An Investigation of Dynamic and Viscoelastic Properties of Entangled Poly(ethylene oxide)/Lithium Perchlorate System

Shufu Peng, James C. Selser, Radoslav Bogoslovov, Greg Piet Department of Physics, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA http://www.physics.unlv.edu/~sfpeng

s

പ്

INTRODUCTION

Since the discovery of ionic conductivity in polymer-salt complexes, great efforts have been made to develop solid polymer electrolytes (SPEs) for use in rechargeable lithium batteries due to potential for higher energy densities and improved safety. Poly(ethylene oxide) (PEO) is one of the extensively studied polymer hosts for SPEs. Hence, studies of PEO/LiClO4 melts were undertaken to provide insight into the mechanisms of ion transport in SPEs. In the present work, the long time dynamics of entangled PEO melts is well described by the scaling theory supported by PCS and SLS measurements. In the scaling treatment, polymer chains are assumed to be infinitely long, perfectly flexible strands having negligible thickness. Moreover, chains are chemically inert and temporary networks form as chains cross each other but cannot pass through one another thus producing contact-point junctions. However, and very significantly, the network contact-point junctions are accompanied by PEO network tie-points, i.e. by temporary physical associations resulting from intra- and inter-polymer dipole-dipole interactions. In addition, rheometry measurements have shown that PEO-melt/salt systems behave as viscoelastic systems, i.e. as elastic gel networks at sufficiently short times and as viscous fluids at longer times.

EXPERIMENTAL

Samples

Polymer: Poly(ethylene oxide) (PEO), linear, flexible chain. Chain were synthesized with methyl group end cans Molecular Weight: $M_w = 50600$ Dalton, $M_w/M_w = 1.05$ Rheological Entanglement Molar Mass: 3500 Dalton Salt: Lithium Perchlorate (LiClO₄)

Data Analysis

 Diffusive behavior: $\Gamma = D \cdot q^2$ · Stokes-Einstein expression: $D = k_B T / (6 \pi \eta_0 \xi_h)$ Activation energy E_D for diffusive relaxation: $\Gamma \sim exp (-E_D/RT)$ • Activation energy En for viscous flow: $n \sim exp (E \ RT)$ · Ornstein-Zernike function:

> I(0)I =

 $1 + \xi^{2} a$

£

RESULTS

ol/melt-gel Transition

 $[G^{(2)}(t) - A]/A = [A_f e^{-(-\Gamma_f t)_{f}^{\beta}} + A_s e^{(-\Gamma_s t)_{f}^{\beta}}]^2$

Figure 1. Typical normalized intensity autocorrelation functions ACF of PEO with and without salt measured at the scattering angle $\theta = 90^{\circ}$ and temperature T = 65 °C in methanol solutions. A smooth one-mode \rightarrow two-modes → one-mode evolution in ACF mode structure clearly reveled that with increasing polymer concentration in solution maps out the transition from dilution behavior to melt/gel behavior for the PEO/methanol.

PCS Results for PEO Melts

Figure 2. CONTIN analyses results illustrating the single mode in the ACF for neat melt and salt-plus melts. Here T = 65 °C and θ = 90°. All melts exhibited monomodal, single-exponential relaxation behaviors.

Static Light Scattering Results

fit exponent d_c and the correlation length ξ^s_{-} extracted from static light scattering measurements at T = 65 °C.

Figure 3. Relaxation rates Γ_{-} versus the scattering vector ain a log-log plot. The inset shows the slope is equal to 2 for all melts. Note that Γ_m depends linearly on q^2 , indicating diffusive characteristics behavior of PEO melt/gel network.

Static scattering measurements revealed

power law behavior in all PEO melts,

percolation theory; i.e., PEO melt/gel

networks remained percolation systems

containing numerous polymer pathways

Salt concentration increases swell the

gel network while the addition of salt

makes the network more difficult to

stretch. This result is reasonable that

salt bridging and associated network

stiffening would presumably increase

the extent of long ranged network

fluctuations

 $I(a) \sim a^{-2.0\pm0.1}$ in agreement with the

spanning the melt sample.

temperatures. The inset shows the damping factor G"/G'

PEO-50K melt $T = 70^{\circ}C$ G',X ▲ G*, X_{LiClO4} G', X_{LiClO4}=0 ▲ G*, X_{LiClO4}= € G, XLICIO4 G*, XLiCIO4= 0.2 ω [1/s] Figure 7. Storage modulus G' and loss modulus G" of the neat melt and salt-plus melts as a function of angular frequency ω at temperature T = 70 °C. The inset shows the

damping factor G"/G' as a function of ω .

Rheometry Results

as a function of ω.

Storage modulus G' and loss modulus G" of the neat melt and salt-plus melts are respectively proportional to ω^2 and ω^1 at the wide frequencies range. G" are higher than G' and both moduli increase in parallel slowly with more salt added Such a behavior is characteristic of the liquid-like structure. The damping factor decreases with increasing X1000 indicating the more "bridging" "tie-up points" in the PEO50K melt/gel network.

The increase in E_D and E_n within increasing X_{LiCl04} due to increase in the numbers of ion mediated intra- and inter-polymer links in PEO mobile chains. Additional intra- and inter-polymer bridging and bonding also served to "petrify" the network so that it was more resistant to thermal stretching Non-equivalence of E., and E. implying longranged fluctuations in the melts are governed by viscous flow and elasticity of melt/gel network

CONCLUSIONS

LLS measurements are employed to investigate the dynamics of entangled PEO50K with and without salt. The single-exponential ACF relaxation mode was observed and exhibited a^2 dependence in all melts; behavior interpreted as due to the relaxation of a transient PEO network. From rheometry measurements, damping factors are very large (>1) and decrease with more salt added, indicating that the behavior is characteristic of liquid-like structure but the level of entanglement of PEO chains depending on the existence of LiClO4. Furthermore, static scattering measurements reveled that the structure factor exhibits a universal power law $I(q) \sim q^{-2.0}$ in all melts. Significantly, the melt/gel was shown to be a percolation system-a result linking microscopic and macroscopic behaviors in PEO melt/gels with important implications for solid-polymer-electrolyte battery technology

REFERENCES

- R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.
- J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980.
- T. Nicolai, F. Prochazka, D. Durand, Phys. Rev. Lett. 1999, 82, 863.
- S. Peng, J. C. Selser, R. Bogoslovov, G. Piet, J. Chem. Phys. 2004, 120, 8841
- R. Walter, J. C. Selser, M. Smith, R. Bogoslovov, G. Piet, J. Chem. Phys. 2002, 117, 417.

ACKNOWLEDGEMENTS

We thank the U. S. DOE (Office of Basic Energy Sciences), University of Nevada Las Vegas, Bigelow Foundation for financial support of this work. We also thank J. Kilburg, W. O' Donnell, A. Sanchez for technical support.