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Derivative

Derivative

The goal of optimization is to find the point that minimizes an objective
function. Knowing how the value of a function changes (derivative) is
useful.

f (x + ∆x) ≈ f (x) + f ‘(x)∆x

f ‘(x) =
∆f (x)

∆x
Derivatives in multiple dimensions

Jacobian ∇f (x) =

[
∂f (x)

∂x1
,
∂f (x)

∂x2
, · · · ∂f (x)

∂xn

]

Hessian ∇2f (x) =


∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

· · · ∂
2f (x)

∂x1∂xn
...

∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

· · · ∂
2f (x)
∂x2

n


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Numerical Differentiation

Numerical Differentiation

For practical applications, we rely on numerical methods to evaluate the
derivatives.

Finite Difference Methods

f ‘(x) ≈


f (x+h)−f (x)

h forward
f (x+h/2)−f (x−h/2)

h central
f (x)−f (x−h)

h backward

Complex Step Method

f ‘(x) = imag(f (x + ih))
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Numerical Differentiation

Finite Difference - forward

f (x + h) = f (x) +
f ‘(x)

1!
h +

f “(x)

2!
h2 +

f “‘(x)

3!
h3 + · · ·

We can arrange it to

f ‘(x)h = f (x + h)− f (x)− f “(x)

2!
h2 − f “‘(x)

3!
h3 + · · ·

f ‘(x) =
f (x + h)− f (x)

h
− f “(x)

2!
h2 − f “‘(x)

3!
h3

f ‘(x) =
f (x + h)− f (x)

h
+ O(h)

Therefore, central difference has linear error.
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Numerical Differentiation

Finite Difference - central

f (x + h/2) = f (x) +
f ‘(x)

1!

h

2
+

f “(x)

2!
(
h

2
)2 +

f “‘(x)

3!
(
h

2
)3 + · · ·

f (x − h/2) = f (x)− f ‘(x)

1!

h

2
+

f “(x)

2!
(
h

2
)2 − f “‘(x)

3!
(
h

2
)3 + · · ·

f ‘(x) =
f (x + h/2)− f (x − h/2)

h
+ O(h2)

Therefore, central difference has quadratic error.
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Numerical Differentiation

Complex Step

According to Taylor expansion,

f (x + ih) = f (x) + ihf ‘(x)− h2 f “(x)

2!
− ih3 f “‘(x)

3!
+ · · ·

If we take only the imaginary part,

Im(f (x + ih)) = hf ‘(x)− h3 f “‘(x)

3!
+ · · ·

f ‘(x) =
Im(f (x + ih))

h
+ h2 f “‘(x)

3!
− · · · =

Im(f (x + ih))

h
+ O(h3)

While the real part is

Re(f (x + ih)) = f (x)− h2 f “(x)

2!
+ · · ·

f (x) = Re(f (x + ih)) + O(h2)

The complex step method is advantageous since

Both f (x) and f ‘(x) can be evaluated in a single run
f ‘(x) has a cubic error
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Numerical Differentiation

Comparison

Homework: reproduce the above figure by yourself!
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Automatic Differentiation

Dual numbers

Dual numbers can be expressed mathematically by including the abstract
quantity ε, where ε2 is 0. So that,

(a + bε) + (c + dε) = (a + c) + (b + d)ε

(a + bε) ∗ (c + dε) = (ac) + (ad + bc)ε

The function’s evaluation and derivative can be expressed simultaneously
in an exact manner.

f (x) =
∞∑
k=0

f k(a)

k!
(x − a)k

f (a + bε) =
∞∑
k=0

f k(a)

k!
(a + bε− a)k =

∞∑
k=0

f k(a)bkεk

k!

= f (a) + bf ‘(a)ε+ ε2
∞∑
k=2

f k(a)bk

k!
εk−2

= f (a) + bf ‘(a)ε
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Automatic Differentiation

Express a function as the computational graph

Suppose we have a target function

f (a, b) = ln(ab + max(a, 2))

It can be expressed as
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Automatic Differentiation

The derivative from the computational graph

Suppose we have a target function

f (a, b) = ln(ab + max(a, 2))

The derivative is

df

dx
=

df

dc4

dc4

dx
=

df

dc4

(
dc4

dc3

dc3

dx

)
=

df

dc4

(
dc4

dc3

(
dc3

dc2

dc2

dx
+

dc3

dc1

dc1

dx

))
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Summary

Summary

Derivatives are important for optimization.

We rely on numerical derivatives in practical optimization

Finite differences are the most easy ways to compute derivative

The complex step method has better accuracy

Dual numbers allow the exact evaluation of function and derivative
simultaneously

Analytic differentiation methods include forward and reverse
accumulation on computational graphs
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