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ABSTRACT
The second hyperpolarizability (γ) of the H2 molecule was measured by gas-phase electric field induced second harmonic generation at the
frequencies of the one-photon resonance for the 3–0 Q(J) overtone transitions (v, J = 0, J → 3, J for J = 0, 1, 2, and 3). The magnitude of
the resonant contribution to γ was measured with 2% accuracy using the previously determined non-resonant γ for calibration. Pressure
broadening and frequency shift for the transitions were also measured. A theoretical expression for the resonant vibrational γ contribution
in terms of transition polarizabilities is compared to the observations. The measured γ resonance strength is 4%–14% larger than the results
obtained from this theoretical expression evaluated using ab initio transition polarizabilities.
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I. INTRODUCTION
The nonlinear optical (NLO) response of a centrosymmet-

ric molecule is described by the second hyperpolarizability ten-
sor γαβγδ(−ωσ ; ω1, ω2, ω3), which is a complicated function of
the incident field frequencies ω1, ω2, ω3 and polarizations β, γ, δ
due to the electronic, vibrational, and rotational excitations of the
molecule.1 The electronic hyperpolarizability contribution can be
simply described by a universal dispersion formula that applies for
all NLO processes,1,2 but the expressions for the vibrational hyper-
polarizability are more complicated and differ significantly from one
NLO process to the next.3,4

For the special case of a homonuclear diatomic molecule,
a simple expression for the vibrational hyperpolarizability has
been derived, which gives the vibrational hyperpolarizability in
terms of the vibrational transition polarizabilities for the molecule,
and applies for all NLO processes.5 For a homonuclear diatomic
molecule, using this expression to calculate the vibrational hyper-
polarizability, the electronic hyperpolarizability can be determined
from hyperpolarizability dispersion measurements for one NLO
process. This then allows the dispersion curve for any other NLO
processes to be determined. Such an analysis has been applied
to hyperpolarizability measurements for H2, D2, N2, and O2.6

However, some approximations are made in the derivation of

this expression for the vibrational hyperpolarizability, and a direct
experimental test of the expression has not been performed since
the vibrational and electronic contributions are not distinguished
in the usual experiments measuring the total molecular hyperpo-
larizability. Since the electronic and vibrational contributions are
defined by their resonance frequencies, the resonant response of
the vibrational hyperpolarizability can be used to unequivocally
distinguish it from the electronic hyperpolarizability. The Δv = 3
overtone transitions in H2 fall in the frequency range accessi-
ble with an available Ti:sapphire laser, and for H2 there is no
dipole-allowed absorption to impede a measurement of the reso-
nant vibrational hyperpolarizability. In the following, the theoret-
ical expression for the resonant vibrational hyperpolarizability is
presented, the experiment to measure the resonant overtone vibra-
tional hyperpolarizability in H2 is described, and the experimental
results are used to test the theoretical expression for the vibrational
hyperpolarizability.

II. THEORY
The second hyperpolarizability of a non-polar molecule is given

by the following sum-over-states expression:5,7–9
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γαβγδ(−ωσ ;ω1,ω2,ω3)

= h̵−3∑
P

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
m,n,p(≠g)

⟨g∣μα∣m⟩⟨m∣μδ ∣n⟩⟨n∣μγ∣p⟩⟨p∣μβ∣g⟩
(ωmg − ωσ)(ωng − ω1 − ω2)(ωpg − ω1)

− ∑
m,p(≠g)

⟨g∣μα∣m⟩⟨m∣μδ ∣g⟩⟨g∣μγ∣p⟩⟨p∣μβ∣g⟩
(ωmg − ωσ)(ωpg − ω1)(ωpg + ω2)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

,

(1)

where ωσ = ω1 + ω2 + ω3, |g⟩ is the initial (ground) state of the
molecule, μα is the α Cartesian component of the electric dipole
operator, and ∑P denotes the summation of the 24 terms obtained
by permuting the frequencies −ωσ , ω1, ω2, ω3 along with the asso-
ciated spatial indices α, β, γ, δ that specify the molecular frame
Cartesian components of the induced dipole and the applied electric
fields. The terms in this expression can be partitioned into rota-
tional, vibrational, or electronic contributions according to whether
the lowest resonance frequency for the term is a rotational, vibra-
tional, or electronic transition frequency. For homonuclear diatomic
molecules such as H2, the dipole matrix elements between rovi-
bronic states in the ground electronic manifold vanish by sym-
metry, so the only non-vanishing contributions to the vibrational
hyperpolarizability γv are terms in the first group in Eq. (1), where
the intermediate state |n⟩ is a rovibrational state in the ground
electronic manifold. The resulting expression for the vibrational
hyperpolarizability of a homonuclear diatomic molecule is5

γvαβγδ(−ωσ ;ω1,ω2,ω3) = h̵−3∑
P
∑

n(≠g)

1
(ωng − ω1 − ω2)

×
⎧⎪⎪⎨⎪⎪⎩
∑

m(≠g)

⟨g∣μα∣m⟩⟨m∣μδ ∣n⟩
(ωmg − ωσ)

⎫⎪⎪⎬⎪⎪⎭

×
⎧⎪⎪⎨⎪⎪⎩
∑

p(≠g)

⟨n∣μγ∣p⟩⟨p∣μβ∣g⟩
(ωpg − ω1)

⎫⎪⎪⎬⎪⎪⎭
, (2)

where ωng is a rovibrational transition frequency, ωmg and ωpg are
electronic transition frequencies, and the factors in braces have the
form of transition polarizabilities.

An expression for the vibrational hyperpolarizability of a gas
of homonuclear diatomic molecules for any third order nonlinear
optical process [Eq. (17) in Ref. 5] is obtained from Eq. (2) by mak-
ing the approximation that optical frequencies are negligible com-
pared to electronic transition frequencies in the transition polar-
izability factors, summing over permutations, and evaluating the
isotropic average. The isotropic averaged hyperpolarizability ten-
sor for electric field induced second harmonic generation (ESHG)
has two independent components γ∣∣ = ⟨γ(−2ω;ω,ω, 0)⟩XXXX and
γ� = ⟨γ(−2ω;ω,ω, 0)⟩XYYX , with optical and static electric fields
polarized either parallel or perpendicular, respectively. From Eq.
(17) in Ref. 5, the one-photon resonance contribution to the ESHG
vibrational hyperpolarizability due to a Q branch vibration transi-
tion, near resonance where ∣ω0J,vJ − ω∣ ≪ ω, is given by

γv
∣∣,Q = ρ(J)

2
h̵(ω0J,vJ − ω)

[α2
0J,vJ +

4
45

J(J + 1)
(2J − 1)(2J + 3)Δα

2
0J,vJ], (3)

γv�,Q = ρ(J)
2

h̵(ω0J,vJ − ω)
[ 1

15
J(J + 1)

(2J − 1)(2J + 3)Δα
2
0J,vJ], (4)

where α = (α|| + 2α�)/3 and Δα = (α|| − α�) are the mean and
anisotropy of the transition polarizabilities for light polarized || or
� to the molecular axis for the selected Q branch transition with
resonance frequency, ω0J ,vJ , and ρ(J) is the fractional population of
rotational level J. Similar expressions are obtained for the O and S
branch transitions with frequencies ω0J ,vJ±2,

γv
∣∣,O = (4/3)γv�,O

= ρ(J) 2
h̵(ω0J,vJ−2 − ω)

[ 2
15

J(J − 1)
(2J − 1)(2J + 1)Δα

2
0J,vJ−2], (5)

γv
∣∣,S = (4/3)γv�,S

= ρ(J) 2
h̵(ω0J,vJ+2 − ω)

[ 2
15
(J + 1)(J + 2)
(2J + 1)(2J + 3)Δα

2
0J,vJ+2]. (6)

Equations (3)–(6) are obtained by neglecting optical frequen-
cies in the polarizability factors in braces in Eq. (2). A better estimate
of frequency dispersion, without this approximation, can be made if
one considers only the terms in Eq. (2) near one-photon resonance
for a single vibration transition frequency ωng . Selecting just those
terms, ignoring spatial indices αβγδ, writing out the 24 frequency
permutations for ESHG, relabeling dummy indices, and collecting
terms gives the following expression:

γvres(−2ω;ω,ω, 0) = 2
h̵(ωng − ω)

⎧⎪⎪⎨⎪⎪⎩
∑

m(≠g)

2μgmμmn

h̵(ωmg + 2ω)

⎫⎪⎪⎬⎪⎪⎭

×
⎧⎪⎪⎨⎪⎪⎩
∑

p(≠g)

2μgpμpn
h̵(ωpg − ω)

⎫⎪⎪⎬⎪⎪⎭
. (7)

The tensor γvαβγδ for H2 ESHG has seven independent components
(αβγδ = zzzz, zxxz, xzzx, zzxx, xxzz, xyyx, and xxxx, where z is the
molecular axis). Equation (7) is the exact result for the zzzz and
xxxx components of γvαβγδ , where all permutations of αβγδ are the
same. The other components have more complicated expressions
with the same resonance denominators. The polarizability factors in
braces in Eq. (7) can be compared to the expressions for the static
polarizability α0,

α0 = ∑
m(≠g)

{2μgmμmn

h̵ωmg
}, (8)

and the Raman polarizability αR,10

αR(−ωS;ωP) = ∑
m(≠g)

{ μgmμmn

h̵(ωmg + ωS)
+

μgmμmn

h̵(ωmg − ωP)
}, (9)

where ωP is the pump frequency and ωS = ωP − ωng is the Stokes fre-
quency for Raman scattering. The effective polarizability αγ for γvres
is the square root of the product of the two transition polarizabilities
appearing in Eq. (7). The dispersion for αγ is given by the geomet-
ric mean of factors with resonance denominators (ωmg + 2ω) and
(ωmg − ω), whereas the dispersion of αR is given by the arith-
metic mean of terms with resonance denominators (ωmg + ωS) and
(ωmg − ωP). The resonance denominators in Eqs. (7) and (9) indi-
cate that the Raman polarizability αR will increase with increasing
frequency ωP since ωS < ωP, whereas αγ will decrease with increasing
ω (when ωmg > 4ω) since 2ω > ω.
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To deal with zero detuning from resonance, the usual phe-
nomenological imaginary damping iΓ term is added to the resonance
denominators in Eqs. (3)–(6), giving complex hyperpolarizabilities
γv = γvR + iγvI . Equation (3) for Q branch transitions becomes

γv
∣∣,Q = 2h̵−1ρ(J)[α2

0J,vJ +
4

45
J(J + 1)

(2J − 1)(2J + 3)Δα
2
0J,vJ]

×[ (ω0J,vJ − ω) − iΓ
(ω0J,vJ − ω)2 + Γ2

]. (10)

The observed second harmonic signal near a vibrational resonance
is S(2ω) ∝ ∣γ∣2 where the total hyperpolarizability γ is the sum
of the complex resonant vibrational hyperpolarizability and the
slowly varying non-resonant real hyperpolarizability due to all other
contributions,

S(2ω) ∝ ∣γnr + γvres∣
2 = (γnr + γvres,R)2 + (γvres,I)2. (11)

The signal variation near resonance is determined by the relative size
of the resonant and non-resonant contributions,

S(2ω)/S(2ω)nr = (1 + γvres,R/γnr)2 + (γvres,I/γnr)2, (12)

so the resonant hyperpolarizability γvres can be calibrated in
terms of γnr .

III. EXPERIMENT
The electric field induced second harmonic generation (ESHG)

apparatus used in the present gas phase H2 vibration overtone
hyperpolarizability measurements is similar to that previously
described.6,11–13 A coherent beam of second harmonic light is gen-
erated by the laser beam in a H2 gas sample when a transverse static
electric field is applied to the gas. The static electric field distorts the
molecule and breaks centrosymmetry, allowing optical second har-
monic generation even from spherically symmetric systems such as
an atom or H2 in the J = 0 rotational state. The spatially alternating
static electric field applied to the gas is produced by a periodic array
of N electrode pairs, and the ESHG signal is enhanced by a factor N2

when the coherence length in the gas is adjusted to match the lon-
gitudinal period of the electrode array. To make an overtone signal
measurement, the gas density ρ is first adjusted to set the coherence

length equal to the array period when the laser frequency is at the
vibration overtone frequency. Then, with the gas density held con-
stant at this value, the second harmonic signal is measured as the
laser frequency is scanned over a 2 cm−1 range around the vibra-
tion overtone frequency. Four Q-branch Δv = 3 transitions near
λ = 850 nm were measured.

Figure 1 shows a schematic diagram of the apparatus. The cw
ring Ti:sapphire laser (Ti:S) produces a frequency tunable single lon-
gitudinal mode (SLM) output beam with power about 400 mW in
the 850 nm wavelength range. The laser beam is collimated by lens
L1, the desired linear polarization state is prepared by the half wave
plate (HWP) and prism polarizer (POL), lens L2 focuses the beam to
a waist in the center of the gas cell with 20 cm confocal parameter,
and the red glass filter (RG645) blocks any light at the second har-
monic wavelength that may be present in the incident beam before
it enters the gas cell (CELL). ESHG occurs as the laser beam passes
between the electrodes in the gas cell (Fig. 1, inset). The transmitted
fundamental beam and coaxial second harmonic beam generated in
the gas cell are collimated by lens L3 and then separated by using the
tandem Brewster prism spectrometer (P1, P2). The narrow second
harmonic beam is expanded by lens L4 before reaching the photo-
cathode of the photon counting photomultiplier tube (PMT). The
quantum efficiency of the bialkali photocathode at the 850 nm laser
wavelength is so low that sufficient rejection of the fundamental laser
beam is achieved using just the double prism spectrometer without
any additional spectral filters.

The laser frequency, power, and mode were continuously mon-
itored during the ESHG measurements. About 1% of the laser beam
is reflected by each of three beam samplers (BS1, BS2, and BS3).
The beam sample from BS1 is divided by using beam splitter BS4
and then fiber-coupled to a Burleigh WA-20 wavemeter (WM) to
measure the laser frequency and to a scanning Fabry Perot interfer-
ometer (FP) to monitor the laser mode. The beam sample from BS2
is focused by using lens L5 onto a 5 GHz InGaAs photodiode (PD)
feeding a RF spectrum analyzer monitoring the beat note spectrum
of the laser output. Since second harmonic generation (SHG) mea-
surements are sensitive to mode composition,14,15 measurements
were rejected if the appearance of an inter-mode beat note indi-
cated that the laser was not producing SLM output. The final beam
sample from BS3 goes to an integrating sphere (IS) and photodetec-
tor, to produce an output which is proportional to the laser power

FIG. 1. Schematic diagram of the appa-
ratus described in the text. The inset
shows the path of the focused linear
polarized laser beam between the alter-
nating polarity cylindrical electrodes in
the gas cell.
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P actually reaching the gas cell during the ESHG measurement.
For each ESHG measurement, P was determined from the aver-
age of multiple power measurements and S(2ω)/P2 was computed to
account for the effect of beam power fluctuations. BS3 is placed after
HWP and POL so that etalon effects in these components, which
can cause uncontrolled changes in beam transmission, do not cor-
rupt the power measurement. To prevent etalon effects in the beam
path after BS3, all of the following components are tilted or wedged
so that no reflected beams overlap and L4 is inserted to diverge and
expand the signal beam onto the photocathode, disrupting possible
etalon fringes at the PMT entrance window.

Second harmonic generation by the laser beam at the surfaces
of prism P1 is not forbidden by symmetry, and such a coherent SHG
background could cause ESHG measurement errors. The observed
signal in the presence of coherent background is S± ∝ (±Es +
Eb cosφ)2, where ±Es and Eb cosϕ are the electric field amplitudes
of the ESHG signal and the coherent SHG background, respec-
tively, and ± indicates the two choices for the polarity of the volt-
age applied to the electrode array. The electric field between every
pair of electrodes changes sign when the array polarity is reversed.
This changes the sign but not the magnitude of the ESHG signal Es.
The relative amplitude of the coherent background was determined
from the ratio of signals S+/S−, measured with forward and reversed
array voltage, using the expression Eb cosφ/Es = (1/4)(S+/S− − 1).
The measured amplitude for the coherent background is negligible,
|Eb cosφ/Es| < 0.07%.

Figure 2 shows a scan of the ESHG signal spectrum for the H2
Q(1) overtone transition, with the sharp vibration resonance riding
on the much broader phase match peak. The functional form of the
broad peak can be calculated by numerical integration of the phase
match integral given in Refs. 6 and 12 using the electrode array and
laser beam parameters for this experiment. The electrode array has
N = 82 pairs of electrodes with period 5.08 mm, similar to array
1 in Ref. 13, and the confocal parameter of the focused laser beam

FIG. 2. ESHG signal vs frequency measured for the H2 3–0 Q(1) transition. The
solid curves are fits of Eqs. (13) and (15) to the data points. The vertical dashed
lines mark the frequencies of the Q(2), Q(1), and Q(0) resonances.

is 20 cm. The normalized phase match peak obtained by numerical
integration is approximated by the function

g(ν) = 1 − x2 + 0.42x4 − 0.10x6, (13)

where x = (ν − νm)/w and w ≈ 54 cm−1. The peak position νm and
width w are parameters determined by fitting Eq. (13) to the phase
match peak measurements, and the broad curve in Fig. 2 is the func-
tion Smg(ν) fit to the off-resonance data. The gas density at phase
match varies as ρm ∝ ν−3

m ,12 and for each experiment, the gas den-
sity is adjusted to place νm within about 1 cm−1 of the molecular
resonance frequency. The phase match function g(ν) multiplies the
resonance signal function, and when νm is placed within 1 cm−1 of
the resonance frequency, the variation of g(ν) over the resonance
measurement range is <0.2%. Phase match at λ = 850 nm is obtained
with H2 gas density ρ = 406 mol m−3 (9.11 amagat). The typical off-
resonance photon count signal was 300 s−1 for laser power 400 mW
and static electric field 6 kV/mm, and the 0.6 s−1 PMT background
count rate measured with zero static field was subtracted from this
signal.

The resonance signal shown in Fig. 2 is measured at closely
spaced points over an interval of about 2 cm−1 around resonance.
The fit to the resonance data uses the following function based on
Eq. (12):

f (ν) = [1 +
a(b − ν)
(b − ν)2 + c2

]
2

+ [ ac
(b − ν)2 + c2

]
2

, (14)

where a is the relative magnitude of the resonant and nonresonant
hyperpolarizabilities, b is the resonance frequency, c is the resonance
width, and a, b, and c are parameters to be determined from the
experimental observations. The experimental units are cm−1 for ν,
a, b, and c. The observed second harmonic signal is given by the
product of Eqs. (13) and (14),

S(2ν)/P2 = Af (ν)g(ν). (15)

IV. RESULTS AND DISCUSSION
The results of measurements for the 3–0 Q(J) overtone tran-

sitions for J = 0, 1, 2, and 3 are shown in Fig. 3. Each graph
shows the combined results of multiple complete scans for each
resonance. Separate scans of a resonance were combined by first
fitting Eq. (15) to the S(2ν)/P2 data for each scan and then com-
puting and combining the normalized and baseline corrected data
f (ν) = [S(2ν)/P2]/[Ag(ν)] for each scan. Figures 3(a)–3(e) show the
combined data for 3, 3, 1, 3, and 2 separate scans, respectively.
The frequency sequence in each scan was shuffled to reduce the
effect of slow signal drift during the course of the measurements,
and 2, 2, 0, 2, 1 of the scans in Figs. 3(a)–3(e) were also done
by “triplets.” For these scans, a point about 0.4–1.0 cm−1 off-
resonance was designated as the internal reference for the scan
and measurements at other frequencies designated as the signal.
Reference and signal measurements were alternated, and each sig-
nal measurement was normalized using the average of the ref-
erence measurements immediately before and after that signal
measurement.
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FIG. 3. Overtone resonance spectra over 2 cm−1 for H2 transitions (a) Q(0), [(b)
and (c)] Q(1), (d) Q(2), and (e) Q(3), measured with parallel polarization, except for
(c) measured with � polarization. The solid curves are fits of Eq. (14) to the data
points. The vertical dashed lines mark the measured and the ab initio resonance
frequencies, and the horizontal dashed lines mark the non-resonant background
level.

Table I gives the fit parameters obtained by fitting Eq. (14)
to the combined data for each resonance. As outlined above, spe-
cial care was taken to eliminate or account for any trend in the
baseline underlying each resonance to prevent a systematic error
in the resonance strength parameter a. The 0.001–0.003 cm−1 pre-
cision obtained for the resonance position and width parameters b
and c determined by the fits to the data is 3–10 times better than
the 0.01 cm−1 absolute frequency accuracy of the wavemeter. Pho-
ton counting statistics accounts for about half of the total variance
of the data points around the fit curves, except for the Q(1) reso-
nance with laser beam polarization perpendicular to the static field
in the cell, as shown in Fig. 3(c), where the signal is 10 times smaller
and the variance is dominated by photon counting statistics. For
the fit to this spectrum, the position and width for the resonance
were set to the values determined for the same resonance with par-
allel polarization and only the resonance strength parameter a was
determined from the fit to the data. The O and S branch transi-
tions were not measured since the signal for these transitions was
expected to be too weak, comparable to, or smaller than the sig-
nal for the corresponding Q branch transitions with perpendicular
polarization.

Hydrogen gas at the pressure used in the present measurements
is well into the collision broadening regime, where the resonance fre-
quency shift and width are proportional to pressure.16 Table II gives
the pressure shift and broadening coefficients calculated from the
present measurements and a comparison with other previous mea-
surements for H2 gas.17,18 The frequency shift is determined from the
resonance frequency b measured in the present experiment using the
ab initio result for the vibration transition frequency of an isolated
H2 molecule as the frequency in the limit of zero pressure broad-
ening.19 The ab initio result in Table II for the 1–0 Q(0) transition
(v, J = 0, 0→ 1, 0) differs from the experiment by 0.002 cm−1, and by
just 0.0002 cm−1 when relativistic and QED effects are included.20

A similar comparison of experiment and theory for the 3–0 S(3)
transition gives a difference of 0.0003 cm−1,21 with collisional line
shape effects accounting for 0.0001 cm−1 of the difference.22 The
pressure shift coefficients given in Table II for the 3–0 Q(J) tran-
sitions are determined assuming that the ab initio frequencies for
these transitions are also accurate at the 0.002 cm−1 level, while the
accuracy for the experimental frequencies from the present work
is 0.01 cm−1. Figure 4 shows the trend of the frequency shift and
broadening coefficients as functions of the transition frequency. The
pressure shift (3.8 ± 0.1) × 10−3 cm−1/amagat recently measured for

TABLE I. Parameters from the fit of Eq. (14) to the H2 overtone resonance spectra in
Fig. 3.

Transition a (10−3 cm−1) b (cm−1) c (10−3 cm−1)

3–0 Q(0) 7.85 ± 0.27 11 782.338 ± 0.001 58.9 ± 2.5
3–0 Q(1) 40.87 ± 0.65 11 764.956 ± 0.001 59.1 ± 1.0
3–0 Q(1) 1.06 ± 0.17a

3–0 Q(2) 7.20 ± 0.26 11 730.278 ± 0.001 64.9 ± 2.5
3–0 Q(3) 5.49 ± 0.23 11 678.513 ± 0.002 68.5 ± 2.9

a
� polarization.
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TABLE II. Pressure shift and broadening coefficients measured for H2 vibration transitions.

ν0
a ρb (ν0−b)/ρc c/ρd

Transition (cm−1) (amagat) (10−3 cm−1 amagat−1) (10−3 cm−1 amagat−1)

1–0 Q(0) 4 161.168 4 1.33 ± 0.01
1–0 Q(1) 4 155.254 7 2.13 ± 0.04 0.87 ± 0.04
1–0 Q(2) 4 143.466 0 2.0 ± 0.1 1.48 ± 0.01
1–0 Q(3) 4 125.873 9 2.2 ± 0.2 1.21 ± 0.01
1–0 Q(4) 4 102.582 0 1.7 ± 1.9 1.71 ± 0.03
1–0 Q(5) 4 073.732 7 1.17 ± 0.03

2–0 Q(1) 8 075.311 4 4.8 ± 0.2
2–0 Q(2) 8 051.991 0 4 ± 3
2–0 Q3) 8 017.190 0 4 ± 4

3–0 Q(0) 11 782.397 1 9.059 6.6 ± 1.1 6.5 ± 0.3
3–0 Q(1) 11 765.007 8 9.108 5.7 ± 1.1 6.5 ± 0.1
3–0 Q(2) 11 730.331 8 9.192 5.9 ± 1.1 7.1 ± 0.3
3–0 Q(3) 11 678.572 1 9.328 6.3 ± 1.1 7.3 ± 0.3

aν0 from Ref. 19.
b1 amagat = ρSTP = 44.588 mol/m3 for H2 gas.
cShift for 1–0 and 2–0 from Ref. 17.
dBroadening for 1–0 from Ref. 18.

the 3–0 S(3) transition is about half as large as the shift for the 3–0
Q(3) transition.21

The calculated relative strength a of the vibrational hyperpo-
larizability resonances measured in this experiment is determined

FIG. 4. Pressure shift (a) and broadening (b) coefficients plotted vs Q branch
transition frequency. Lines fit to the data are a guide to the eye.

by the effective transition polarizability αeff and the non-resonant
hyperpolarizability γnr at the transition frequency. From Eqs. (3),
(4), (10), (12), and (14), one has

acalc = 2ρ(J)α2
eff eH/γnr , (16)

where ρ(J) ∝ (2J + 1)gns(J)exp(−E0J/kBT) is the fractional popula-
tion of rotational level J of the ground state at temperature T and
eH = 219 474.6307 cm−1/hartree converts energy difference h̵(ω0J ,vJ
− ω) from atomic units to cm−1. For Q branch transitions with
parallel optical and static field polarization,

α2
eff ,∣∣ = [α2

0J,vJ +
4

45
J(J + 1)

(2J − 1)(2J + 3)Δα
2
0J,vJ], (17)

and for Q branch transitions with perpendicular field polarization,

α2
eff ,� = [

1
15

J(J + 1)
(2J − 1)(2J + 3)Δα

2
0J,vJ]. (18)

The rotational level populations ρ(J) were calculated using the
energy levels from the ab initio calculation in Ref. 19, and α2

eff was
calculated using the ab initio static transition polarizabilities from
Ref. 23. A subsequent ab initio calculation of α2

eff for the Raman
3–0 Q(1) transition10 is in good agreement with the earlier static
result.23 The non-resonant hyperpolarizability γnr is obtained using
the expression fit to previous 0.5% accurate ESHG measurements
made for H2 over a wide frequency range with parallel polarization,6

γnr = γ0(1 + Bν2
L + Cν4

L) + Gν−2 + Hν−4, (19)

where ν2
L = 6ν2 for ESHG, γ0 = 686.41 a.u., B = 1.200 × 10−10 cm2,

C = 2.254 × 10−20 cm4, G = −2.552 × 109 a.u. cm−2, and H = −3.997
× 1016 a.u. cm−4. The G and H terms are an approximation for the
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off-resonance rovibrational hyperpolarizability that differs from the
explicit sum over rovibrational transitions by <0.1 a.u. in the fre-
quency region of the present work. For the Q(1) transition measured
with perpendicular polarization, the reference γnr is obtained using
Eq. (19) and the value γ||/γ� = 2.909 from the H2 ESHG measure-
ments in Ref. 24. Table III gives the results acalc of this calculation
and a comparison with the measured results aexpt . The experimental
results are all larger than the calculated results, and the average of the
results weighted by the experimental uncertainties is 1.040 ± 0.013
for the ratios aexpt/acalc.

Static transition polarizabilities were used to calculate the
results in Table III, and a possible reason for the discrepancy
between the calculated and experimental results is the neglect of
the frequency dependence of the polarizabilities in the theoretical
calculation. To estimate the frequency dispersion, one can approxi-
mate each sum over excited electronic states appearing in Eqs. (7)–
(9) by a single term with an effective electronic excitation energy.
The effective electronic excitation energy can be obtained by fit-
ting approximate Eq. (9) to the polarizability dispersion calculated in
Ref. 10 for the 1–0 Q(1) H2 Raman transition. The ab initio Raman
polarizability at h̵ω = 0.10 a.u. is 1.094 times larger than the static
polarizability, and the fit to this dispersion value gives an effec-
tive electronic transition frequency νeg = 82 000 cm−1 (0.374 a.u.).
Using the single term approximation with νeg = 82 000 cm−1 for the
polarizabilities in Eq. (7), one estimates that αγ at 11 765 cm−1 is
reduced to 0.95 times its static value so that the values for acalc in
Table III are overestimates by 10%, and the discrepancy between
theory and experiment is actually 14% rather than 4%. This result
from the present experiment indicates that the ab initio polariz-
abilities for the Δv = 3 transitions are 2%–7% too small. Also con-
sistent with the present result, the previously measured value for
the 3–0 Q(1) Raman transition polarizability25 is 5% larger than
the ab initio value.10 Negative dispersion that is deduced for the
polarizability αγ is unexpected, but the ab initio calculation for the
Δv = 3 overtone Raman polarizability also exhibits small negative
dispersion due to the combined effects of mechanical anharmonic-
ity and strong frequency dependence of the polarizability second
derivative.10 Further support for the conclusion that the 3–0 Q(J)
polarizabilities are larger that the ab initio calculated values comes

from a Morse potential model calculation for H2 that gives values
for the high overtone polarizabilities that are orders of magnitude
higher than the extrapolated results of ab initio calculations26 and
also from recent experiments selectively populating high vibrational
states of H2 that are fit by a polarizability more than an order of
magnitude larger than the ab initio polarizability for the Δv = 4
transition.27

The hyperpolarizability contribution from the 3–0 Q(1) transi-
tion reaches maximum magnitude |γv| = 515 a.u. on resonance but
decreases to ±0.26 a.u. just 100 cm−1 off-resonance. In comparison,
the rovibrational contribution to the nonresonant hyperpolarizabil-
ity is γvrnr = −20.5 a.u. at the 3–0 Q(1) resonance frequency and is
dominated by the far off-resonance contribution of the fundamental
vibration transition. There is good agreement between calculations
for the fundamental transition polarizabilities,10,28 but the frequency
dependence of the effective polarizabilities appearing in the expres-
sion for γvrnr is uncertain. The expression for γvrnr is based on Eq. (17)
of Ref. 5, which was obtained by neglecting the frequency depen-
dence of the polarizability factors in Eq. (2). A simple expression
such as Eq. (7) is not obtained for γv far off-resonance. The dis-
persion of the effective polarizability in γvrnr may be significant, as
suggested by the Raman polarizability at νP = 11 765 cm−1 for the
1–0 Q(1) transition, which is 1.044 times the static polarizability.10

This dispersion would produce a 10% increase in the calculated
value for γvrnr at this frequency. An indication that the dispersion
for the effective polarizability may be less than that for αR comes
from the comparison of accurate experimental ESHG and ab initio
results for γ of H2 at ν = 19 430 cm−1,13 where the experiment
and theory agree with ±0.1% uncertainty. This sets a bound on the
possible error for the calculated vibrational hyperpolarizability γvrnr ,
which contributes 0.74% of γ at this frequency. Agreement within
0.1% indicates that the increase in γvrnr due to the effective polar-
izability dispersion is <14% at this frequency. The uncertainty for
γvrnr does not affect the accuracy of the vibrational resonance hyper-
polarizability calibration in terms of γnr in the present work. The
uncertainty for γvrnr affects the partition of γnr into electronic and
rovibrational contributions but not the total, since Eq. (19) for γnr is
the sum of the two contributions adjusted to fit the experimental γnr
data.

TABLE III. Comparison of calculated and experimental overtone vibration resonance relative strength a at T = 296 K. Atomic
units are used for α, Δα (1 a.u. = 1.648 778 × 10−41 C2 m2 J−1), and γnr (1 a.u. = 6.235 377 × 10−65 C4 m4 J−3).

J ρ(J)a αb (10−2 a.u.) Δαb (10−2 a.u.) γnrc (a.u.) acalc (10−3 cm−1) aexpt/acalc

0 0.1304 0.993 −0.567 745.3 7.57 1.037 ± 0.034
1 0.6596 0.997 −0.568 745.0 39.08 1.046 ± 0.016
1 0.6596 0.997 −0.568 256.1d,e 0.97d 1.11 ± 0.16d

2 0.1164 1.004 −0.568 744.3 6.98 1.032 ± 0.036
3 0.0887 1.014 −0.567 743.3 5.43 1.011 ± 0.042

aUsing rotational energy levels from Ref. 19.
bStatic transition polarizabilities from Ref. 23.
cUsing Eq. (19).
d
� polarization.

eUsing γ||/γ� = 2.909 at this frequency from Ref. 24.
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V. CONCLUSION
This experiment measured the second overtone vibrational

contribution to the second hyperpolarizability of H2 and found
that the measured strength of the observed resonance is 4%–14%
larger than predicted using the transition polarizabilities from high
level ab initio calculations. This experiment determines the tran-
sition polarizability with accurate absolute calibration provided by
the nonresonant hyperpolarizability previously determined for the
molecule. This method could be used to measure overtone transition
polarizabilities for other small molecules.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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