A Light Scattering Investigation of a Sol/melt–gel Transition: the Poly(ethylene oxide) (PEO)/methanol/LiClO₄ System

Shufu Peng, James C. Selser, Radoslav Bogoslovov, Greg Piet

Introduction

Photon correlation spectroscopy (PCS) has been widely used for investigating polymer dynamics in solutions as well as in the melt because PCS is a noninvasive technique that can access a broad time window, viz 10-7 - 103 s.

In "standard", theoretical treatments describing the behavior of semidilute polymer solutions, polymer chains are assumed to be infinitely long, perfectly flexible strands having negligible thickness. Moreover, chains are chemically inert and networks form as chain contact crossing points develop due to the inability of chains to pass through one another. In fact, in the present study, hydrogen bonding and dipole-dipole interactions play significant roles in the development and behavior of poly(ethylene oxide) (PEO) networks in semidilute solutions as well as in melts. In general, PCS measurements have revealed two relaxation modes in semidilute polymer solutions

This work reports the results of a PCS study of the sol-gel transition occurring in methanol solutions having increasing concentrations of PEO and is part of an ongoing investigation of the structure and dynamic behavior of PEO-melt/salt solutions. In particular, by scrutinizing the scattering wavevector, concentration and temperature dependences of solution fast and slow relaxation modes, the dynamic behavior of PEO with and without salt in dilute and semi-dilute methanol solutions up to and including the melt limit was studied

Polymer Concentration Dependence

A smooth one-mode \rightarrow two-modes \rightarrow one-mode evolution in scattering light autocorrelation function (ACF) mode structure clearly reveled that with increasing polymer concentration in solution maps out the transition from dilution behavior to melt/gel behavior for the PEO/methanol.

Polymer: Poly(ethylene oxide) (PEO) Chain were synthesized with methyl group end caps. \mathcal{H}_2 Molecular Weight: $M_w = 50600$ Dalton, $M_w/M_N = 1.05$ \mathcal{Q} Overlap concentration: $C^* = M_w/(N_A/4/3\pi R^2) = 12$ wt% \mathcal{CH}_3 Rheological Entanglement Molar Mass: 3500 Dalton \mathcal{CH}_3 Solvent: methanol (CH ₃ OH) linear, flexible	Samples	ÇH₃ CH
Sat. Eliminar elementate (Element)	Polymer: Poly(ethylene oxide) (PEO) Chain were synthesized with methyl group end caps. Molecular Weight: $M_w = 50600$ Dalton, $M_w/M_N = 1.05$ Overlap concentration: $C^* = M_w/(N_A 4/3\pi R^2) = 12$ wt% Rheological Entanglement Molar Mass: 3500 Dalton Solvent: methanol (CH ₃ OH) Salt: Lithium Perchlorate (LiClO ₄)	CH ₃ linear, flexible entangled

Data Analysis

• The intensity-intensity time autocorrelation function: Siggert relation

- $G^{(2)}(t) = A[1 + \alpha | g^{(1)}(t) |^2]$ • Normalized field-field autocorrelation function:
 - $|g^{(1)}(t)| = \int_0^\infty w(\Gamma) e^{-\Gamma t} d\Gamma$
- Double Kohlrausch-Willians-Watts Function: $[G^{(2)}(t) - A]/A = [A_t e^{(-\Gamma_f t)^{\beta_f}} + A_e^{(-\Gamma_s t)^{\beta_s}}]^2$
- Diffusive behavior:
- $\Gamma = D \cdot q^2$ Stokes-Einstein expression:
- $D = k_B T / 6 \pi \eta_0 \xi_k$
- Arrhenius plot: Activation Energy E_D $\Gamma = exp^{(E_D/RT)}$
- Ornstein-Zernike function: $I = \frac{I(0)}{1 + \xi_s^2 q^2}$

- $A = \langle I(\infty) \rangle^2 baseline$
- a experiment constant $w(\Gamma)$ – distribution function
- Γ relaxation rate
- E_D Activation Energy
- q wavevector factor
- A_{fs} amplitudes of fast and slow modes
- $\beta \approx I -$ "single exponential" relaxation
- $D-diffusion\ coefficient$
- k_B Boltzmann constant η_0 – viscosity of solvent
- ξ_h dynamic correlation length
- ¿. long-range correlation length

Concentration Dependence of $\boldsymbol{\beta}$

In double-KWW fits, β_c and β_s provide a measure of the distribution widths associated with the relaxation rates Γ_{f} and Γ_{s} . While a value of $\beta \approx 1$ corresponds to a narrow distribution of relaxations, i.e. to a singleexponential relaxation.

The concentration dependence of $A_s/(A_f+A_s)$

Concentration dependence of the relative contribution of "fast" and "slow" ACF modes, expressed by the mode amplitude ration $A_s/(A_f+A_s)$ derived from double KWW fits, illustrates this sol/melt-gel transition very clearly. The sigmoid shape of the this ratio transition highlights the shift from coil individual behavior in dilute solution to coil collective network behavior in the semidilute solution

Physics Department, University of Nevada-Las Vegas

Las Vegas, Nevada 89154-4002 www.physics.unlv.edu

UNEV PHYSICS*

Fast ACF relaxations were attributed to diffusive motions of chain segments between network tie points with a characteristic length associated with these motions comparable to the network mesh size. The consistent increase of the fast relaxation rate Γ_f with increasing polymer concentration resulted from the monotonic decrease in $\xi_{h,\xi_h} \sim C^{0.73}$, a power law decrease in reasonable agreement both with theoretical predictions and with earier measurements

While with increasing network consolidation as polymer concentration increased and ξ_s increased, i.e. with increasing consolidation of the polymer network, the distance over which the effects of dynamic perturbation of the network were communicated increased significantly

Scattering Wavevector Dependence

supports the contention that the slow mode becomes the single "surviving" diffusive mode observed in 50K PEO melt.

(¥+¥)/ q [cm⁻¹]

Wavevector q independence of the mode ratio $A_s/(A_s+A_t)$ and of β_s for well-established networks illustrates the homogeneity. Slower dynamic behavior result from the diffusive relaxation of long-ranged network fluctuations

Temperature Dependence

Static Light Scattering

Conclusions

The structure and dynamics of 50K PEO methanol solutions and PEO melts, with and without LiClO4, were studied using static light scattering (SLS) and photon correlation spectroscopy (PCS). Scattering light intensity autocorrelation functions reveled that with increasing PEO concentration, fast PEO concentration fluctuation relaxations gradually disappeared even as slow mode relaxations emerged. The fast relaxation was diffusive, exhibiting q^2 dependence. Associated dynamic screening lengths, ξ_h , scaled as the -0.73 power of polymer concentration in semidilute solution regime. Significantly, the slow mode relaxation was also diffusive, both in solution and in PEO melts, behavior interpreted in both cases as due to the long-ranged relaxation of a transient PEO network. ACF data illustrates the transition form individual coil behavior in solution to coil collective or network behavior and the homogeneity of semidilute solutions. Moreover, for a given polymer concentration, the degree of PEO chain entanglement varied depending on the salt concentration.

 de Gennes, P. G. Scaling Concepts In Polymer Physics, Cornell University Press: Ithaca, NY,1979.
 Brown, W.; Nicolai, T. In Dynamic Light Scattering, the Methods and Application, Brown, W. Ed.; Clarendon, Oxford 1993

References

- Walter R.; Selser J. C.; Smith M.; Booslovov R.; Piet G., J. Chem. Phys. 2002, 117, 417.
- 4. Adam, M.; Delsanti, M.; Munch, J. P.; Durand, D. Phys. Rev. Lett. 1988, 61, 706

It is a pleasure to thank the U. S. DOE (Office of Basic Energy Sciences), University of Nevada Las Vegas, Bigelow Foundation for financial support of this work. Thank J. Kilburg, W. O' Donnell, A. Sanchez technical support and NSF REU students N. Rebech, Rowan Handfor assistance in the laboratory.

university of nevada, las veg