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Long-range orientation correlation in dipolar liquids probed
by hyper-Rayleigh scattering
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Hyper-Rayleigh scattering (HRS) is sensitive to long-range molecular orientation correlation in
isotropic liquids composed of dipolar molecules. The correlation functions that appear in the
calculation of HRS mediated by the vector part of the first hyperpolarizability β are the same as
the correlation functions for the homogeneous isotropic random vector fields that appear in the
description of fluid turbulence. Recent experiments measuring the angle and polarization dependence
of HRS from water find a dominant transverse mode contribution with amplitude independent of
the scattering wavevector, and this observation of transverse mode HRS strongly constrains the form
of the orientation correlation function. Analysis of these HRS results for water determines that the
long-range molecular orientation correlation function varies as r−3±ε with |ε| < 0.03 on spatial scales
up to 2000 nm. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931973]

I. INTRODUCTION

The defining structural feature of liquids is their lack
of long-range positional order. Although it has long been
understood that liquids exhibit local structure related to the
shape of the molecules and short-range steric effects,1–4 it
is generally assumed that the intermolecular correlations
in liquids extend at most a few molecular diameters, and
that liquids are macroscopically homogeneous, isotropic,
and random. However, evidence for molecular orientation
correlations in water at spatial scales up to 2000 nm has been
found in recent experiments measuring the angle and polar-
ization dependence of second-harmonic or hyper-Rayleigh
light scattering (HRS).5 The work presented below explains
the relationship between HRS and molecular orientation
correlation in dipolar liquids and analyzes the HRS data for
water to obtain information about the form of the long-range
orientation correlation.

HRS mediated by the third-rank molecular hyperpolariz-
ability β is light radiated at the second-harmonic frequency
by the induced dipole6,7

µ
(2ω)
i =

1
2
βi jk(−2ω;ω,ω)E(ω)

j E(ω)
k

. (1)

HRS probes non-centrosymmetric fluctuations such as orien-
tation fluctuations of polar molecules. The recent HRS
measurements for water were made with linearly polarized
light at scattering angles in the range from 0◦ to 180◦, for
configurations with incident and scattered light polarized
either perpendicular or parallel to the horizontal scattering
plane.5 These configurations are denoted VV, HV, VH,
and HH, where V denotes vertical polarization, H denotes
horizontal polarization, and the first and second letters refer
to the incident and scattered light, respectively. Long-range
molecular correlations are revealed in these experiments by the
observation IHV , IVH for the HRS intensities. The intensities
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IHV and IVH are equal by symmetry for scattering from
isotropic liquids when only short-range correlations exist
between the molecules, but this symmetry can be broken when
long-range correlations are present.

II. INCOHERENT HRS

The third rank Cartesian molecular hyperpolarizability
tensor βi jk(−2ω;ω,ω) for second-harmonic scattering is sym-
metric in the last two indices j and k since the corresponding
applied optical fields are indistinguishable, and far from
resonance β also has approximate permutation symmetry in
all indices (Kleinman symmetry, which becomes exact in the
limit ω → 0). An alternative expression for β is the direct sum
of four irreducible spherical tensors,6

β = β[ss,1] ⊕ β[ms,1] ⊕ β[ms,2] ⊕ β[ss,3], (2)

where β
[ν, l]
m is a spherical tensor of rank l with 2l + 1

components m, index ν labels the symmetry under permutation
of the Cartesian tensor indices (ss is totally symmetric,
while ms is non-symmetric for first index permutations), and
the mixed symmetry ν = ms tensors vanish when Kleinman
symmetry holds.

The HRS intensities for the four polarization configura-
tions of interest, obtained as the incoherent sums for randomly
oriented molecules, are6
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IVH = IHV, (3c)

IHH = IHVsin2θs + IVVcos2θs, (3d)
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where
�
β[ν,l]

�2
=


m
���β

[ν,l]
m

���
2
, θs is the scattering angle, and C

includes all incident intensity, sample density, and geometric
factors. It is convenient to consider together the β components
with l = 1 that transform as vectors under rotations, and set
IVV/IHV = R2 as the HRS intensity ratio due to just these
terms, and IVV/IHV = P2 as the HRS intensity ratio due to just
the terms with l = 2 and 3. When Kleinman symmetry holds
R2 = 9 and P2 = 3/2. Kleinman symmetry breaking will result
in a small decrease for P2, while the change for R2 will usually
be much larger and can be either an increase or decrease
depending on the sign of the cross term Re

�
β[ss,1]β[ms,1]∗�.

The following work will consider orientation correlations
which affect the l = 1 HRS contribution.

III. VECTOR HRS

The non-vanishing Cartesian components for the pure
vector β (l = 1 only) are βzzz = β0, uβzzz = βzxx = βz y y, and
vβzzz = βxxz = βxzx = βy yz = βyz y, with u + 2v = 1. In the
case that Kleinman symmetry holds, u = v = 1/3. The second
harmonic dipole µ⃗ induced by the applied optical field E⃗ for
this β tensor is8

µ⃗ =
1
2
β0E2 �un̂ + 2v(n̂ · Ê)Ê� , (4)

where n̂ is the unit vector in the direction of the molecular z-
axis. The laboratory Cartesian coordinate frame used to eval-
uate the second harmonic induced dipole components for HRS
in the VV, HV, VH, and HH polarization configurations has Z
perpendicular to the scattering plane, Y in the direction of the
scattering vector K⃗ = 2k⃗i − k⃗s [with K ≈ 4ki sin(θs/2)], and
with X perpendicular to Y and Z. The incident and scattered
light directions in this frame are k̂i = cos(θs/2)X̂ + sin(θs/2)Ŷ
and k̂s = cos(θs/2)X̂ − sin(θs/2)Ŷ , respectively. With these
coordinates, the unit vectors for the incident and scattered
polarizations, and the scattering vector, are

V̂i = V̂s = Ẑ , (5a)

Ĥi = − sin(θs/2)X̂ + cos(θs/2)Ŷ , (5b)

Ĥs = sin(θs/2)X̂ + cos(θs/2)Ŷ , (5c)

K̂ = Ŷ . (5d)

For each incident polarization, projecting Eq. (4) onto
the scattered polarization vector gives the relevant dipole
component

µVV = (1
2
β0E2) �un̂ + 2v(n̂ · V̂i)V̂i

�
· V̂s

= (1
2
β0E2)(n̂ · Ẑ), (6a)

µHV = (1
2
β0E2) �un̂ + 2v(n̂ · Ĥi)Ĥi

�
· V̂s

= (1
2
β0E2)u(n̂ · Ẑ), (6b)

µVH = (1
2
β0E2) �un̂ + 2v(n̂ · V̂i)V̂i

�
· Ĥs

= (1
2
β0E2)u �(n̂ · X̂) sin(θs/2) + (n̂ · Ŷ ) cos(θs/2)� ,

(6c)

µHH = (1
2
β0E2) �un̂ + 2v(n̂ · Ĥi)Ĥi

�
· Ĥs

= (1
2
β0E2)u[(n̂ · X̂) {1 − (R − 1) cos θs} sin(θs/2)

+ (n̂ · Ŷ ) {1 + (R − 1) cos θs} cos(θs/2)], (6d)

where R = 1/u. Summing the contributions from all N
molecules a in the sample of number density ρ, the HRS
intensities for a representative orientation distribution are

IVV =

������


a

µVV,a exp(iK⃗ · r⃗a)
������

2

= (1
2
β0E2)2N ρ


d3r exp(iK⃗ · r⃗)⟨nZ (⃗0)nZ(r⃗)⟩, (7a)

IHV = u2IVV, (7b)

IVH = (1
2
β0E2)2u2N ρ


d3r exp(iK⃗ · r⃗)

× [⟨nX (⃗0)nX(r⃗)⟩sin2(θs/2)
+ ⟨nX (⃗0)nY(r⃗)⟩ sin θs

+ ⟨nY (⃗0)nY(r⃗)⟩cos2(θs/2)], (7c)

IHH = (1
2
β0E2)2u2N ρ


d3r exp(iK⃗ · r⃗)

× [⟨nX (⃗0)nX(r⃗)⟩{1 − (R − 1) cos θs}2sin2(θs/2)
+ ⟨nX (⃗0)nY(r⃗)⟩ �1 − (R − 1)2cos2θs

	
sin θs

+ ⟨nY (⃗0)nY(r⃗)⟩{1 + (R − 1) cos θs}2cos2(θs/2)].
(7d)

The HRS intensities are expressed in terms of correlation
functions between molecular orientation vector components
parallel (nY) and perpendicular (nX,nZ) to the scattering vector
(K̂ = Ŷ ), where, for example, ⟨nZ (⃗0)nZ(r⃗)⟩ is the correlation
function for the Z component of the molecular orientation
vector. For randomly oriented, uncorrelated molecules, the
correlation functions are

⟨nI (⃗0)nJ(r⃗)⟩ = 1
3
δI Jδ(r⃗) (8)

so the corresponding HRS intensities are IVV = R2IHV, IVH
= IHV, and IHH = IHVsin2θs+IVVcos2θs, consistent with Eq. (3).

IV. HOMOGENEOUS ISOTROPIC RANDOM
VECTOR FIELDS

The most general correlation function for a homogeneous,
isotropic, random scalar field is a function of radial distance
r only, but for a homogeneous, isotropic, random vector field
U⃗(r⃗) the most general correlation function has the form9,10

Bi j(r⃗) = ⟨Ui(⃗0)Uj(r⃗)⟩
= BT(r)[δi j − rir j/r2] + BL(r)rir j/r2, (9)

where rir j/r2 is the longitudinal projection operator (onto r⃗),
and where BT(0) = BL(0). The tensor Bi j is diagonal when
one coordinate axis is aligned along r⃗ , with the transverse and
longitudinal correlation functions BT and BL as the diagonal
components. The corresponding spatial spectrum is

Si j(K⃗) =


d3RBi j(r⃗) exp(iK⃗ · r⃗)
= ST(K)[δi j − KiK j/K2] + SL(K)KiK j/K2. (10)
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The tensor Si j is diagonal when one coordinate axis is aligned
along K⃗ , with the transverse and longitudinal spectra ST and
SL as the diagonal components. For a function Bi j(r⃗) to be
a correlation function, the corresponding spectra ST(K) and

SL(K)must be real and non-negative for all K . The expressions
for ST and SL obtained by substituting Eq. (9) for Bi j(r⃗) into
the integral in Eq. (10), transforming to polar coordinates, and
integrating, are

ST(K) = 4π
 ∞

0
r2dr


j0(Kr) − j1(Kr)

Kr


BT(R) + j1(Kr)

Kr
BL(r)


, (11)

SL(K) = 4π
 ∞

0
r2dr


2

j1(Kr)
Kr

BT(r) +


j0(Kr) − 2
j1(Kr)

Kr


BL(r)


, (12)

where jn(x) are spherical Bessel functions.
An arbitrary isotropic random vector field can be repre-

sented as the sum of two uncorrelated isotropic vector fields,
one of which is solenoidal (zero divergence) and one of which
is potential (zero curl).9 To obtain a solenoidal field, for which
SL(K) = 0, the condition on the correlation function is9

BT(r) = BL(r) + r
2

d
dr

BL(r), (13)

whereas to obtain a potential field, where ST(K) = 0, the
condition is

BL(r) = BT(r) + r
d
dr

BT(r). (14)

In the case that the transverse and longitudinal correlation
functions are equal,

BT(r) = BL(r) = B(r), (15)

the expression for the spatial spectrum is simply

ST(K) = SL(K) = S(K) = 4π
 ∞

0
r2dr j0(Kr)B(r), (16)

which is the same as for an isotropic random scalar field.
The spatial spectrum can be sensitive to the distinction

between transverse and longitudinal correlations. For example,
the short-range scalar correlation function

B(r) = exp(−br) (17)

has the spatial spectrum

S(K) = 8πb/(b2 + K2)2, (18)

which decreases as K−4 for large K , is nearly constant for
small K , and has its maximum value at K = 0. The result is
different for a solenoidal vector field with exponential short-
range correlation. Although the spectrum of this solenoidal
field also decreases as K−4 for large K , the spectrum varies as
K2 for small K , and vanishes at K = 0.

V. HRS FROM ISOTROPIC RANDOM VECTOR FIELDS

The general results for random vector fields can be applied
to the molecular orientation correlation functions for vector
HRS appearing in Eq. (7). In particular, the off-diagonal
correlations vanish for the chosen coordinate system aligned
with the scattering vector K⃗ , and the remaining integrals are

just the spectra ST(K) or SL(K). The vector correlations do not
affect the octupolar HRS. The HRS intensities, including the
HRS contributions from both the vector and octupolar parts of
β, have the form

IVV = P2A0S0(K) + R2ATST(K), (19a)
IHV = A0S0(K) + ATST(K), (19b)
IVH = A0S0(K) + ATST(K)sin2(θs/2)

+ ALSL(K)cos2(θs/2), (19c)
IHH = A0S0(K)[sin2θs + P2cos2θs]

+ ATST(K){1 − (R − 1) cos θs}2sin2(θs/2)
+ ALSL(K){1 + (R − 1) cos θs}2cos2(θs/2),

(19d)

where A0 is the octupolar HRS intensity coefficient and AT ,
AL are the vector HRS intensity coefficients. It is assumed
that P2 = 3/2 for the octupolar HRS contribution and that
any correlations affecting octupolar HRS are short-range and
that S0(K) is a constant function of K . Expressions with the
form of Eq. (19) have been used previously in the analysis
of HRS data,5,11,12 but without attention to the spatial spectral
functions ST(K) and SL(K).

VI. ANALYSIS OF HRS DATA

The recent HRS measurements for water at scattering
angles in the range from 0◦ to 180◦ were analyzed to
obtain results for ATST(K) and ALSL(K).5 Two main results
of the experiment are that HRS for water is principally
transverse, with ATST(K)/ALSL(K) = 12.0 ± 0.6, and the
transverse contribution ATST(K) is nearly constant, increasing
3% ± 5% over the range 0.1 < K/Kmax < 1, where Kmax
= 0.031 nm−1. The HRS experimental results indicate that
the molecular orientation distribution is a solenoidal isotropic
random field with constant transverse spectrum ST(K) for
small K . The transverse HRS spectrum for water is consistent
with the correlation function

BL(r) = a3(a2 + r2)−3/2, (20a)

BT(r) = a3(a2 + r2)−3/2[1 − (3/2)r2/(a2 + r2)], (20b)

which produces the transverse spatial spectrum

ST(K) = 2πa3KaK1(Ka), (21a)
SL(K) = 0, (21b)
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FIG. 1. Transverse spatial spectra ST (K ) for solenoidal random fields
with correlation function BL(r )= [1+ (r/a)2]−(3+ε)/2, for ε =−0.01, 0, and
+0.01 (top, middle, and bottom curves), are plotted (a) over a wide Ka range,
(b) over the Ka range of the HRS experiment,5 and (c) with a logarithmic
scale to show the divergence as Ka→ 0. The function for ε = 0 is ST (K )
= 2πa3KaK1(Ka).

where Kn(x) is the modified Bessel function of the second
kind, of order n. This spectrum ST is plotted versus Ka in
Figure 1. One expects that the correlation functions in Eq. (20)
will be near their maximum value for nearest neighbour
molecules, so a provisional estimate for the length parameter
is a = 0.28 nm (the radius of the first peak of the radial
pair distribution function for water).4,13 Choosing this length
parameter gives 0.001 < Ka < 0.009 for the HRS experiment.
The variation of ST(K) given by Eq. (21a) is <0.03% over this
range, consistent with the experimental result.

The requirement that the spatial spectrum ST(K) is non-
zero and flat for small K is very restrictive for solenoidal fields.
Correlation functions which decrease more rapidly than r−3 as
r → ∞ give ST(K) which decreases logarithmically as K → 0,
reaching ST(K) = 0 at K = 0, while correlation functions
decreasing more slowly than r−3 as R → ∞ give ST(K) which

diverges logarithmically as K → 0. The behaviour of ST(K)
is illustrated in Figure 1, which shows the transverse spectra
ST(K) calculated for solenoidal vector fields with correlation
functions BL(r) = [1 + (r/a)2]−(3+ε)/2, for ε = −0.01, 0, and
0.01, for large and small values of Ka. Bounds on ε can
be determined from the flatness of ST(K) at small Ka. The
fractional change ∆ST/ST over the range 0.001 < Ka < 0.009
(Ka assuming a = 0.28 nm) is proportional to ε, where |ε|
= 0.01 results in |∆ST/ST | = 0.02 for this Ka range. For small
Ka, the logarithmic divergence gives ∆ST/ST proportional to
the ratio (Ka)max/(Ka)min, so the same fractional change for
ST(K) is obtained using any estimate of the length parameter
a < 1.4 nm. The structure of water has been studied by
x-ray and neutron diffraction measurements13 and molec-
ular dynamics (MD) simulations,14,15 and an upper bound
a = 0.24 nm for the length parameter of the long-range
correlation has been estimated from the results for one of the
MD simulations for water.15 Thus, from the HRS experimental
result |∆ST/ST | < 0.06 over the observed range for water, one
deduces that the orientation correlation function at long range
varies as r−3±ε with |ε| < 0.03.

The finite size of the molecules results in an excluded
volume around each molecule, and it is also usual to separate
the correlations between different molecules from the self-
correlations. Starting with the correlation functions given by
Eq. (20), the effect of an excluded volume is introduced
by setting BL(r) = BT(r) = 0 for 0 < r < r1, and the self-
correlation is accounted for by adding the delta function
contribution given by Eq. (8). At K = 0, one has

ST(0) = 2π
 ∞

0
r2dr[BT(r) + BL(r)], (22a)

SL(0) = 4π
 ∞

0
r2drBT(r). (22b)

The volume integral of the delta function correlation in
Eq. (8) is (1/3)(4πr3

0/3), where 4πr3
0/3 = ρ−1 is the volume

per molecule (r0 = 0.193 nm for water). For this model, the
values at K = 0 for the spatial spectra are

ST ,1(0) = 2πa3 +
4π
9

r3
0

− πa3

sinh−1(r1/a) − a2r1

(a2 + r2
1)3/2


, (23a)

SL,1(0) = 0 +
4π
9

r3
0

+ 2πa3

sinh−1(r1/a) − a2r1 + 2r3

1

(a2 + r2
1)3/2


, (23b)

where the first terms in Eq. (23) are from Eq. (21), the
second terms are the result of adding the self-correlation delta
functions, and the third terms are the result of introducing the
excluded volume. The short-range contributions added to the
correlation functions result in a non-zero longitudinal spec-
trum, and the experimentally observed value ST(K)/SL(K)
= 12.0 ± 0.6 can be fit by adjusting the value of a in Eq. (23).
The result with r0 = 0.193 nm and r1 = 0.240 nm is a
= 0.177 nm, in agreement with a ≤ 0.24 nm from a molecular
dynamics simulation.15 The vector VV HRS intensity ST
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FIG. 2. Longitudinal and transverse orientation correlation functions for
water are plotted. The solid curves are from a molecular dynamics simu-
lation (Fig. 2 of Ref. 14), while the dashed curves are from Eqs. (20) for
a = 0.177 nm (red middle curves) and a = 0.219 nm (blue outer curves).

estimated from Eq. (23a) is 3.05 times larger than the intensity
4πr3

0/9 for uncorrelated molecules.
Figure 2 shows orientation correlation functions obtained

from the MD simulation for water in Ref. 14 (at T = 300 K,
r ≥ 0.24 nm, from Fig. 2, where BL(r) = L(r) and BT(r)
= (1/2)[F(r) − L(r)]). Correlation functions given by Eq. (20)
with a = 0.177 nm are also shown in Fig. 2 and fall close
to the MD curves, although BL(r) does not have the large
oscillations seen for the MD result. A more realistic model
inserts the short-range MD correlation functions for 0 < r
< r1, between the central delta function and the outer long-
range correlation function. For r1 = 1.2 nm, the contributions
added to Eq. (23) from the short-range MD correlation
functions are ST ,2 = −SL,2 = 2π(0.182 nm)3, and a fit to ST/SL

= 12.0 is obtained for a = 0.219 nm. The intensity enhance-
ment is ST/(4πr3

0/9) = 3.55 compared to uncorrelated mole-
cules, with the correlations for r > 1.2 nm contributing 52%
of the total intensity. Using the MD orientation correlation
functions weighted with the radial distribution function gOO(r)
for D2O (from Fig. 3(c) of Ref. 16) gives slightly larger values:
ST ,2 = 2π(0.189 nm)3, SL,2 = −2π(0.183 nm)3, a = 0.226 nm,
and ST/(4πr3

0/9) = 4.01. The correlation functions given by
Eq. (20) with a = 0.219 nm (or 0.226 nm) fall outside the
MD curves shown in Fig. 2. The strength of the long-range
correlation was increased to fit the observed ST/SL value,
compensating for the reduction of SL by the short-range MD
contribution, but this compensation could also be obtained by
a departure from pure solenoidal long-range correlations.

VII. RELATION TO MOLECULAR THEORY
FOR POLAR LIQUIDS

The theoretical description of the structure of molecular
liquids starts with the molecular pair distribution function
including translational and orientational degrees of freedom,
which may be expanded in terms of radial functions and
Wigner rotation matrices, and the goal is to determine the fluid
structure and properties from the intermolecular interaction

energy function. The correlation functions for polar fluids will
have a long-range part decaying asymptotically as r−3 due to
the dipole-dipole interaction between the molecules.4,15 The
long-range orientation correlations of the molecular dipoles
are related to the dielectric response of polar fluids, with
different longitudinal and transverse contributions.4,17 The
orientation correlations appearing in Eq. (7) for the HRS inten-
sities are essentially the same as the correlations ⟨|Mi(K⃗)|2⟩ for
the dipole moment density M⃗(K) = µ


a n̂a exp(iK⃗ · r⃗a) for a

fluid of non-polarizable dipoles, where ⟨|Mi(K⃗)|2⟩ = N µ2/3
for N uncorrelated dipoles. It is argued that for such a fluid,
with a large static dielectric constant ε(0) and no short-
range correlations, the transverse and longitudinal dipole
correlations for K → 0 are (p. 485 of Ref. 17)

⟨|MT(K⃗)|2⟩ = (3/2)N µ2/3, (24a)

⟨|ML(K⃗)|2⟩ = ⟨|MT(K⃗)|2⟩/ε(0). (24b)

These theoretical results for polar liquids are consistent
with the HRS results for water. The long-range correlations
required to explain the HRS measurements have the same r−3

asymptotic dependence as the correlations due to dipole-dipole
interactions. The HRS intensity increase due to molecular
correlations predicted by Eq. (24a) is a factor of 3/2, as
compared to the factor about 3.5 estimated in Sec. VI.
And Eq. (24b) predicts ST(K)/SL(K) = 80 as compared to
12.0 ± 0.6 observed, where the lower observed value can be
accounted for by the additional short-range correlations. This
qualitative agreement suggests that the orientation correlations
explaining the HRS experimental observations are the result
of dipole-dipole intermolecular interactions.

This work provides information about long-range orien-
tation correlations that is complementary to the information
from other techniques. Local structure and short-range corre-
lations are measured in water using experimental techniques
such as x-ray and neutron scattering,13,16 but these probes
are insensitive to long-range orientation correlations. Dipolar
orientation correlations at the nm scale have also been found
using density functional theory18 and MD simulations14,15,19,20

for water, but these simulations cannot directly address the
length scale probed by the HRS experiment. Although both
HRS and the dielectric response of polar liquids are sensitive
to orientation correlations, the polarization and scattering
vector dependence for HRS provide additional information
not accessible with dielectric measurements.

In summary, the effect of molecular orientation correlation
on the vector β contribution to HRS has been examined using
the mathematics of homogeneous, isotropic, random vector
fields which appears in the description of fluid turbulence.
The observed polarization and angle dependence of HRS
from dipolar molecular liquids are explained by a molecular
orientation distribution with the form of a transverse random
vector field, with orientation correlations that decay as r−3

at long range. This is the same form as the predominantly
transverse vector field at small K due to dipole-dipole
interactions in a polar liquid. The expressions developed here
are used to analyze previous HRS measurements for water and
determine the form for the long-range orientation correlation
function.
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