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Derivative

The goal of optimization is to find the point that minimizes an objective
function. Knowing how the value of a function changes (derivative) is
useful.

f(x + Ax) ~ f(x) + f*(x)Ax

Af(x)
f =
() =~z
Derivatives in multiple dimensions

Jacobian  Vf(x) = 0f(x) 0f(x) “'6f(x)

Ox1 = Oxp Oxn
9%f(x)  9%f(x) 82f(x)
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Hessian  V2f(x) = :
0f(x)  0°f(x) 8%f(x)
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Numerical Differentiation

For practical applications, we rely on numerical methods to evaluate the
derivatives.

@ Finite Difference Methods

f(x+h)—F(x)

£ forward
f'(x) ~ f(XJrh/z);f(X*h/z) central
M backward

@ Complex Step Method

f'(x) = imag(f(x + ih))



Finite Difference - forward

f'(x),  f(x) F(x)
fx+h) =)+ —7h+ —; h? + 3 R4
We can arrange it to
F(x)h = F(x + h) — F(x) — f;(,X) W — f‘;(,x)/# T
F(x) = f(x+ hi)7— f(x) f“2(lx)h2 B f“:‘)’(lx)h3
F(x) = f(x+ hi)7— f(x) + o(h)

Therefore, central difference has linear error.



_Numerical Differentiation |
Finite Difference - central

f'(x)h  f"(x) h f(x)

i+ h/2) = fG) + 000 XA L0y gy
o - FOth2) - = h2) | o)

Therefore, central difference has quadratic error.



|
Complex Step

According to Taylor expansion,

. . Fi(x) . 3f"(x)
f(x + ih) = £(x) + ihf'(x) — h? o — ih3 30 +--
If we take only the imaginary part,

Im(F(x + ih)) = hf'(x) — B' ';(!X) .

F(x) = Im(f();—l— ih)) e f3(|x) o Im(f(xh—i—/h)) N O(h3)

While the real part is
f‘“
Re(f(x + ih)) = f(x) — h22('x) +
f(x) = Re(f(x + ih)) + O(h?)
The complex step method is advantageous since

@ Both f(x) and f‘(x) can be evaluated in a single run
e f'(x) has a cubic error
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Comparison
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Homework: reproduce the above figure by yourself!

Figure 2.4. A comparison of the
error in derivative estimate for the
function sin(x) at ¥ = 1/2 as the
step size is varied. The linear error
of the forward difference method
and the quadratic error of the cen-
tral difference and complex meth-
ods can be seen by the constant
slopes on the right hand side. The
complex step method avoids the
subtractive cancellation error that
occurs when differencing two func-
tion evaluations that are close to-
gether.
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Dual numbers

Dual numbers can be expressed mathematically by including the abstract
quantity €, where € is 0. So that,

(a+be)+ (c+de)=(a+c)+ (b+d)e
(a+ be) * (¢ + de) = (ac) + (ad + bc)e

The function’s evaluation and derivative can be expressed simultaneously
in an exact manner.

k!
k=0
o fk 0 fk bk k
f(a—i—be)zz k(la)(a—l—be—a)kzz (alzl <
k=0 ' k=0 '
& fk bk
= f(a) +bf‘(a)e+ezz AP k=2



Express a function as the computational graph

Suppose we have a target function
f(a, b) = In(ab + max(a, 2))

It can be expressed as
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The derivative from the computational graph

Suppose we have a target function
f(a, b) = In(ab + max(a, 2))

The derivative is

df _ df de _ df (degdes  df (dcg (desde, | des doy
dX dC4 d dC4 dC3 dx N dC4 dC3 dC2 dx dCl dx
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Summary

Derivatives are important for optimization.

We rely on numerical derivatives in practical optimization

Finite differences are the most easy ways to compute derivative
The complex step method has better accuracy

Dual numbers allow the exact evaluation of function and derivative
simultaneously

Analytic differentiation methods include forward and reverse
accumulation on computational graphs
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