filling the cell. The beam is carefully centered in the array
and aligned through the following optics to prevent a systematic
error in the measured signal ratio due to the small change in the
beam path.

Gas densities appearing in Eq. (1) were determined with
<0.1% uncertainty from the measured gas pressure and temper-
ature at phase match using the virial equation of state [20]. The
sample gas temperature was 295± 1K. The gas refractive index
was determined using the measured gas density and published
refractive index data [21]. The largest contribution to the hyper-
polarizability ratio uncertainty was due to photon-counting
statistics, with statistical uncertainty 0.4–1.5% for a single
triplet of measurements and 3–12 triplets contributing to the
final results.

3. RESULTS AND DISCUSSION

The hyperpolarizability ratios γCS2/γN2 and phase-match
density ratios ρN2/ρCS2 measured in this experiment are given
in Table 1. The results for γCS2 are also given in Table 1, and
are obtained from γCS2/γN2 using the previously determined
ESHG dispersion curve forγN2 [17]:

γN2 = γ
e
0,N2

(1+ Aν2
L + Bν4

L)+ Gν−2
+ Hν−4, (3)
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Table 1. ESHG Phase-Match Density Ratio and
Hyperpolarizability Ratio Measurements for CS2 and N2,
and Experimental Results for γCS2 in Atomic Units

λ (nm) ν(cm−1) ρN2/ρCS2 γCS2/γN2 γCS2(103au)

1064 9395 19.50± 0.02 15.59± 0.02 15.07± 0.04
900 11111.1 20.24± 0.02 16.46± 0.06 16.33± 0.07
880 11363.4 20.39± 0.02 16.65± 0.06 16.58± 0.07
860 11627.9 20.66± 0.02 16.71± 0.08 16.71± 0.09
840 11904.8 20.78± 0.02 17.00± 0.08 17.09± 0.09
820 12195.3 21.00± 0.02 17.24± 0.08 17.43± 0.09
810 12345.1 21.13± 0.02 17.27± 0.09 17.50± 0.09
800 12500.0 21.26± 0.02 17.41± 0.04 17.69± 0.05
790 12658.1 21.41± 0.02 17.39± 0.06 17.73± 0.07
780 12820.5 21.51± 0.02 17.43± 0.07 17.82± 0.08
765 13071.9 21.73± 0.02 17.73± 0.09 18.21± 0.10

where ν2
L = 6ν2 for ESHG. Expressing γ in atomic units

(1 au= 6.235377× 10−65 C4m4J−3) and ν in cm−1, the
coefficients in Eq. (3) are γ e

0,N2
= 917.35 au, A= 1.003×

10−10 cm2, B = 1.852× 10−20 cm4, G =−3.544× 108 au
cm−2, and H =−1.668× 1015 au cm−4. The uncertainty
for γCS2 includes an estimated uncertainty of 0.2% for the γN2

reference.
The form of Eq. (3) for γN2 is an example of a more general

result, where the electronic contribution to γ (−νσ ; ν1, ν2, ν3)

at frequencies far below the electronic resonance frequencies is
an even power series in νL [22,23], where νσ = ν1 + ν2 + ν3

and

ν2
L = ν

2
σ + ν

2
1 + ν

2
2 + ν

2
3 . (4)

There is also a pure vibrational contribution to γ with reso-
nances at vibration transition frequencies. For frequencies far
above vibrational resonance, this contribution is given by the
sum of terms in even inverse powers of ν. Vibrational resonances
distinguish this contribution from the effect of zero-point vibra-
tion averaging (ZPVA), which is included in the experimental
electronic contribution. The polarizability α and hyperpo-
larizability γ of CS2 far-off resonance will have a form similar
to Eq. (3).

Figure 2(a) shows the data for ρN2/ρCS2 plotted versus
ν2

L . The inverse phase-match density ρ−1 is proportional
to the polarizability dispersion 1α(ν)= α(2ν)− α(ν), so
ρN2/ρCS2 =1αCS2/1αN2 measures the polarizability disper-
sion for CS2. The function fit to the data is constructed from
α(ν) for CS2 and N2. The electronic polarizability αe (ν) below
resonance is a power series in ν2, and the expression for the
electronic contribution to1α has the form

1αe
= c 1ν

2(1+ c 2ν
2
+ c 3ν

4). (5)

For N2, there is no pure vibrational contribution to α, so
1αN2 =1α

e
N2

. The coefficients in Eq. (5) for 1αe
N2

deter-
mined from previous experimental measurements [19,24] are
c 1,N2 = 1.8905× 10−9 au cm2, c 2,N2 = 3.076× 10−10 cm2,
and c 3,N2 = 17.58× 10−20 cm4, where ν is in cm−1 and α is in
atomic units (1 au= 1.648778× 10−41 C2m2J−1).

For CS2, the vibrational polarizability is [24–26]

Fig. 2. (a) Phase-match density ratio and (b) hyperpolarizability
ratio measurements for CS2 and N2 plotted versus ν2

L . The solid curves
are fit to the data (open circles), and the dashed curves show the results
without the CS2 vibrational contribution.

αvCS2
= (3hc )−1

∑
v

[|µz
gv|

2
+ 2|µx

gv|
2
]

2νgv

(ν2
gv − ν

2)
, (6)

and for optical frequencies ν >> νgv this gives

1αvCS2
= (2hc )−1ν−2

∑
v

[|µz
gv|

2
+ 2|µx

gv|
2
]νgv. (7)

Infrared absorption data gives ν2 = 397 cm−1 and
µx

2 = 0.167× 10−30 Cm for the fundamental bending vibra-
tion, and ν3 = 1535 cm−1 and µz

3 = 1.26× 10−30 Cm for the
asymmetric stretching vibration [26]. Evaluating Eq. (7) with
this data gives

1αvCS2
= c 4ν

−2, (8)

where c 4 = 3.75× 106 au cm−2.
The electronic contribution 1αe

CS2
for CS2 is given by

Eq. (5), with the coefficients c 1,CS2 = 3.395× 10−8 au cm2,
c 2,CS2 = 6.66× 10−10 cm2, and c 3,CS2 = 560× 10−20 cm4

determined by fitting

1αCS2/1αN2 = (1α
e
CS2
+1αvCS2

)/1αN2 (9)

to the data forρN2/ρCS2 =1αCS2/1αN2 .



1772 Vol. 37, No. 6 / June 2020 / Journal of the Optical Society of America B Research Article

Table 2. Calculated Hartree–Fock Electronic
Hyperpolarizability for CS2 in Atomic Units from Fig. 1
in Ref. [10]

ν (cm−1) KERR DFWM ESHG THG

0 11373 11373 11373 11373
5156 11563 11875 11875 12813
9400 12188 12813 13679 16875
12500 12813 14063 15938 24375
15625 13594 16250 20313 –
18750 14688 19375 27813 –

The frequency dependence of 1αCS2/1αN2 is dominated
by the dispersion of α for CS2. The upturn at low frequencies is
entirely due to the vibrational contribution from CS2 since there
is no vibrational contribution to α for N2. The behavior seen
in Fig. 2(a) is similar to that previously observed for CO2 [24].
The value of 1αv is nearly the same for CO2 and CS2, and in
both cases the main contribution to1αv is from the asymmetric
stretching vibration ν3.

Figure 2(b) shows the ESHG data forγCS2/γN2 plotted versus
ν2

L . The fitted curves shown in Fig. 2(b) are obtained with input
from the ab initio theoretical calculations for CS2 to determine
the electronic and vibrational contributions to γ , as is explained
in what follows.

Table 2 gives the results of time-dependent Hartree–Fock
(TDHF) calculations of the electronic contribution to γCS2

for four nonlinear optical (NLO) processes [10]. The basis
set used for the TDHF calculations is augmented with diffuse
p and d functions and 3d polarization functions. The NLO
processes are distinguished by the frequency arguments in
γ (−νσ ; ν1, ν2, ν3), where γ (−ν; ν, 0, 0) is the DC Kerr effect
(KERR), γ (−ν; ν,−ν, ν) is degenerate four-wave mixing
(DFWM), γ (−2ν; ν, ν, 0) is ESHG, and γ (−3ν; ν, ν, ν) is
third-harmonic generation (THG).

Figure 3 shows the TDHF theoretical results from Table 2
plotted versus ν2

L , where ν2
L = 2ν2, 4ν2, 6ν2, 12ν2 for KERR,

DFWM, ESHG, and THG, respectively. All the TDHF results
are seen to fall on a single curve, as is theoretically predicted
[22,23]. The curve fit to the TDHF results in Fig. 3 has the form

γ e
= γ e

0 (1+ Aν2
L + Bν4

L +Cν6
L + Dν8

L), (10)

where γ e
0 = γ0,H F = 11377 au, A= AHF = 3.531× 10−10

cm2, B = BHF = 5.22× 10−20 cm4, C =CHF = 2.68×10−31

cm6, and D= DHF = 1.071× 10−38 cm8.
The effect of electron correlation on the calculated value for

the static hyperpolarizability has been investigated by Ohta et al .
[10], with the best estimate γ e

0 = 14700 au from a coupled clus-
ter CCSD(T) calculation. Other results of electron-correlated
calculations for CS2 are γ e

0 = 12010 au from a CCSD calcula-
tion by Li et al . [12], and γ e

0 = 12258 au from a Moller–Plesset
perturbation MP2 calculation by Champagne [11]. These
results are also plotted in Fig. 3, and indicate that the TDHF
dispersion curve underestimatesγ e by 600–2400 au.

The molecular hyperpolarizability is a function of the
positions of the nuclei in the molecule. The combined vibra-
tional contribution due to the pure vibrational response to the
applied fields and zero-point vibrational averaging (ZPVA) is
γ v +1γ ZPVA [27]. The 1γ ZPVA contribution is an additive

Fig. 3. Experimental and theoretical electronic hyperpolarizability
results for CS2 are plotted versus ν2

L . The lower curve is Eq. (10) fit
to the theoretical results in Table 2 for KERR (up triangles), DFWM
(down triangles), ESHG (circles), and THG (squares). The upper
curve is a scaled Eq. (10) fit to the experimental ESHG results (filled
circles). Also shown (diamonds) are the electron-correlated static ab
initio results from Refs. [10–12], and the experimental FWM results
from Refs. [13,14].

correction to the electronic hyperpolarizability at the equilib-
rium geometry, and is included in the experimental electronic
hyperpolarizability since it has similar frequency dependence.
For static fields, an alternative partition of the vibrational contri-
bution is γ nr

+ γ curv, the summed effect of the relaxation of the
nuclear geometry and the change in curvature of the potential
surface in the presence of the applied fields [27].

The sum-over-states expression for γ v can be expressed
in terms of lower-order electronic response tensors
γ v = [α2

] + [µβ] + [µ2α] + [µ4
], where the square-bracket

terms are defined in Refs. [27,28], and can be evaluated by a
perturbation expansion in orders of electrical and mechanical
anharmonicity. For the expansion up to first-order anharmonic-
ity, and in the static limit, γ v0 = γ

nr [27]. The square-bracket
contributions to γ nr for CS2 have been obtained using a
static finite field MP2 calculation by Champagne [11].
The results of this static calculation are [α2

]
0,0
0 = 2578 au,

[µβ]
0,0
0 =−398 au, and [µ2α]

0,1+1,0
0 = 1067 au, where the

superscripts indicate the order of anharmonicity. The results of
this calculation giveγ v0 = γ

nr
= 3247 au in the static limit.

The result for γ v at optical frequencies, using the infinite-
frequency approximation, can be expressed in terms of the static
square-bracket terms [27,29]. Using the square-bracket terms
from the static finite-field calculation [11], the results for CS2

are γ v = (1/3)[α2
]
0,0
0 + (1/2)[µβ]

0,0
0 + (1/6)[µ

2α]
0,1+1,0
0 =

838 au for KERR, γ v = (2/3)[α2
]
0,0
0 = 1719 au for DFWM,

γ v = (1/4)[µβ]0,00 =−99 au for ESHG, and γ v = 0 for
THG.

Figure 3 shows the experimental ESHG results for γ e

obtained by subtracting γ v =−99 au for ESHG from the
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experimental results given in Table 1 for γCS2 . The experi-
mental ESHG results for γ e lie above and nearly parallel to
the TDHF curve, and are fit with a curve which is the scaled
version of Eq. (10) fit to the TDHF results, with just the leading
factor γ0,HF replaced by γ e

0 = γ0,ESHG = 12592± 15 au. The
scaled curve is a good fit to the data, and is consistent with the
static electron-correlated ab initio results. The curve shown
in Fig. 2(b) is obtained from the scaled TDHF curve for γ e

CS2
[Eq. (10) with γ e

0 = 12592 au] by adding γ v =−99 au and
dividing by Eq. (3) forγN2 .

The wavelength range of the data in Fig. 3 is wide enough
to accurately determine the slope, but not the curvature of
the γ e experimental dispersion curve. The fit of Eq. (10)
to the experimental data with both γ e

0 and A as adjustable
parameters, but using the TDHF fit coefficients for B,C , D
to determine the curvature, gives γ e

0 = 12558± 93 au
and A= (3.58± 0.12)× 10−10 cm2. The coefficient A
determined by this fit to the experimental data is insig-
nificantly different from the TDHF value. The result
γ e

0 = 12558± 93 au(=±0.7%) from this fit is the best
experimental estimate of γ e

0 , and this fit also gives γ e with
±0.3% uncertainty for ν2

L in the range of the experimental data.
A poor fit is obtained by translating instead of scaling the ab
initio TDHF curve (additive instead of multiplicative correc-
tion to γ e ). This is because the larger slope of the scaled TDHF
curve matches the slope of the experimental data, whereas the
unchanged slope for the translated curve is too small.

The result for γ e
CS2

from a recent gas-phase experiment
by Reichert et al . [13,14] is also shown in Fig. 3. This beam-
deflection experiment measures γ (−ν2; ν1,−ν1, ν2), where
ν1 is the pump laser frequency and ν2 is the probe frequency,
and is calibrated using the previously measured CS2 polar-
izability anisotropy. For this NLO process, γ v is given by
γ v = [α2

]
0,0
0 f (ν1, ν2), where [30]

f =
1

3

[
1+

[
1−

(ν1 − ν2)
2

ν2
01

]−1

+

[
1−

(ν1 + ν2)
2

ν2
01

]−1
]
,

(11)

and ν01 = 658 cm−1 is the frequency for the Raman-active
fundamental symmetric stretching vibration in CS2. For
this experiment, with 1250 nm pump and 950 nm probe
wavelength, f = 0.309 and γ v = 796 au. Subtracting γ v

from γCS2 = (18.3± 3.9)× 103 au reported in Ref. [13]
(×6 to change to the Taylor series convention [31,32]) gives
γ e

CS2
= (17.5± 3.9)× 103 au at ν2

L = 3.5× 108 cm−2. This
result is plotted in Fig. 3, and it agrees with the results of the
present experiment.

The DC Kerr result γ = (114± 10)× 103 au at
λ= 632.8 nm (ν2

L = 5.0× 108 cm−2) from Bogaard et al .
[7] is the only other gas-phase measurement for CS2, and it
disagrees with all other measurements and calculations. The
early liquid phase ESHG result γ = (38± 6)× 103 au at
λ= 1064 nm (ν2

L = 5.3× 108 cm−2) from Levine et al . [8] also
disagrees with the present results. These Kerr and ESHG results
are off-scale on Fig. 3. The disagreement for the ESHG result
cannot be attributed to the liquid state, since recent experiments
[2,3,13,14] using the beam deflection technique (with 800 nm
pump and 650 nm probe) find γ = (16.4± 4.8)× 103 au at

ν2
L = 7.9× 108 cm−2 for liquid CS2, in good agreement with

the present gas-phase results. Figure 3 shows γ e obtained by
subtractingγ v = 812 au for this point.

4. CONCLUSION

The frequency-dependent electronic hyperpolarizability γ e

for CS2 has been determined using the combined results of the
present experiment and previous ab initio calculations, with
uncertainty 0.3% for γ e over the frequency range of the exper-
imental measurements and estimated uncertainty 0.7% for γ e

at the static limit. All NLO processes are represented by a single
dispersion curve for γ e versus ν2

L . The TDHF calculation for
γ e appears to accurately determine the shape of the dispersion
curve, but ab initio static values for γ e obtained with HF, MP2,
CCSD, and CCSD(T) methods and an augmented basis set
differ by up to 20% from the experimental result and from each
other. The observed hyperpolarizability γ is the sum of γ e and
the vibrational hyperpolarizability γ v , where the calculated
value of γ v for the considered NLO processes is <10% of the
totalγ at optical frequencies for CS2.
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