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Lecture 23: Maxwell Distribution, Partition Functions and Free Energy
Lecturer: Qiang Zhu Scribes: scribe-name1,2,3

23.1 Maxwell Speed Distribution

In the very first lecture, we briefly mentioned a microscopic model to link the speed of particles to the
temperature,

PV = Nmv2
x = NkT (23.1)

But this is just a sort of average. Technically, the speeds of particles should follow some distribution. Let’s
call it D(v). What’s the dependence of D(v)?

The first factor should be just the Boltzmann factor.

D(v) ∝ eE/kT = e−mv2/2kT (23.2)

This only accounts for an ideal gas, where the transnational motion is independent of other variables.

The second factor should be the velocity space. For a given v, it could be in any direction. The the space is
4πv2. Therefore,

D(v) = C · 4πv2e−mv2/2kT (23.3)

Where C is a constant. According to

1 =
∫ ∞

0
D(v)dv = C · 4π

∫ ∞

0
v2e−mv2/2kTdv (23.4)

Changing variables to x = v
√

m/2kT,

1 = 4πC(
2kT
m

)3/2
∫ ∞

0
x2e−x2

dx (23.5)

By using some tricks, you can find ∫ ∞

0
x2e−x2

dx =
√

π/4 (23.6)

Therefore, C = (m/2πkT)3/2.

Our final result is therefore,
D(v) = (

m
2πkT

)3/24πv2e−mv2/2kT (23.7)

The average speed:

v̄ =
∫ ∞

0
vD(v)dv =

√
8kT
πm

(23.8)
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Figure 23.1: The Maxwell speed distribution and different types of characteristic speeds.

The rms speed:

v̄2 =
∫ ∞

0
v2D(v)dv = 3kT/m (23.9)

The most likely speed:
∂D(v)

∂v
= 0 → vmax =

√
2kT
m

(23.10)

23.2 Partition Function and Free Energy

For a system in equilibrium with a reservoir at temperature T, the quantity most analogous to Ω is Z. Does
the natural logarithm of Z have some meaning?

Recall the definition of F = U − TS, the partial derivative with respect to T is

(
∂F
∂T

)V,N = −S =
F−U

T
(23.11)

This is a differential equation for the function F(T), for any given V and N. If we use F̄ to express the kTlnZ,
then

∂F̄
∂T

=
∂

∂T
(−kTlnZ) = −klnZ− kT

∂

∂T
lnZ (23.12)

In the 2nd term, we rewrite it in terms of β = 1/kT

∂

∂T
ln Z =

∂β

∂T
∂

∂β
ln Z =

−1
kT2

1
Z

∂Z
∂β

=
U

kT2 (23.13)

Therefore,

∂F̄
∂T

= −klnZ− kT
U

kT2 =
F̄−U

T
(23.14)
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Therefore, F̄ obeys exactly the same differential equation as F.

At T=0, the original F is simply equal to U, the energy must be the lowest possible energy U0, since the
Boltzmann factors for all excited states will be infinitely suppressed in comparison to the ground state.
Therefore,

F̄(0) = −kTlnZ(0) = U(0) = F(0) (23.15)

This relation can be very useful to compute entropy, pressure, and so on.

S = −( ∂F
∂T

)V,N P = −( ∂F
∂V

)T,N µ = (
∂F
∂N

)V,T (23.16)


	Maxwell Speed Distribution
	Partition Function and Free Energy

