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The space and time introduced by Albert Einstein in 1905 is explained by examining a series of 

simple thought or “gedanken” experiments.  The development makes extensive use of 

spacetime diagrams to help readers appreciate the full extent of these changes.  
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Introduction 

This book was written after many years of teaching special and general relativity to 

students with varied backgrounds.  The presentation emphasizes spacetime diagrams 

which in my experience helps students visualize space and time.  The material is self-

contained, allowing the book to be used as a tutorial for a person with little background 

in but some familiarity with algebra and a healthy curiosity about special relativity.  

There are questions scattered throughout the book to encourage the reader to take some 

time to review the material presented before moving on to new material.  The book can 

also be used as a textbook for a course in space and time for non-science students, the 

audience I primarily had in mind when writing it, or as an introductory course for 

students planning to study science later in their undergraduate careers.  Please feel free 

to contact me at len.zane@unlv.edu if you have any questions or suggestions. 

Chapter One establishes a simple methodology for measuring speeds and velocities at 

non-relativistic values that are encountered in everyday life.  In particular, the velocity 

of an object moving in a bus that is traveling down the road is measured by people on 

the bus and simultaneously by observers standing on the ground.  These measurements 

are used to probe the rules that govern space and time. 

Chapter Two presents a short summary of light’s properties.  For us, the most 

important property is light’s astonishingly large velocity. 

Chapter Three replaces the bus in Chapter One with an imaginary one that can move at 

relativistic speeds.  This new “super” bus is used to probe space and time by doing 

experiments analogous to those done in Chapter One.  These new experiments force our 

experimenters to drastically revise the rules governing space and time that emerged 

from Chapter One.  

Chapter Four and Five generalize the results of the experiments done in Chapter Three 

culminating in a derivation of the Lorentz transformation equations and the relativistic 

version of the addition of velocity equation first encountered in Chapter One.  Chapter 

Four ends with a section on how a GPS verifies that moving clocks run slow and that 

clocks further from the center of Earth run fast. 

Chapter Six is primarily a tutorial designed to give readers a chance to review all the 

earlier material by using spacetime graphs and the Lorentz Transformation equations to 

analyze two imaginary experiments done with the super bus. 

mailto:len.zane@unlv.edu
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Chapter Seven describes and analyzes the well-known “Pole and Barn” problem and 

attempts to give a definitive answer to the question, does the pole fit in the barn or not?  

In this chapter, the super bus replaces the pole and a newly constructed garage takes 

the place of the barn. 

Chapter Eight introduces the astronomical distance unit, the light year, and gives a 

brief description of our home galaxy, the Milky Way. 

Chapter Nine analyzes in some detail the famous “Twin Paradox.”  This iconic paradox 

of special relativity arises when one of the twins travels away from Earth in a space ship 

and returns years later.  Upon returning, it is discovered that the twin that remained on 

Earth aged more than the traveling twin. 

Chapter Ten uses the laws governing space and time to study the motion of a rocket 

that moves with constant acceleration.  The accelerating rocket is used to examine the 

possibilities of human travel to other galaxies.  The last section of Chapter Ten explains 

why a clock further from the center of Earth runs faster than an identical closer to the 

center. 

Chapter Eleven gives two separate arguments designed to show that rulers really do 

shrink and watches actually run slow and these effects are not just illusory or 

“theoretical.”  

Chapter Twelve gives a simple “derivation” of Einstein’s famous equation, E = mc2.  

Though not directly related to the primary theme of the book, it is difficult to write a 

book that purports to cover special relativity and not include that equation.  
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Chapter One:  Space and Time Before 1905 

This chapter examines some simple experiments that establish the space and time of Galileo and 

Newton.  This view prevailed until 1905 when Albert Einstein introduced the world to Special 

Relativity.  It is also the space and time of our everyday lives where rulers and watches are well 

behaved. 

Speed and Velocity 

The concepts of speed and velocity are colloquially understood to be a distance traveled divided 

by the elapsed time.  In this chapter, velocities and speeds will be measured in feet/second or ft/s.  

To physicists, speed and velocity are related but not interchangeable ideas.  Velocity includes a 

sense of direction in its definition.  Throughout this book, anything or anybody moving from left 

to right will have a positive velocity, for example +10 ft/s.  Note that a velocity of +10 ft/s is the 

same as 10 ft/s.  While any object or person moving from right to left will have a negative 

velocity, for example -10 ft/sec,.  The speed of an object is the size, or magnitude, of its velocity.  

In the above examples, both objects would have the same speed, 10 ft/sec, although those speeds 

would be in opposite directions. 

Later we will look very carefully at how speed is measured.  But for now, it is clear that to find 

the velocity or speed of an object, it is necessary to measure both a distance covered and the time 

it took to traverse that distance.  Rulers and stop watches are the usual instruments used to 

measure distance and time.  Imagine a warehouse full of excellently fabricated rulers and stop 

watches.  All the rulers are identical to one another and the same is true for the stop watches.  

These instruments will be handed out to specially-trained observers who will collect the data 

used to determine the speed or velocity of test objects in a variety of circumstances.  A key point 

to keep in mind is that the experiments described are all perfectly reasonable and doable, at least 

in principle, though some may be technologically too challenging to be done with currently 

available rulers, stop watches, and observers. 

The Experimenters are Introduced 

Anne, Bev, Chuck, and Dean are good friends, astute observers, and curious by nature.  

One evening, after watching an episode of Star Trek, they begin talking about space 

and time and Special Relativity, subjects none of them knows very much about.   Finally 

Bev suggests that instead of speculating about the meaning of Special Relativity, they 

ought to do some careful experiments to get first-hand knowledge about space and 



7 
 

time.  Her three friends quickly agree, thinking it could be enlightening to get an 

experimentally based understanding of the nature of space and time. 

Anne, Bev, Chuck, and Dean are the main characters in this book.  Anne and Bev are stationed 

on Earth during all the experiments with Bev always being to the right of Anne.  Conversely, 

Chuck and Dean are the traveling pair of experimenters.  They ride in buses and rocket cruisers 

with Dean always situated to the right of Chuck.  A & B and C & D are shorthand for Anne 

and Bev and Chuck and Dean. 

The sections in italics represent the author interjecting himself into the narrative.  The hope is 

that these asides will add to and not disrupt the main story, the experimental probing of space 

and time. 

The next morning, bright and early, our friends meet to map out a set of experiments.  

They recall that Special Relativity has something to do with light and its velocity and 

the way it is perceived by different observers moving with respect to one another.  

Though they are not sure what it is about light that is so peculiar, they do know that the 

speed of light is very, very large.  Anne suggests that they do some simple experiments 

with something that moves at a pedestrian speed; for example, one of the trained 

pigeons that she has seen in the park.  These pigeons all fly at exactly 20 ft/s. 

At the time scientists were grappling with the concepts of space and time, there was general 

agreement that light was a wave.  One of the principle characteristics of a wave is that it travels 

through some medium.  For example; sound travels through air and other material substances.  

The speed of a wave is the speed at which it moves through that medium.  Scientists imagined 

space being permeated by an ethereal substance, the “lumeniferous ether,” through which light 

moved.  The speed of a pigeon is the speed that it moves through air.   This is analogous to the 

way a wave moves through a medium, or more specifically the way scientists pictured light 

moving through the ether.  Thus Anne’s choice of a pigeon as the object to study was reasoned 

and not fortuitous.    

 Dean volunteers to head to the park to sign up a pair of pigeons for their experiments. 

After he leaves, his friends decide to break themselves into two teams--Anne and Bev 

and Chuck and Dean.  Anne and Bev will be the team that measures things from the 

perspective of Earth while C & D will ride in a laboratory that moves with respect to 

Earth.  Chuck agrees with this plan and immediately heads down to the used bus lot to 
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find a vehicle that could be appropriately modified to become the rolling laboratory for 

him and Dean. 

After he leaves, A & B go to the warehouse to pick up four identical sets of rulers and 

stop watches.  Later that day, the four friends reconvene to review what has been 

accomplished so far and what experiments ought to be done first.  A & B distribute 

rulers and stop watches to C & D.  They dutifully test the equipment and agree that 

they are all identical and establish that the watches are accurate to one tenth of a 

second, 0.1 second.  Dean shows off the two trained pigeons that volunteered to help 

with the experiments.  The pigeons demonstrate their skill by flying back and forth in 

tandem at identical speeds, each matching the other flap for flap.  Finally Chuck gives a 

tour of the bus that will act as his and Dean’s rolling lab.  He points out that it has an 

excellent cruise control that will ensure that the bus maintains a constant speed during 

any experiment.  Both teams measure the length of the bus and agree that it is 100 feet 

long. 

In order to simplify the discussions that follow, the world of our four experimenters will need to 

have some peculiar, but not unreasonable, properties.  The first is that the world has just one 

space dimension.   That is physics talk for the fact that Anne, Bev, the pigeons, and the bus with 

Chuck and Dean aboard, can only move along a line.  They can move to the right, the positive 

direction, or to the left, the negative direction.  But motion perpendicular to that line is 

impossible and meaningless for the participants in the various experiments to be described in this 

and later chapters because there is no direction perpendicular to the line they move along!  For a 

more concrete picture of a one dimensional world, imagine beads sliding on a wire.  The beads 

can slide to or fro but it is impossible for them to move off the wire. 

The First Set of Experiments:  Earth-Based 

In their first experiment, A & B use their rulers and watches to measure the speed of 

one of the pigeons.  Meanwhile, the other pigeon is comfortably housed on the bus to be 

used by C & D in later experiments.  A & B decide to have their pigeon fly 100 feet, the 

length of the bus, to make their experiments more directly comparable to those C & D 

will do.   C & D watch as A & B carefully measure off 100 feet.  Anne holds the pigeon 

while Bev stations herself 100 feet to Anne’s right.  The plan calls for Anne to release the 

pigeon while simultaneously starting her watch.  Bev will start her watch as soon as 

Anne releases the pigeon and both will stop their watches the moment the pigeon 

reaches Bev. 
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Before we let A & B do the above experiment, let’s make sure that the described procedure makes 

sense.  There is a certain reaction time involved in starting and stopping a watch.  Since Anne is 

starting her watch at the same instant that she releases the pigeon, we can assume that both of 

those actions take place at exactly the same instant.  After all, that is the least we can expect from 

“well-trained observers!”  On the other hand, Bev does not know exactly when the pigeon will be 

released.  She will start her watch after a short delay that depends on how quickly she can react 

to the initial movements of the pigeon.  Human reaction times for Olympic athletes are between 

1 and 2 tenths of a second.  When Bev catches the pigeon, she instantly stops her watch.  Again 

we can assume that she is skilled enough to do both simultaneously.  But now it is Anne 

watching Bev catch the pigeon who has to react, introducing some uncertainty on her end of the 

experiment. 

Bev records 4.9 seconds for the pigeon’s flight time while Anne gets 5.1 seconds.  Being 

good scientists they decide to average the two times, concluding that the pigeon took 

5.0 seconds to fly 100 feet for a speed of 20 feet/second or 20 ft/s.  They repeat this 

experiment several times, and measure 20 ft/s each time for the speed of the pigeon.  

Just as advertised, their pigeon always flies at 20 ft/s.  Note that the pigeon’s velocity is 

+20 ft/s because it flies from Anne to Bev, left to right. 

For the second experiment, the pigeon flies from Bev to Anne, from right to left.  When 

they calculate the speed of the pigeon, they get, unsurprisingly since it is a well-trained 

pigeon, 20 ft/s.  But the pigeon’s velocity is now -20 ft/s.  After this experiment, the 

friends decide to break for lunch. 

The small difference in time measured by Bev and Anne was experimental error introduced 

because of the finite reaction times of our observers. In the future, we don’t want to worry about 

whether or not well-trained observers can release/catch a pigeon while simultaneously 

starting/stopping a watch.  Nor do we want to worry about human reaction times which 

needlessly complicate the results of our experiments.  Consequently part of our definition of a 

well-trained observer will include the ability to perform all the duties required in a given 

experiment without introducing any extraneous errors. 

Question 1.1:  After lunch, A & B decide to redo the experiment with the pigeon.  But 

now a breeze is blowing from Anne toward Bev at 10 ft/s.  How does the wind affect the 

results of the experiment when the pigeon travels from Anne to Bev and then back to 

Anne?  (Think about this for a bit before reading on.) 
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What did you conclude about the flying times for the pigeon with a breeze blowing from left to 

right at 10 ft/sec?  The first thing to recognize is that the speed of the pigeon found during the 

first set of experiments was the speed of the pigeon with respect to the air it was flying through.  

Since the air was not moving with respect to the ground, the pigeon’s speed with respect to the 

air was the same as the pigeon’s speed with respect to the ground.  That is the reason the pigeon’s 

speed was the same flying from left to right as it was flying from right to left.   

But now the air is moving with respect to the ground.  In each second of flight from Anne to Bev, 

the pigeon advanced 20 feet through the air while the air moved 10 feet closer to Bev.  

Consequently the pigeon moved 30 feet closer to Bev for each second it flew.  The pigeon’s 

velocity with respect to the ground was +30 ft/s.  Bev and Anne both recorded the flight time as 

3.3 seconds. 

The return trip was more difficult for the pigeon because it was now flying into a headwind.  The 

measured flight time for the return trip was 10 seconds, making the pigeon’s velocity -10 ft/s.  

Notice that the total time for the round trip in the 10 ft/s wind was 13.3 seconds compared to 10 

seconds when there was no wind. 

Question 1.2:  What would be the total time for a round trip with a wind blowing +15 

ft/s?   

Question 1.3:  What would happen to the roundtrip time if the wind were blowing at a 

velocity of +20 ft/s or larger? 

Remember that the pigeon’s motion through air is analogous to the motion of a wave through a 

medium.  Scientists at the dawn of the Twentieth Century considered light a wave.   

Experiments analogous to those done by A & B when a wind was blowing were done by 

scientists on light, with the expectation that the speed of light would depend on the direction and 

speed of the “ether wind.”  These experiments on light will be discussed more in the next two 

chapters. 

The idea that a pigeon flying in still air has exactly the same speed regardless of the direction 

flown is really a statement that space is “isotropic.” That is, any experiment done with our 

instruments aligned left to right ought to give exactly the same result if instead we oriented our 

instruments right to left.  The discussion is restricted to left/right because those are the only 

directions available to our experimenters.  More generally, we expect the results of any 

experiment to be independent of the orientation of the apparatus because of the isotropy of space.  



11 
 

This expectation is taken by scientists as a fundamental property of space.  Note that this 

expectation is false if the experiment is done on a windy day because the wind destroys the 

symmetry between left to right and right to left.  Also, for those of us living on Earth, motion 

back and forth or from side to side is isotropic but gravity, like the wind, upsets the isotropy of 

space in the vertical direction. 

The Second Set of Experiments:  Bus-Based 

After successfully measuring the speed of the pigeon with respect to Earth, Anne and 

Bev suggest that it is time for Chuck and Dean to do the same experiment in their 

rolling laboratory.  This will give them a chance to test their experimental skill.  C & D 

get in their bus, set the cruise control, and drive with a velocity of +30 ft/s toward A & B.  

Dean is in the front of the bus and Chuck in the back, exactly 100 feet separate them.  

When Dean peeks out of the window he sees the one-dimensional Earth, along with A 

& B, move past the bus from right to left with a velocity of -30 ft/s.  For a minute, Dean 

forgets that he is in a moving bus and instead imagines that the Earth is moving. 

It is important to note that this bus has an incredibly good suspension system, travels in a 

straight line, and its speed never deviates from 30 ft/s.  Therefore, with the shades down, C & D 

have absolutely no sense of moving and could legitimately think of themselves as stationary.   

Our Earthly bias makes it difficult in our heart-of-hearts to consider the bus stationary while the 

Earth ambles by at -30 ft/s.  It is essential that we let go of this bias.  The alternative is to have 

Bev and Anne in a bus identical to the one used by Chuck and Dean and then to have these two 

buses move relative to one another with a speed of 30 ft/s.  For example, C & D can be traveling 

at +15 ft/s while A & B drove toward them at -15 ft/s.  A & B would see the “other” bus moving 

with a velocity of +30 ft/s while C & D saw the “other” bus moving at -30 ft/s toward them. This 

scenario emphasizes the symmetry between A & B and C & D and the reason why they are both 

perfectly justified in claiming that they are on a stationary bus while the other bus is moving.  

Instead of creating a perfectly symmetric situation and wasting fuel by using two buses instead 

of one, you, the reader, will have to work to thwart your bias and become comfortable with the 

equivalence between experiments done on the bus and those done on Earth. 

Chuck and Dean first measure the time it took the pigeon to fly from the back of the bus 

to the front.  Then they carefully repeat the measurement with the pigeon flying from 

the front to the back.  In the first case, the velocity of the pigeon is measured to be +20 
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ft/s while on the return trip the velocity is -20 ft/s.  In both cases, the speed of their 

pigeon is identical to the speed of the pigeon used by A & B. 

Embedded in the discussion of these two sets of experiments is an important observation that was 

first explicitly stated by Galileo as the Principle of Relativity.  The principle codifies our 

experience of flying through smooth air on a jet liner.  If you fell asleep as soon as you boarded a 

plane, and woke some time later, you would be hard pressed to tell if you were still sitting on the 

runway waiting for clearance to takeoff or cruising at 500 mph at 35,000 feet.  In fact, the 

Principle of Relativity states that there is no experiment that you could do in the airplane that 

would differentiate between the two states of motion.  Before Einstein, the principle was meant to 

apply to any “mechanical” experiment and not to experiments involving light or more generally 

electro-magnetic phenomena.  We will take it as a well established experimental truth that any 

experiment done by A & B can be repeated by C & D on their bus with identical results.  The 

pigeon experiment is a particularly simple affirmation of the Principle of Relativity. 

More generally, the Principle of Relativity says that all “inertial” reference frames are the same.  

An inertial reference frame is a collection of observers moving through space and time with a 

constant velocity.  A & B and C & D are observers in two distinct inertial reference frames.  A & 

B claim that C & D are moving through their Earth-based reference frame at +30 ft/s while C & 

D see A & B moving through their bus-based reference frame at -30 ft/s.  It is very important to 

keep in mind that Chuck and Dean can easily tell when the bus is accelerating.  A simple 

pendulum hanging from the roof of the bus would tilt toward the rear of the bus as it sped up and 

tilt toward the front when the bus slowed down.  During these times, experiments done in the 

bus will not give the same results as experiments done by Anne and Bev in the Earth frame.  The 

Principle of Relativity only applies to reference frames moving at constant velocities.  This 

distinction is central to understanding the famous Twin Paradox discussed in detail in Chapter 

Nine.  All the conclusions reached in the first nine chapters are predicated on comparing 

observations made in equivalent reference frames, inertial reference frames. 

Bev and Anne Carefully Observe the Experiment Done on the Bus 

 Before going on, let’s fine tune the description of our one-dimensional world.  During the 

experiments done with the bus, it was always moving from left to right.  Therefore, before the 

start of each experiment the bus is first driven to some starting point to the left of Anne, turned 

around, and readied for its next trip past A & B.  Every experiment will start when one of the 

Earth observers, A or B, is next to one of the bus observers, C or D.  The start of each experiment 
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will also be marked by some particular event taking place as the two chosen observers pass one 

another, for example the release of a pigeon. 

Please don’t ask how Anne and Chuck can be adjacent to one another in a one-dimensional world 

or how the bus can pass by Anne and Bev without obliterating them.  If you need a concrete 

picture, imagine the bus with its inhabitants moving in a one-dimensional world parallel to the 

one occupied by A & B.  Or going back to the bead and wire analogy, A & B and C & D are 

“beads” on parallel wires. 

A & B decide to ask C & D to do their two experiments again but this time they want to 

determine how fast the pigeon on the bus flew with respect to them, that is, with respect 

to Earth.  To do that, they need to measure the Earth distance covered by the pigeon as 

it flies from the rear to the front of the bus.  The speed of the pigeon is that distance 

divided by the time it took the pigeon to fly from one end of the bus to the other. 

For these experiments, Chuck agrees to release the pigeon when he is adjacent to Anne.  

At that same instant, Bev and Dean will start their watches.  That instant also signals the 

start of the experiment.  Before doing the experiment, Anne and Bev mull over the 

question of where along the road Bev ought to stand so that she will be adjacent to 

Dean just as he catches the pigeon. 

Question 1.4:  Before reading on, calculate how far to the right of Anne Bev has to be 

standing to witness the arrival of the pigeon at the front of the bus. 

Bev observes that since the bus travels at 30 ft/s and the pigeon takes 5 seconds to fly 

from the back to the front of the bus, the bus will move 150 feet down the road while 

the pigeon is flying.  Anne immediately agrees and adds, “Dean, in the front of the bus, 

will be 100 feet past me when Chuck releases the pigeon.  Therefore he will be 100 plus 

150 feet to my right when he catches the pigeon.”   Using this information, Bev stations 

herself down the road at the 250 foot marker.  Now that A & B are ready, Anne gives 

Dean the signal to start the bus rolling down the road toward them.   

Chuck releases the pigeon as he passes Anne.  Bev stares intently at the bus as it comes 

towards her and sees Dean catch the pigeon just as the bus drives by.  At that instant of 

passing, she and Dean simultaneously stop their watches.  Bev excitedly waves to Anne 

that they had correctly calculated the place she needed to be standing to witness Dean 

catch the pigeon. 
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After the experiment, the four friends compare notes.  Bev and Dean have both timed 

the pigeon’s flight as lasting 5 seconds.  Because Bev is standing at a spot 250 feet to the 

right of Anne, the pigeon’s velocity is +50 ft/s with respect to Earth.  C & D see their 

well-trained pigeon fly the length of the bus, 100 feet, with a speed of 20 ft/s, just like 

expected. 

In the next experiment, the pigeon will fly from Dean to Chuck, from right to left.  The 

plan is for Dean to release the pigeon the instant he is adjacent to Anne.  Again A & B 

confer to figure out where Bev needs to stand in order to be adjacent to Chuck when he 

catches the pigeon in the bus. 

Question 1.5:  Where does Bev have to be standing in relation to Anne to be at the 

correct spot to observe Chuck catch the pigeon? 

Bev points out that the bus will travel 150 feet during the 5 seconds it takes the pigeon 

to fly from Dean to Chuck just like in the previous experiment.  Anne agrees but now 

the pigeon is flying in the other direction which makes it harder for her to think about.  

Bev is also having difficulty thinking about the pigeon but then she smiles and points 

out that the pigeon is not really relevant.  “The pigeon flies from the front of the bus to 

the back of the bus, a distance of 100 feet.  During that time, the back of the bus moves 

150 feet, therefore the pigeon gets caught, from our perspective, 50 feet to the right of 

the place it is released.” 

Anne nods slowly.  “When the pigeon is released, I will be standing next to Dean who is 

at the front of the bus.  The rear of the bus where Chuck is sitting is 100 feet to my left.  

While the pigeon flies toward Chuck, the rear of the bus moves 150 feet.  Therefore 

Chuck will be 50 feet to my right when he catches the pigeon.”  Now that A & B agree 

on the spot where Bev needs to be standing, they are ready to test their analysis against 

the actual experiment with the bus. 

Bev stations herself 50 feet to the right of Anne.  The bus comes rolling down the road.  

Dean releases the pigeon as he passes Anne.  Chuck and Bev start their watches.  Just as 

expected, Bev is adjacent to Chuck when he catches the pigeon and both their watches 

read 5 seconds.  But this time Bev is located 50 feet to the right of Anne, making the 

velocity of the pigeon with respect to the Earth +10 ft/s.  Of course, from the perspective 

of C & D, the pigeon’s speed is still 20 ft/s. 
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The four friends review the results of these last two experiments.  After some careful 

thought, they recognize that the results are consistent and make perfectly good sense.  

The pigeon flies in the still air of the bus which is moving at 30 ft/s.  From the 

perspective of A & B, a bus moving at +30 ft/s with “stationary” air inside is analogous 

to a situation in which a pigeon flies when a wind blows from Anne towards Bev at a 

speed of 30 ft/s. 

When the pigeon flies from the back to the front of the bus, the moving bus acts like a 

tail wind.  During each second of flight, it flies +20 feet in the still air of the bus while 

the bus moves +30 feet along the road.  Therefore, from the perspective of A & B, the 

pigeon flaps along at +50 feet every second. 

On the other hand, for the return flight, the motion of the bus is like a head wind.  Each 

second, the pigeon covers -20 feet of bus distance while the bus covers +30 feet of Earth 

distance.  The net distance per second traveled by the pigeon flying from right to left in 

the bus was only +10 feet. 

Before breaking up for the day, Chuck wonders aloud if there is some general principle 

or relationship that could explain the results of the two experiments done with the 

pigeon flying in the bus.  Bev suggests that they sleep on it and meet the next morning 

to compare notes. 

The Addition of Velocities Formula 

The next day, Anne and Bev are anxious to share their thoughts with Chuck and Dean.  

C & D have a handful of papers they want to show A & B, but they let their friends have 

the floor first.  Anne begins by writing down the following two equations: 

+50 = +20 + 30          (1.1) 

+10 = -20 + 30.          (1.2) 

C & D stare at her and the equations with blank expressions.  Finally Dean, who is less 

adept at algebra than his three friends, says that even he recognizes those as “correct” 

equations, but he fails to see their relevance to yesterday’s experiments!  Bev 

impatiently jumps in and explains, “In the first equation +50 is the velocity of the 

pigeon with respect to Earth, or VPE for shorthand, where the P stands for pigeon and 

the E for Earth.  On the other side of the equation we have +20, the velocity of the 

pigeon with respect to the bus, or VPB, and +30, the velocity of the bus with respect to 
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Earth, or VBE.  Therefore, that equation, in terms of the shorthand notation, can be 

written as, 

𝑉𝑃𝐸 = 𝑉𝑃𝐵 + 𝑉𝐵𝐸.”          (1.3) 

Chuck immediately recognizes equations 1.1 and 1.2 are special cases of the more 

general equation 1.3.  The only difference is that in equation 1.2, the velocity of the 

pigeon with respect to the bus, VPB, is - 20 ft/s instead of the +20 ft/s value it has in 

equation 1.1.   

“Exactly!” said Bev. 

Anne summarizes the conclusions that she and Bev have arrived at by writing down a 

more general version of equation 1.3, 

𝑉𝑋𝑌 = 𝑉𝑋𝑍 + 𝑉𝑍𝑌.          (1.4) 

This equation gives the relative velocity of X with respect to Y if the velocities of X with respect 

to Z and Z with respect to Y are known.  Equation 1.4 succinctly explains the results of the 

experiments done with the pigeon and bus.   

The connection between equations 1.4 and 1.3 requires the following associations: X → pigeon, 

Y→ Earth, and Z→ bus.  Later in this chapter, it will be shown that equation 1.4, which relates 

velocities in one reference frame to those in another, encapsulates the pre-1905 concepts of space 

and time. 

Use equation 1.3 or 1.4 to answer the following questions. 

Question 1.6:  Suppose a genetically modified pigeon that can fly 50 ft/s is used in the 

two experiments done on the bus.  As the pigeon flies from Chuck to Dean, what is the 

pigeon’s velocity with respect to Earth?   

Question 1.7:  What is this new pigeon’s velocity with respect to Earth on the return 

flight from Dean to Chuck? 

Question 1.8:  What is the velocity of X with respect to X, VXX? 

Strange question. But the answer leads to a useful identity.  The velocity of X with respect to X 

is a little vague.  To be more specific, what is the velocity of the bus with respect to the bus?  The 
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bus is not moving with respect to the bus so its velocity = 0.  VXX is by definition zero.  But VXX = 

VXY + VYX = 0 which leads naturally to, 

VXY = -VYX. 

This result has already been used when it was pointed out that if the bus travels with a velocity 

of +30 ft/s with respect to Earth, VBE, then the bus riders see Earth traveling past them with a 

velocity of -30 ft/s, VEB.  This argument reaffirms that intuitively reasonable notion. 

A Picture is Worth a Thousand Words 

Chuck and Dean are impressed with the conclusions reached by Anne and Bev.  Now it is their 

turn to share their analysis of the experiments with A & B.  C & D are not as analytically skilled 

as their friends, so they worked on a way to visualize the experiments done with the bus and 

pigeon.  

Chuck shows A & B his effort at drawing a pigeon, figure 1.1.  When A & B look at 

figure 1.1, they begin to giggle.  Chuck tells A & B that the previous night Dean had 

burst out laughing when he looked at the pigeon.  After he stopped laughing, Dean told 

Chuck that that his so-called pigeon could have been a hummingbird or a honey bee for 

that matter.  At first Chuck’s feelings were hurt by his friends comment, but then he 

explained to A & B, that Dean’s remark led to a major breakthrough in his efforts at 

visualizing the experiments.  

Chuck tells A & B that the actual experiment would 

have been the same if it was done with a 

hummingbird or a honey bee instead of a pigeon.  

All that was needed was something that flew from 

the back to the front of the bus.  In fact, the bus 

could have been replaced by an RV or a railroad car 

moving at 30 ft/s. 

Bev and Anne both appear a bit perplexed by Chuck’s statement.  Chuck continues by 

pointing out that in an experiment with a honey bee in a bus, the honey bee would be so 

much smaller than the bus that it could not have been drawn with any detail.  Instead, 

the honey bee would appear as a mere dot moving from one end of the bus to the other. 

From the perspective of C & D as passengers on the bus, the experiment is even more simple.  

They see a pigeon fly across the bus while they remain stationary inside the bus.  Chuck stays at 
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the rear of the bus and Dean at the front.  From their bus-centric perspective, it is A & B that are 

moving past outside the bus.  Therefore, from their perspective, A & B had nothing to do with 

the pigeon’s flight inside the bus.  

With these simplifications in mind, Chuck shows A & B the following sketches, figures 

1.2a, 1.2b, and 1.2c: 

 

Chuck      Dean 

        

  Figure 1.2a 

“That is me on the left with the pigeon, the red dot, and Dean is 100 feet to my right.  

The blue line represents the bus.  Notice that the pigeon has not been released yet.  One 

second after I release the pigeon, the new situation can be represented by an analogous 

picture, figure 1.2b: 

   

  Figure 1.2b 

The pigeon is now 20 feet to my right.  Of course, we have not moved.  Our positions 

are fixed with respect to the bus.  Two seconds after releasing the pigeon, it flies 40 feet.  

After five seconds, Dean catches the pigeon at the front of the bus.  Figure 1.2c 

represents that situation. 

   

  Figure 1.2c 

These sketches helped Dean and I visualize the key five seconds of the experiment.”   A 

& B nod and agree that those sketches do a good job of representing the flight of the 

pigeon on the bus.  

Dean then explains to Anne and Bev that he and Chuck wanted to consolidate the series 

of sketches, each of which represented a particular instant of time, into a single picture 

showing the motion of the pigeon through both space and time. 
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He describes to A & B how he hunched over his sketch pad for a few minutes while 

mumbling about capturing the essence, nothing but the essence of the experiment.  He 

finally decided that the smiling faces in figures 1.2a through 1.2c are cute but not 

essential! 

He shows A & B figure 1.3, the consolidated diagram showing the flight of the pigeon 

through space and time. 

  

Chuck        Dean 

 

      

 

  

Figure 1.3 

Anne comments, “When you said essence, you weren’t kidding.  I see four different 

color arrows; black, blue, red, and yellow.  I assume they each stand for something 

‘essential.’  Please, one of you, explain how this picture captures the flight of the pigeon 

through the bus.” 

Dean defers to Chuck who begins his description:   

“The diagram shows the ‘space’ occupied by me and Dean, in this case the bus, along 

the horizontal direction.  The horizontal black arrow is the space axis.  I am represented 

by the vertical blue arrow and Dean by the yellow arrow.  We are separated by 100 feet 

of space, the length of the bus.  All of the important information about me and Dean are 

contained in those two lines.  They show where we are with respect to the bus during 

the critical five seconds of the pigeon’s flight.  Consequently we decided to call the blue 

line `Chuck’s Worldline’ and the yellow line `Dean’s Worldline.’  The lines are vertical 

because neither of us is moving inside the bus.  For example, if my position in the bus is 

labeled Xbus = 0 then Dean is located at Xbus = 100 feet. 
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“The slanted red line represents the pigeon and is the pigeon’s worldline.  When the 

experiment began at time zero, T = 0 for shorthand, the pigeon was at the rear of the bus 

with me.  That is the point where the pigeon’s worldline intersects my worldline.  When 

I let the pigeon go, the pigeon flies toward Dean.  The pigeon reaches Dean in 5 seconds 

at the spot where their worldlines meet; the place where the red line hits the yellow line.  

Just as space is represented on the diagram in the horizontal direction, time advances in 

the upward direction.  The diagram simultaneously shows the space and time location 

of me, Dean, and the pigeon.   

 

Chuck         Dean 

 

 

 

    

  Figure 1.4 

“Imagine the situation 2.5 seconds after the pigeon is released.  I am at Xbus = 0 and Dean 

is at Xbus = 100 feet.  The pigeon flying at 20 ft/s is halfway between us at Xbus = 50 feet.  

That instant in time is captured by the green horizontal line in the above figure.  That 

line shows the experimental situation exactly 2.5 seconds after the release of the pigeon.  

The intersection of that 2.5 second line with my and Dean’s worldlines shows our 

location in the bus at that time.  Because we are not moving, that information is self 

evident.  On the other hand, the pigeon’s worldline is slanted because it is moving 

through the bus.  The 2.5 second line hits the red line at a unique place in the bus, Xbus = 

50 feet.  So the `distance’ between the horizontal black line, T = 0, and any other 

horizontal line drawn above it, represents the amount of time that has passed since the 

start of the experiment.” 

Chuck stops talking and looks at Anne and Bev.  Bev speaks first, “So if I understand 

what you are saying, the horizontal black arrow marks position with respect to the bus.  

You are at Xbus = 0 and Dean is at Xbus = 100 feet.  But that line only represents your 

location at the start of the experiment.”  At this point, Anne reminds Bev that the 
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experiment starts at T = 0; therefore, the horizontal black line is the T = 0 line and the 

horizontal green line is the T = 2.5 second line.  

Bev continues, “So in Figure 1.4, the forward march of time is represented by a 

horizontal line that continuously slides upward.”  She grimaces a little before 

proceeding.  “So at any particular time, Dean is at the spot on the diagram that 

corresponds to the intersection of a `time line’ with his worldline.”  Smiling she adds, “I 

can almost picture Dean’s motion through time as a smiling face sliding up his 

worldline.”   

These “space and time” diagrams, or spacetime diagrams for shorthand, are going to play a 

central role in the analysis of space and time in later chapters.  Take time to become comfortable 

with the idea that a single spacetime diagram captures the flow of events through time.  In figure 

1.3, the blue line, Chuck’s worldline, represents his motion through space and time.  He is not 

moving through the space of the bus since he stays at the rear but he cannot help but move 

through time.  Dean’s worldline is completely analogous to Chuck’s.  On the other hand, the 

pigeon is moving through both space, from the rear to the front of the bus, and time, the five 

seconds it took the pigeon to traverse the length of the bus.  Since it is impossible to stop time, the 

various actors depicted on a spacetime diagram will never be completely stationary.  At the very 

least, they will be moving up the spacetime diagram, going from earlier to later times. 

Anne and Bev acknowledge that, while the space and time diagram drawn by Chuck 

captures the essence of the experiment from the perspective of Chuck and Dean, they 

saw a somewhat different experiment.  From their perspective, the bus, with C & D and 

the pigeon riding along, rolls down the road at 30 ft/s.  C & D are prepared for A & B’s 

comment and after a second or two of searching, show them figure 1.5. 

Anne  Chuck Bev  Dean 

 

      Figure 1.5 
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Chuck explains that, as before, the horizontal black arrow represents T = 0, the start of 

the experiment.  But it no longer shows locations on the bus but instead shows where 

Anne and Bev are with respect to Earth.  The heavy blue and yellow lines are Anne and 

Bev’s worldlines.  Those lines are vertical because they are not moving with respect to 

Earth.  The worldlines of the pigeon, Dean, and him are the same as before, red, yellow, 

and blue.  Those worldlines are all slanted because they are moving with respect to 

Earth.  The intersection of each worldline with the T = 0 line gives the location of that 

participant in the experiment with respect to Earth at T = 0; Anne, Chuck, and the 

pigeon are at XEarth = 0, Dean is at XEarth = 100 feet, and Bev is waiting at XEarth = 250 feet. 

Question:  1.9:  Imagine drawing the T = 1 second line on figure 1.5.  At that instant, 

what are the XEarth locations of Anne, Chuck, the pigeon, Dean, and Bev? 

Question 1.10:  Make a sketch analogous to figure 1.3 that shows the worldlines of 

Anne, Chuck, the pigeon, Dean, and Bev from the perspective of the bus observers.  

Remember C & D see the Earth “rolling” by at -30 ft/s and the horizontal black line on 

this spacetime diagram represents locations with respect to the bus, Xbus, instead of 

XEarth. 

Chuck asks Anne and Bev what they think of the spacetime diagrams.  A & B 

immediately acknowledge that the diagrams really help to visualize the experiment 

with the bus traveling down the road while a pigeon flies from one end of the bus to the 

other.  With relative velocities and spacetime diagrams to think about, they decide to 

call it a day; a very productive day at that.  

On the walk home, Anne wonders aloud if there is a connection between the spacetime 

diagram in figure 1.5 and equation 1.4, 𝑉𝑋𝑌 = 𝑉𝑋𝑍 + 𝑉𝑍𝑌, the relative velocity equation.  

Bev shrugs indifferently, and continues walking home at a brisk pace. 

The Galilean Transformation Equations 

This may be a good place for readers who have not thought much about graphs recently to review 

Appendix A, a primer on graphs.  The appendix has a short discussion of the equation y = mx + b 

which represents a straight line with slope m and y-intercept b.  Understanding the role m and b 

play will be useful in later chapters and becoming comfortable with graphs will pay immediate 

dividends in this chapter. 
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When they arrive home, Anne reproduces figure 1.5 and stares at it for a while.  She 

points out to Bev that the diagram is really a graph though not the typical x versus y 

graph seen in algebra classes.  Anne says, “If we think of the diagram as a graph, the 

black horizontal line that Chuck calls T = 0 is also the XEarth-axis.”  Bev nods, and Anne 

continues, “My worldline on figure 1.5 is the XEarth = 0 line and also the time axis of a 

graph.  So Bev, Chuck’s spacetime diagrams are actually x versus t graphs.” 

To emphasize this new perspective, Anne makes the following sketch, figure 1.6: 

 

 

 

 

  

Figure 1.6 

She explains to Bev that this is the start of a spacetime graph.  The horizontal line is the 

x-axis and the vertical line is the t-axis.  The axes intersect at the origin where x = 0 and t 

= 0.  Bev, knowing that Anne is off and running, tries to slow her down by pointing out 

that the x-axis is also the t = 0 line and that the t-axis is the same as the x = 0 line.  “Of 

course”, says Anne, “but notice that the graph represents our entire one-dimensional 

universe!”    

Anne continues her explanation, “When something happens, for example the pigeon 

gets caught by Dean riding at the front of the bus, that something is called an event.  

Events happen at a particular spot and a particular time.  Dean caught the pigeon at the 

spacetime point XEarth = 250 feet and T = 5 seconds.  That event has a unique location on 

the spacetime graph given by the intersection of the XEarth = 250 foot and T = 5 second 

lines.  Any event in the past or future that happened or will happen is represented by a 

point on a graph like figure 1.6.” 

 Bev stares with renewed interest at the cosmic scope of innocent looking figure 1.6.  

Anne gives Bev a little time to reflect before adding, “The x-axis in figure 1.6 could be 

either XEarth or Xbus depending on who the stationary observers happen to be.  Once that 
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decision is made, it is possible to add the worldlines of the various participants in the 

experiment and to determine how large a slice of space and time is necessary to have 

those worldlines fit on the graph.  For example, if figure 1.6 is drawn from our 

perspective, the space slice had to include the 250 feet separating us while the time slice 

required 5 seconds for the pigeon to fly across the bus.  On the other hand, only 100 feet 

of bus space was needed for the spacetime diagram in figure 1.3.” 

Anne adds the worldlines of Chuck and Dean to her spacetime graph, figure 1.7, and 

reminds Bev that Chuck’s worldline corresponds to the constant Xbus = 0 line while 

Dean’s to the constant Xbus = 100 foot line.  But those worldlines are slanted on our 

spacetime graph because the bus is moving them at +30 ft/s. 

    Anne     Chuck    Dean 

 

 

 

  

Figure 1.7 

Question 1.11:  Fill in the following table showing how XEarth for Chuck and Dean 

change with time. 

Time 0 s 1 s 2 s 3 s 4 s 5 s 

XEarth for Chuck       

XEarth for Dean       

 

Chuck’s worldline is described by the equation XEarth = 30 T feet while Dean’s is given by XEarth = 

100 + 30T feet.  Note that when T = 0, Chuck is at XEarth = 0 while Dean is at XEarth = 100 feet just 

as expected.  But XEarth for each of them increases by 30 feet each second, that increase is the 30 T 

term in the equations for their worldlines.  The answers to question 1.11 ought to agree with 

those equations when T = 0, 1, 2, 3, 4, and 5 seconds. 

Bev now takes over the conversation by making the following observation;  “Every 

location in the bus reference frame is given by some value Xbus which can be drawn as a 
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constant Xbus line of our spacetime graph, figure 1.7.  On your sketch, you drew the 

particular constant Xbus lines for 0 and 100 feet and those slanted lines crossed the XEarth 

axis, the T = 0 line, at 0 and 100 feet respectively.  As you pointed out earlier, any point 

on our spacetime graph can be described by the unique pair of values XEarth and T.  For 

example Dean caught the pigeon at XEarth = 250 feet and T = 5 seconds.  But that point is 

also uniquely determined by the intersection of the Xbus = 100 feet and T = 5 second 

lines.” 

Anne agrees, and writes down the more general equation,  

XEarth = Xbus + 30 T,          (1.5) 

where XEarth shows how any constant bus location, Xbus moves through the Earth frame.  

The 30 in that equation is just the velocity of the bus with respect to Earth.  Equation 1.5 

connects the Earth-based coordinates, XEarth and T, to the bus-based coordinates, Xbus and 

T, for any event.   

Question 1.12:  A passenger sitting in the middle of the bus, Xbus = 50 feet, sees the 

pigeon pass at T = 2.5 seconds.  What is the Earth coordinate, XEarth for that event? 

Question 1.13:  When Dean catches the pigeon, Anne claps her hands in glee.  Where is 

the bus observer who is adjacent to Anne when she clapped her hands?   (Anne is 

located at XEarth = 0 and the pigeon gets caught at T = 5.) 

The bus is located between Xbus = 0 and Xbus = 100 feet but we need to be able to imagine bus 

observers outside of that range because some experiments will require bus observers who are not 

actually on the bus!  The bus observer who is adjacent to Anne when she clapped is riding 150 

feet behind the bus at Xbus = -150 feet! 

The bus is pushing observers along in front who have bus coordinates greater than 100 feet and 

is dragging others behind with bus coordinates less than zero.  As Chuck brought up earlier, the 

important thing about the “bus” observers is the fact that they are moving at +30 ft/s with 

respect to Earth observers.  Instead of riding on a 100 foot long bus, we could have had them 

riding on a mile long stretch of railroad cars.  That would have given our moving observers a 

longer bit of space on which to arrange themselves.  But since imagination is a prerequisite for 

making any sense of Special Relativity, we will stick to our 100 foot long bus with observers 

being pushed or pulled along as necessary. 



26 
 

Anne is now ready to think about the pigeon flying in the bus.  The pigeon starts at Xbus 

= 0 and flies with a velocity of VPB, where VPB for the experiment we did was +20 ft/s.  

The location of the pigeon with respect to the bus is just Xbus = VPB T.  Analogously, the 

position of the pigeon with respect to Earth is just XEarth = VPE T.  Remember the pigeon 

started flying at XEarth = 0.  Now she replaces XEarth and Xbus in equation 1.5 with VPE T and 

VPB T to get, 

VPE T = VPB T + 30 T.           (1.6) 

Dividing equation 1.6 by T gives VPE = VPB + 30.  But the 30 in that equation is just the 

velocity of the bus with respect to Earth, VBE,  

VPE = VPB + VBE.          (1.7) 

Bev is duly impressed with Anne’s demonstration of the connection between the 

addition of velocity equation and spacetime graphs.  She gives Anne a well-earned hug.  

Now they are both ready to call it a night though they look forward to sharing their 

new insights into space and time with Chuck and Dean. 

In the general case of a bus moving with a velocity VBE with respect to Earth, equation 1.6 

becomes, 

XEarth = Xbus + VBE T.          (1.7) 

That equation connects the Earth-based coordinates, XEarth and T, of any point on spacetime 

graph with the bus-based coordinates, Xbus and T, for the same point. Equation 1.7 is called the 

Galilean Transformation equation because it transforms Earth-based into bus-based coordinates.   

Technically the extra equation, TEarth = Tbus = T, is needed to complete the Galilean transformation 

of coordinates.  But the uniformity of time was so embedded in human consciousness pre-1905, 

that including it seemed redundant. 

Summary of Chapter One 

The important things learned by our four friends are listed below: 

The Principle of Relativity and the Isotropy of Space   

 No experiment can differentiate between the lab on the bus moving at constant velocity and the 

lab attached to Earth.  Results of an experiment are independent of the orientation of the 

apparatus used to do the experiment.  This pair of conclusions was tested by measuring the 
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velocity of the pigeon flying from left to right and back again in still air with respect to Earth, 

and comparing those results to the velocity of the pigeon flying in the bus from back to front and 

then from front to back.  The two sets of experiments gave exactly the same results. 

Space and Time pre-1905 

The space and time of Galileo, Newton, and all physicists prior to 1905 is accurately summarized 

by the experiments and conclusions reached by Anne, Bev, Chuck, and Dean in this chapter.  

The relative velocity equation derived by Anne, VPE = VPB + VBE, Chuck’s spacetime graphs, and 

the transformation equation, XEarth = Xbus + VBE T, are three separate but equivalent ways of 

characterizing the space and time of this era. 
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Chapter Two:  The Speed of Light 

The speed of light was measured in a series of experiments around 1850 by Hippolyte Fizeau, a 

French physicist.  The history of efforts to measure the speed of light is worth pursuing, but 

doing that now would be a distraction.  The primary thing to understand is that the speed of 

light is very, very large.  Light traveling in a vacuum covers 300,000,000 (3 x 108) meters in a 

second or equivalently 186,000 (1.86 x 105) miles in a second.  As David Mermin points out in 

his delightful book It’s About Time, this speed is very close to 1 foot in a nanosecond (ns), a 

billionth (10-9) of a second.  (For those of us living in a metric-challenged society, that 

coincidence is so fortuitous, that I have decided to use feet instead of meters as the standard of 

distance in this book.  The actual value for the speed of light in feet is 0.98 ft/ns.  A mere 

difference of 2% was not enough to deter me from using 1 ft/ns for the speed of light throughout 

this book!) 

Note that some of the numbers in the above paragraph were slyly written in scientific notation.  

Though it is not necessary to understand scientific notation, a short primer on scientific notation 

is given in Appendix B at the end of the book.  This appendix ought to be helpful to people who 

are not so familiar with this useful way of dealing with large and small numbers. 

Aside:  It is very useful to be able to change the units used to describe the speed of light.  For 

example, to find the speed of light in terms of feet/second, start with the speed in miles/second, 

186,000 miles/second.  Use the fact that one mile is equivalent to 5280 feet, 1 mile = 5280 feet.  

This means that the ratio, 

5280 𝑓𝑒𝑒𝑡

1 𝑚𝑖𝑙𝑒
= 1. 

Any expression can be multiplied by one without changing it.  To change the miles in 186,000 

miles/second to feet, multiply that speed by 
5280 𝑓𝑒𝑒𝑡

1 𝑚𝑖𝑙𝑒
 .  The mile units cancel leaving feet in its 

stead.  Next multiply 186,000 by 5280 to get 982 million.  This shows that 186,000 miles/second 

is equal to 982 million ft/s which was rounded off to 109 ft/s or 1 ft/ns.  In Chapter Four, the 

useful trick of multiplying an expression by 1 will be used to simplify algebraic expressions. 

The speed of light is so large that under normal circumstances the time it takes light to travel 

from here to there is “essentially” zero.  For example, the rule for estimating how far you are 

from a lightning strike states that for every five seconds of time between seeing the flash and 

hearing the resulting thunder corresponds to a separation of one mile.  If you hear the thunder 10 

seconds after seeing the lightning, the bolt hit 2 miles away.  This useful rule comes from the fact 
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that sound travels at about 1000 ft/s and a mile is 5280 feet.  The assumption is that the flash 

arrives instantaneously so for each second you count off between seeing the flash and hearing the 

thunder, the sound travels 1000 feet.  Of course if sound traveled faster than light, you would 

hear the thunder first and see the flash second! 

The time it takes the flash from a lightning strike to cover one mile is 1mile/(186,000 miles/s) or 

about 5 millionths (5 x 10-6) of a second.  Obviously, our senses are totally incapable of noticing 

times that small. 

During the same period that Fizeau and others were doing careful experiments to accurately 

measure the speed of light, Clerk Maxwell, an English physicist was codifying all the assorted 

phenomena involving electricity and magnetism into a set of four equations, now known as 

Maxwell’s equations.  At that time, no one, including Maxwell, expected there to be any 

connection between light and electric and magnetic phenomena.  But around 1860, he showed 

that electric and magnetic fields can travel as linked waves, electromagnetic waves, and the 

predicted velocity of these waves was given in terms of two well known physical constants, the 

permittivity, ε0, and permeability, μ0, which had no apparent connection to light or its speed.  

(The permittivity is a constant that shows up in the equation used to find the magnitude of the 

electric force between two point charges while the permeability is a constant that connects the 

current in a wire with the magnitude of the resulting magnetic field that surrounds the wire.)  

But when Maxwell calculated the speed of his “electromagnetic waves” by using the known 

values for ε0 and μ0 he found the speed eerily close to the known speed of light prompting him to 

observe: 

“The agreement of the results seems to show that light and magnetism are affections of the same 

substance, and that light is an electromagnetic disturbance propagated through the field 

according to electromagnetic laws.[1]” 

The historical evolution of our understanding of the nature of light is another curious story that 

would take us far afield from our main goal.  But note that Maxwell speaks about light being a 

disturbance propagated through a substance which is just another way of saying light is a wave 

traveling through a medium, the lumeniferous ether.    

The question of whether light is a wave or a particle also has a fascinating history.  It turns out 

that the question is unanswerable because the behavior of light is particle-like under some 

circumstances and wave-like under others.  Instead of trying to categorize light with labels like 

particle or wave, think of light as the stuff that behaves light-like.  In this book, picture a flash of 

http://en.wikipedia.org/wiki/James_Clerk_Maxwell#cite_note-mactutor-44
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light as something produced by a laser being turned on and off very quickly.  For example, if the 

laser is on for 1/10 a nanosecond, the flash is 1/10 of a foot long, about an inch.  So laser flashes 

in this book are short enough to be considered “objects” that travel in straight lines at 1 ft/ns.  

For experiments done over distances of 100 feet or so, a flash one inch long is short enough to 

qualify as a “particle of light.” 

One last point, in 1983 scientists decided to define the speed of light to be exactly 299,792,458 

meters/second.  This changed the speed of light from an experimentally determined quantity to 

one that had a fixed value.  Previously, the meter was defined as the distance between two scratch 

marks on a bar in a Paris vault.  This change was made because scientists are able to measure 

time much more accurately than distance.  With this definition for the speed of light, a meter 

became the distance light traveled in 1/299,792,458 of a second instead of the distance on that 

Parisian bar!  This change has no impact on the conclusions reached by our intrepid explorers of 

space and time in Chapter Three, when they experimentally determine the speed of light.  

 

 

1. James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Philosophical 
Transactions of the Royal Society of London 155, 459-512 (1865). 

  

http://en.wikipedia.org/wiki/A_Dynamical_Theory_of_the_Electromagnetic_Field
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Chapter Three:  Space and Time After 1905 

A New Set of Experiments are Proposed 

The space and time explorers took off for a few days to enjoy their triumph over 

Galilean space and time in Chapter One.  By their third day of chilling, Dean was 

getting restless and reminded them that the experiments with the pigeon and bus were 

just precursors to the more challenging experiments they needed to do with the pigeon 

being replaced by something moving at much larger speeds.  After all, if they want to 

understand the space and time of Einstein they need an object moving at or near the 

speed of light.  

Bev suggests that they cut to the chase and use a flash of light as the object to replace 

the pigeon.  After all, they will be hard pressed to find anything else that can approach 

the speed of a light flash.  Her friends agree. 

New Stop Watches are distributed 

The stop watches used in Chapter One will be of little use when trying to measure the speed of 

light.  Remember that those watches read times to 1/10th of a second.  In 1/10th of a second light 

travels 30 million meters or 18,600 miles or 100 million feet -- a distance larger than 2/3 the 

circumference of Earth. 

New state-of-the-art stop watches are distributed to Anne, Bev, Chuck, and Dean.  These new 

watches are accurate to 1/10th of a nanosecond (10-10 seconds).  In order to take full advantage of 

these cutting edge watches, they will need reactions times of 1/10th a nanosecond or better!  

Although real people or stop watches for that matter cannot be this accurate, it is easy enough to 

imagine well-trained genetically engineered observers with extremely accurate stop watches.  

Those people with the aforementioned stop watches are going to be doing experiments through 

much of the rest of the book.  The experiments they perform are in the parlance of Einstein, 

“gedanken” experiments, or thought experiments.  Though the experiments cannot be done as 

described because of human and technological limitations, the results of the experiments are 

completely consistent with the current scientific understanding of space and time. 

Anne and Bev Measure the Speed of Light 

Anne and Bev requisition a laser that can be turned on and off in 0.1 ns.  The light flash 

produced is 0.1 foot long, or about one inch.  Their plan is to measure the speed of the 

light flash in a manner analogous to the method used to measure the speed of the 
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pigeon.  Consequently Bev walks to the 100 feet marker on the road while Anne 

remains at the zero foot mark.  Bev stares intently at Anne and is ready to start her 

watch as soon as she sees Anne press the button on the laser that will start the one inch 

bit of light zooming toward her.  She is standing next to a screen that will flash the 

instant the light arrives signaling her to stop her watch. 

Anne presses the button and hears Bev exclaim, “RATS, I must not have been 

concentrating intently enough.”  Bev pulls herself together and tells Anne she is ready.  

Anne launches another light flash and Bev screams, “DOUBLE RATS!” 

Anne walks over to Bev to find out what is causing her such consternation.  Bev tells 

Anne, “Both times the light hit the screen at the same instant that I saw you press the 

button.  It took NO time for the light to travel 100 feet.” 

Anne reminds Bev that light travels 1 foot in a nanosecond.  Therefore it ought to take 

light 100 ns to cover the distance between us.  She says to Bev, “We have been endowed 

with extraordinary reflexes and have the very best stop watches available that allow us 

to make measurements accurate to 0.1 ns.  There is absolutely no reason why we cannot 

do this simple experiment!” 

Chuck, who has been standing by watching quietly, suddenly yells out, “Experimenting 

with light is going to be trickier than we thought.”  Anne, Bev, and Dean 

simultaneously look at Chuck waiting for him to elaborate.   Chuck is happy to oblige 

his friends; “Bev is watching Anne and waiting for her to press the button that sends 

the light flash on its way.  The reason Bev can see Anne is because light is traveling 

from Anne to Bev.  If it were pitch black outside, Bev would not even be able to see 

Anne let alone see her press the button.  The image of Anne starting the laser pulse on 

its way travels to Bev at the speed of light, the same speed as the light flash.  Therefore 

Bev `sees’ Anne press the button at the same instant the light hits the screen.” 

The four friends sit down at a picnic table and mull over this difficulty in experimenting 

with objects moving at light speeds.  Chuck points out that the same situation was 

taking place during the experiment with the pigeon.  The image of Anne releasing the 

pigeon took 100 ns to reach Bev.  So under the best of circumstances, Bev was starting 

her stop watch 100 ns late.  But that late start had no discernible bearing on the time she 

measured for the pigeon to fly from Anne to her because 5 seconds – 100 nanoseconds = 

4.9999999 seconds.  This time appeared as 5.0 seconds on their old watches which were 
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only accurate to tenths of a second.  But this “error” will be a problem any time they try 

to apply this method to objects moving at or near the speed of light.  Chuck suggests 

that in all future experiments each of them only pay attention to readings on their watch 

and to events in the space immediately adjacent to them to avoid the “light travel time 

problem.”  

Meanwhile Anne has been pacing around and mulling over the timing problem.  She 

looks at her watch and starts and stops it a few times.  Finally she calls her friends over 

to make the suggestion that saves the day.  “Bev and I need to start our watches before 

the start of the experiment.  We can do this by standing side-by-side when we start 

them.  This eliminates the “light travel time problem.” After starting them, we amble off 

to our stations 100 feet apart just like before except now we have running watches that 

have been synchronized.  At the instant I press the button on the laser, I simultaneously 

read the time on my watch, TAnne.  Then Bev records the time the flash arrives as TBev.  

Afterwards we calculate the time difference, TBev – TAnne, which is just the time it took for 

the flash to travel 100 feet.”  Chuck thinks Anne’s idea is brilliant. 

In the future, observers in the Earth or bus-frames will record the time that events happen at 

their fixed location in space.  A & B and C & D will synchronize their watches using the method 

described by Anne.  Before the start of any experiment, A & B will meet to synchronize their 

watches.  C & D will meet on the bus as it travels towards A & B to synchronize their watches.  

All the observers will have watches that are running before the start of any experiment. During 

the experiment, each observer will be responsible for recording the time that events happen in his 

or her neighborhood.  After the experiment is over, these local measurements will be shared to 

form a comprehensive view of the events that took place. 

Now Anne and Bev redo the experiment with the light flash traveling from left to right.  

When they compare stop watch times, they discover that TAnne – TBev = 100 ns just like 

expected.  Anne gives the laser to Bev and they repeat the experiment with the light 

traveling from right to left.  Bingo, again the light took 100 ns to travel 100 feet.  So the 

speed of light was the same whether it traveled from Anne to Bev or Bev to Anne. 

In the late 19th century, Michelson and Morley, American physicists, did very careful 

experiments to determine the speed of Earth with respect to the lumeniferous ether.  The basic 

idea was that as Earth orbited the sun, its velocity with respect to the ether would change.  

Therefore at any given time, from the perspective of a stationary Earth, there would be an 
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“ether” wind blowing in some direction over Earth’s surface.  Consequently, Michelson and 

Morley expected to measure different speeds for light depending on how light was traveling with 

respect to the ether wind.  Remember A & B did analogous experiments when they measured the 

speed of the pigeon flying with and against the wind that blew from Anne toward Bev. 

Michelson and Morley, through a series of careful experiments stretching over years, failed to see 

any effect on the speed of light due to the motion of Earth through the ether.  From their result, it 

appeared that nature conspired to make the existence of the ether immune to experimental 

verification.  As other physicists invented various schemes to explain this failure to detect the 

ether, Einstein decided on a more radical solution.  He banished the lumeniferous ether to the 

dust bin of failed ideas.  His explanation was that light propagated through empty space which 

made it very different and much stranger than all the other sorts of waves scientists had 

previously encountered, all of which traveled through a material medium. 

The Super Bus Rolls into the Story 

The bus used by Chuck and Dean in Chapter One is woefully inadequate to help during 

experiments with the laser.  It takes light 100 ns to traverse the length of a bus 100 feet long.  

During the time it takes the flash to move 100 feet, the bus, moving at +30 ft/s with respect to 

Earth, would cover 30 ft/s times 100 ns (10-7 seconds) = 30 x 10-7 feet = 3 x 10-6 feet (3 millionths 

of a foot!).  From the perspective of light, a bus moving 30 ft/s is stationary! 

If our intrepid explorers of space and time want to study the speed of light in a 

reference frame moving with respect to A & B on Earth, the moving frame will have to 

have a speed comparable to the speed of light.  Consequently, Chuck and Dean order a 

new “super bus” capable of zipping smoothly down the road at constant speeds up to 
9

10
 the speed of light or 0.9 ft/ns.  This new bus is exactly 100 feet long just like the 

original one.  C & D borrow the laser from A & B and trade-in their old stop watches for 

the new more accurate ones. 

The old rulers did not have to be upgraded because they were and are still good enough to 

measure the length of the bus accurately. 

Question 3.1:  A & B are surprised one day to see a rogue bus come rumbling down the 

road towards them.  They see the bus soon enough to be able to synchronize their 

watches and station themselves along the road.  The bus passes them and continues 

down the road out of sight. 
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Describe a method that A & B can use to measure the length and velocity of the rogue 

bus as it speeds through their reference frame.  This question will be addressed later in 

this chapter in the section entitled The Effect of Motion on Space. 

The plan for the bus-based experiment is straightforward.  C & D will drive down the 

road at 
3

5
 the speed of light, 0.6 ft/ns.  While moving at a constant velocity with respect 

to Earth, Chuck and Dean will measure the speed of light inside the bus; first for a flash 

going from Chuck to Dean and then again for a flash going in the opposite direction, 

from the front to the rear of the super bus.  They will synchronize their watches by the 

same method used by Anne and Bev.  A & B sit down and watch as the bus heads down 

the road, turns around, and rumbles by with C & D inside measuring the velocity of 

light.  In no time flat, C & D are back to share the results of the bus-based measurements 

of the speed of light. 

Chuck summarizes their results for A & B, “When the laser flash traveled from the rear 

of the bus to the front, I noted the time, TChuck, when I pressed the button on the laser.  

Then Dean wrote down the time, TDean, that the flash arrived at the front of the bus.  

Using those times, we found the transit time for light, TDean – TChuck = 100 ns.   Then we 

repeated the experiment for a flash moving in the opposite direction and got an 

identical time difference, 100 ns.  So for light moving in either direction, the speed of 

light was the same on the moving bus as it was on Earth.” 

No one is surprised by this result because it is consistent with the results they got using 

the pair of pigeons in Chapter One.  The speed of the pigeon was the same on the bus as 

it was flying between A & B while standing on the ground.  Also the speed did not 

depend on whether it was flying left to right or right to left.  Our four friends decide to 

call it quits for the day, satisfied that they are making good progress in understanding 

space and time.  Before heading home, they agree to meet early the next morning for 

another round of experiments. 

The fact that the experiment on the bus with the light flash reproduced the results of the 

experiment done on Earth is another confirmation of the Principle of Relativity.  Also because 

the speed of light in both cases did not depend on the direction of the light flash, these 

experiments add credence to the notion that space is isotropic. 
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The next day, Anne wants Chuck and Dean to redo the experiment with the laser on the 

bus.  But this time, she and Bev will also collect data as the light flash travels from the 

rear to the front of the moving bus. 

Chuck, thinking about his spacetime graphs, points out that this is a more complicated 

experiment because it involves observers in two different reference frames.  The two 

experiments done the previous day only involved observers in a single reference frame: 

first A & B on Earth and then he and Dean in the bus.   

Because of this added complication, Chuck suggests that they carefully go over the 

details of the experiment before actually having the bus zip by at 0.6 ft/ns.  After all, it 

takes quite a bit of fuel to get the bus up to that speed so they ought to make sure they 

get it right the first time they try. 

Anne and Bev Observe the Light Flash on the Bus:  I 

Chuck writes down what each of them will do during the experiment.  When he is 

finished, he shares his list with his friends: 

1. Anne and Bev will synchronize their watches before the start of the experiment.   

C & D will synchronize their watches on the bus while it zips toward A & B at 0.6 

ft/ns.  Chuck will be at the rear of the bus, Xbus = 0 and Dean will be at the front, 

Xbus = 100 feet. 

2. The experiment will begin when Anne, standing at XEarth = 0, and Chuck pass one 

another.  At that precise instant, Chuck launches the light flash and he and Anne 

record the times on their watches.  Those times are TChuck and TAnne.  

3. When the light flash reaches Dean, he will be adjacent to Bev.  They will check 

their respective watches to note the time the flash arrived.  Those times will be 

recorded as TDean and TBev. 

Chuck’s outline of the upcoming experiment meets with general agreement.  Anne 

heads to the XEarth = 0 spot while C & D board the bus and begin to go over their 

checklist.  Bev begins to move off down the road but comes to a confused stop.  Then 

she yells out in a voice loud enough for everyone to hear, “Where I am supposed to 

stand so that I will be next to Dean at the front of the bus when the light flash arrives?” 
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Question 3.2:  Using what our friends learned about space and time in Chapter One, 

how far to the right of Anne should Bev stand so that she is adjacent to Dean when the 

light flash arrives? 

Chuck reviews his pre-experiment instructions and reluctantly admits that a crucial bit 

of information was missing.  Namely, Bev’s location so that she will be standing at just 

the right spot on the road to be adjacent to Dean just as the light flash reaches the front 

of the bus. 

Anne points out that she and Bev have done this sort of thing before when they 

observed the pigeon flying from one end of the bus to the other.  She mumbles to 

herself.  “According the experiments done by C & D the previous day, the light flash 

will take 100 ns to cross the bus.  During those 100 ns, the bus moves 60 feet down the 

road.  Therefore the flash moves the length of the bus plus an extra 60 feet, for a total of 

160 feet.  Bev, you need to be standing 160 feet to my right.”  Bev nods in agreement. 

After this careful preparation, Chuck and Dean board the bus, drive down the road, 

turn around, and head toward A & B ready to begin the experiment.  At the instant 

Anne is adjacent to Chuck the laser flash begins its trip to the front of the bus.  She and 

Chuck both record the times on their watches, TAnne and TChuck.  Bev, waiting anxiously 

160 feet down the road, is horrified when the bus passes her before the light flash has 

gotten to Dean!  Dean, intently waiting for the flash to arrive, does not see the bus zip 

by Bev.  At the instant the flash arrives, he looks out the window expecting to see Bev 

but instead sees the 200 foot marker along the side of the road! 

Anne and Bev wait for Chuck and Dean to return so the four of them can try to figure 

out what went wrong with the experiment.  As soon as C & D step out of the bus, A & B 

ask them what happened.  Dean looks bewildered by the turn of events but Chuck is 

ready to defend their experimental skill.  Chuck says, “From the perspective of the bus, 

everything went perfectly.  The light flash took exactly 100 ns to go from the back to the 

front of the bus.” 

A & B shake their heads and disagree with Chuck’s rosy assessment of the experiment.  

Everything could not have gone perfectly because Bev, who was standing exactly at the 

160 foot marker on the road, saw Dean pass before the light flash arrived!  Chuck now 

admitted that there was one strange bit of evidence that he had not mentioned, namely 

that Dean thought he was next to the 200 foot road marker when the light flash arrived.  



38 
 

0

20

40

60

80

100

0 20 40 60 80 100

T 
B

u
s 

in
 n

an
o

se
co

n
d

s 

 X Bus in feet  

Figure 3.1a Dean Chuck 

Flash 

“Impossible,” exclaim 

A & B simultaneously!  

Dean defensively 

asserts, “I know what I 

saw.  And I also know 

what I did not see.  

Instead of Bev, I saw 

the 200 foot marker.” 

Anne points out that 

there is little to be 

gained by arguing.  

Clearly, although these 

experiments are 

expensive to do, this 

one has to be repeated.  

Chuck suggests they 

review the information gleaned from their first experiment before repeating it.  This 

makes good sense to everyone. 

The failure of this simple experiment with the bus and light flash to confirm the Galilean nature 

of space and time marks the beginning of the development of the space and time introduced by 

Einstein in 1905.  Our four experimenters are about to redo the experiment more carefully.  In 

the process they will make some measurements of time.  The data collected from this single 

simple experiment will be enough to develop the complete theory of Special Relativity. 

While his three friends grab a bite to eat, Chuck draws the careful spacetime graph, 

figure 3.1a, which summarizes the experiment from the perspective of Dean and him, 

the bus riders.  The experiment began at Tbus = 0 when he pressed the button that started 

the light flash zipping toward Dean, the blue worldline at Xbus = 100 feet on figure 3.1a.  

Exactly 100 ns later, Dean’s screen recorded the arrival of the flash, the red worldline.  

Dean is exactly 100 feet to his right.  Everything about figure 3.1a makes perfect sense. 

Notice that on the graph drawn by Chuck, each box is 20 feet long and 20 nanoseconds high.  

This means that light traveling at 1 ft/ns moves 20 feet, one box to the right, in 20 ns, one box 

up.  All the spacetime diagrams in the remainder of the book will have space and time scales that 
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make the slope of the worldline of a light flash either +1 for light moving toward the right or -1 

for light moving toward the left. 

One other point: the experiment starts when Chuck passes Anne. At that instant, their watches 

read TChuck and TAnne respectively.  When the experiment is over, all the bus observers, including 

Chuck, subtract TChuck from whatever times they recorded for events at their location during the 

experiment.  This adjustment shifts the bus starting time for the experiment from TChuck to zero.  

Analogously, all the Earth observers subtract TAnne from their recorded times.  These adjustments 

in time make the starting time for each experiment zero according to both sets of observers.  This 

allows us to continue calling the starting time for every experiment T = 0. 

 Chuck, on the assumption that Dean did see the 200 foot road marker outside his 

window just as the 

flash arrived, 

decides to add the 

worldline for that 

road marker to the 

spacetime graph.  

From the perspective 

of the bus, that 

marker had a 

velocity of -0.6 ft/ns.  

So it traveled 60 feet, 

right to left, during 

the 100 ns it took the 

flash to cross the 

bus.  Since the bus is 

100 feet long, that put the 200 foot road marker 160 feet to the right of Chuck.  The 

worldline for the marker is shown as the purple dashed line on figure 3.1b.  Chuck rubs 

his eyes, frowns, and mumbles to himself, “This is very perplexing.”   

Question 3.3:  From the perspective of the bus riders, figure 3.1b, how far in front of 

Chuck is the 200 foot road marker at the start of the experiment, Tbus = 0? 

Question 3.4:  Anne is adjacent to Chuck at the start of the experiment.  At that instant, 

from her perspective, how far in front of Chuck is the 200 foot road marker?   
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The answers to these questions, though weird, are as simple as they seem! 

Anne, Bev, and Dean come strolling over to Chuck.  “What are you staring at?” asks 

Dean.  He shows his three friends figure 3.1b and explains that it contains all the data 

collected from the experiment.  Chuck points to the worldline of the road marker, 

“Notice that from my perspective on the bus, that marker is 160 feet away at the start of 

the experiment.  But Anne, who was right next to me when the experiment began, 

would insist that the 200 foot marker is 200 feet in front of her!  How can the same 

marker be 160 feet from me and 200 feet from her?”  Because he was asking a rhetorical 

question, he did not expect an answer nor did he receive one! 

Finally Dean, who actually saw the 200 foot road marker outside his window when the 

laser flash arrived at the front of the bus, suggests they redo the experiment with Bev 

200 feet in front of Anne.  A & B agree with that suggestion.  Chuck points to figure 

3.1b, and reminds his friends that from the perspective of bus observers, it sure looks 

like the 200 foot road marker was only 160 in front of him.  Their next experiment ought 

to determine once and for all the distance between the 200 foot marker and he and Anne 

who were adjacent at the start of the experiment. 

The four of them stare at the bus and wonder how to get a bus observer 160 feet to the 

right of Chuck which is actually 60 feet in front of the bus!   Dean says, “No problem, I 

can attach a 60 foot boom with a seat to the front of the bus.”  

Chuck and Dean work on adding the boom to the front of the bus with a seat for the 

new observer.  Meanwhile, Anne and Bev, scout around for a volunteer to ride in that 

seat.  Ed happens to be passing by with nothing urgent on his agenda and thinks it will 

be exhilarating to be pushed along at 60% the speed of light in front of a bus. 

C & D explain how the three of them will meet in the bus to synchronize their watches.  

Chuck tells Ed, “Once our three watches are running, Dean and I will stroll to our 

positions at the front and rear of the bus.  Meanwhile, you’ll crawl along the boom to 

reach your seat at Xbus = 160 feet.” 

Ed stares incredulously at the boom, looks at A & B for confirmation that Chuck was 

serious, and sighs, “After our watches are running properly, Chuck walks to the rear of 

the bus, Dean to the front, and I crawl along the 60 foot boom to reach my seat!”  C & D 
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nod in agreement.  Being a trooper, he agrees but with less enthusiasm and more 

trepidation than he had had before. 

Anne and Bev Observe the Light Flash on the Bus: II 

The next morning, the five of them start getting ready for the re-run of the previous 

day’s experiment.  Chuck, Dean, and Ed practice synchronizing their watches a couple 

of times so that Ed can get used to crawling 60 feet along the boom to his observation 

post.  C & D keep reminding him that from their perspective, the bus is stationary and it 

is Earth that is moving at 0.6 ft/ns.  Their explanation does little to ease his anxiety. 

Chuck gathers his friends together and carefully reviews the sequence of events that 

will transpire during the experiment:  

1. Before the experiment begins, A & B will synchronize their watches.  Using the 

same method, C & D & E will synchronize their watches. 

2. When Anne and Chuck are adjacent to one another, Chuck will launch the laser 

flash and each of them will record the times on their respective watches, TAnne 

and TChuck. 

3. Ed and Bev will record the time on their watches as they pass, TEd and TBev,1. 

Chuck reminds Bev that she has two times to record, hence the extra subscript. 

4. Dean will note the time, TDean, that the laser flash reaches the front of the bus.  

And if things go according to plan, Bev will be adjacent to Dean when the flash 

arrives.  She will note the time for that event as TBev,2. 

When Chuck is finished, Anne says, “As we pass one another, each of us ought to note 

the time on the other person’s watch.  That will act as a check to insure that everyone 

recorded their times accurately.”  Chuck likes that idea and adds it to his list. 

Chuck’s step-by-step rehearsal of the experiment has gotten his friends excited and 

ready.  The three bus observers pile in and start driving away as A & B yell, “bon 

voyage.”  Then A & B get down to business.  They synchronize their watches, take up 

their stations at XEarth = 0 and XEarth = 200 feet, and concentrate on recording accurate 

times for the events that happen at their location. 

In a little while, Ed comes into view, being pushed along by the bus.  In the blink of an 

eye, Ed and the bus have passed A & B.  Bev is very relieved because she was in exactly 
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the right spot to observe the laser flash reach Dean at the front of the bus.  Anne and 

Bev sit down under a tree and anxiously wait for the bus to return with their friends. 

After the bus rolls to a stop and its passengers disembark, there is a round of 

congratulations for a job well done.  But Anne impatiently cuts off the celebration and 

presents the data she and Bev collected.  Seeing that Anne is in a no nonsense mood, 

Chuck writes down the times measured by the bus crew during the experiment. 

Question 3.5:  The experimental data collected by our space and time explorers are 

listed below: 

tChuck = 200 ns, tAnne = 105 ns, tEd = 200 ns, tBev,1 = 225 ns, tDean = 300 ns, and tBev,2 = 305 ns. 

Those times have to be adjusted to make the start of the experiment T = 0 for both sets of 

observers.  What are the values for the corrected times, TChuck, TAnne, TEd, TBev,1, TDean, and 

TBev,2? 

All of them study the times listed above and compare them to the times they saw as 

they passed one another.  Everyone agrees that the times listed are correct.  With that 

agreement in hand, Anne subtracts tAnne from the data collected by her and Bev to get 

the adjusted times listed below:  

TAnne = 0 

TBev,1 = 120 ns 

TBev,2 = 200 ns 

Without any fanfare, Chuck does the same for the times collected on the bus: 

TChuck = 0 

TEd = 0 

TDean = 100 ns 

They silently look at the data until Ed gets up to leave and says, “I have some errands to 

run.”  As he heads off, his four friends thank him for being a good sport and not 

complaining about his precarious perch in front of the bus. 

Bev thinks the best way to try to make sense of the data is by using it to construct a 

spacetime graph of the experiment.  Her friends agree since none of them have been 
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able to make much headway by staring at the different times listed above.  Chuck 

points out that there were three key events during the experiment.   

A. He and Anne passed one another and the laser flash started across the bus. 

B. Ed and Bev passed one another. 

C. Bev and Dean witnessed the arrival of the laser flash at the front of the bus. 

Chuck asks A & B, “Why don’t you make a spacetime diagram representing the 

experiment from the perspective of Earth with those three events explicitly labeled on 

your graph.  Dean and I will do the same from the perspective of the bus.  Let’s plan to 

meet tomorrow to see if the graphs can help us make sense of the experiment.”  A & B 

readily agree. 

Tired, but feeling like much was accomplished, they head off for some well-earned rest. 

By the next day, the 

four friends are 

eager to share their 

spacetime graphs.  

Chuck starts by 

showing everyone 

figure 3.2a; the 

spacetime graph 

from the 

perspective of 

observers on the 

bus.  Of course he 

followed his own 

suggestion and labeled the three major events during the experiment as A, B, and C.  

Anne follows suit and presents the graph she and Bev drew from their Earth-based 

perspective, figure 3.2b.  Four pairs of eyes scan the two spacetime diagrams.  After a 

short time, there are nods all the way around acknowledging that the diagrams 

correctly represent the events that unfolded during the experiment. 

[Type a quote from the document or 

the summary of an interesting point. 

You can position the text box 

anywhere in the document. Use the 

Text Box Tools tab to change the 

formatting of the pull quote text box.] 
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Before reading 

on, this is a good 

time to make sure 

you understand 

how these 

diagrams were 

constructed.  The 

discussion will 

focus on figure 

3.2a, but the 

same strategy 

was used to draw 

figure 3.2b.  

First, from the 

perspective of the 

bus, Chuck, 

Dean, and Ed are 

fixed in space at 

Xbus = 0, 100, and 160 feet, respectively.  Events A, B, and C all happen in the space between 

Chuck and Ed.  The experiment took 100 ns starting at Tbus = 0.  Therefore the slice of spacetime 

that needed to be represented on this graph included Xbus from 0 to 160 feet and Tbus from 0 to 

100 ns.  This information allowed Chuck to figure out how many boxes, each 20 feet long and 20 

ns high, were needed to capture the relevant chunk of spacetime.  He included a little extra space 

to the left of the origin for Anne’s worldline.  The worldlines of the three stationary bus observers 

are vertical. 

He also knew that Anne passed Chuck at event A.  Therefore Anne’s worldline had to pass 

through event A and slant to the left in a manner consistent with her velocity with respect to the 

bus, -0.6 ft/ns.   That velocity corresponds to moving 3 horizontal boxes from right to left while 

moving up 5 boxes; -60 feet of space moved during 100 ns of time passed.  More generally, the 

worldline of any observer moving with a known velocity can be drawn on a spacetime diagram 

by locating an event that observer passed through.  The same strategy was used by Chuck to 

draw Bev’s worldline through event B, the spacetime point where she and Ed passed. 
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Carefully look over the spacetime diagram constructed by A & B, figure 3.2b.  Notice that event 

B, the place in spacetime where Ed and Bev passed, happened at XEarth = 200 feet and TEarth = 120 

ns.  After finding that point, it was easy for A & B to draw Ed’s worldline.  Dean’s worldline 

was constructed similarly since he passed Bev at XEarth = 200 feet and TEarth = 200 ns, event C. 

Dean looks at figure 3.2b, shakes his head, and groans out loud, “As Einstein might 

have said, the spacetime of Chapter One is kaput!”  Continuing to shake his head, he 

adds, “the velocity of the light flash in the bus, VFB, is the same as Chuck and I 

measured it in the earlier experiment, 1 ft/ns.  The velocity of the bus with respect to 

Earth, VBE, is 0.6 ft/ns.  Using the handy-dandy relative velocity equation that A & B 

derived, equation 1.3, we expected the velocity of the flash with respect to Earth to be 

the sum of those two velocities, VFB plus VBE, or 1.6 ft/ns.  But as figure 3.2b shows so 

very clearly, A & B, saw the flash go 200 ft in 200 ns for a velocity of 1 ft/ns – which 

makes no sense!”  So as I said earlier, “The good old spacetime of Chapter One is dead, 

kaput, tossed in the dust bin of failed ideas along with the lumeniferous ether.” 

Chuck tells him to calm down, let’s think about the implications of our accurately done 

experiment.  First he points out that the light flash emitted by the laser in the bus 

traveled 100 feet in 100 nanoseconds, but when viewed from Earth, it traveled from 

Anne to Bev at XEarth = 200 feet and TEarth = 200 ns: 200 feet in 200 nanoseconds!  

This last statement gets Anne’s attention, who chimes in, “Suppose the above 

experiment was redone in exactly the same way except I had the laser instead of Chuck. 

That flash would take 200 nanoseconds to reach Bev standing 200 feet to my right.  The 

spacetime diagram Bev and I would draw for that experiment would be identical to 

figure 3.2b.  But that means the two spacetime diagrams, 3.2a and 3.2b, would be 

unchanged if I had the laser and sent the flash on its way!”  Chuck thinks about that for 

a bit before agreeing with Anne.  Anne continues, “The light flash travelled through 

spacetime in a manner that was totally independent of the state of motion of the laser, 

the source of the flash!”  Dean pipes in again, “That makes no sense.” 

In Chapter One, the motion of the pigeon through spacetime depended on whether it flew in the 

bus from Chuck to Dean or from Anne to Bev who were stationary with respect to the ground.  

Light apparently behaves very differently. 
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Question 3.6:  Convince yourself of the truth of Anne’s assertion that the spacetime 

graphs, figures 3.2a and 3.2b, would be unchanged if the laser were with Anne instead 

of on the bus. 

Bev reminds Dean that the arbiter of what makes sense or not, is experiment not 

expectation.  But she agrees with Dean, that the results of the experiment are clearly 

contrary to their collective expectations.  Their job now is to try to interpret what the 

experiment is saying about space and time. 

Dean, undeterred says, “Imagine redoing the experiment in Chapter One with two 

pigeons.  Pigeon A is in the bus riding with Chuck.  Pigeon B stays with Anne.  Bev is 

standing 100 feet to the right of Anne.  Both pigeons are released simultaneously as 

Anne and Chuck pass one another.  If the flight of the two pigeons mirrored the 

experiment done with the light flash, the two pigeons would have identical worldlines 

through space and time.   Their paths would be exactly the same as they flapped from 

Anne and Chuck toward Bev and Dean.  Do any of you think that would actually be the 

case if we did this experiment?”  The unanimous answer was no!  “Undoubtedly, 

pigeon A would reach me first,” adds Bev. 

Question 3.7:  Draw the spacetime diagram, from the perspective of A & B, which 

corresponds to Dean’s gedanken experiment.  The velocity of the bus is + 30 ft/s and the 

pigeons fly with a speed of 20 ft/s.  Label the worldlines for pigeons A and B and 

include enough time on the graph for both pigeons to reach Bev. 

Question 3.8:  Now draw the Earth frame spacetime graph that corresponds to Anne 

and Chuck simultaneously firing identical lasers towards the right as they pass one 

another.  The 100 foot bus is moving at v = 0.6 ft/ns and Bev is 200 feet to the right of 

Anne. 

Your answers to questions 3.7 and 3.8 highlight the difference between the way a pigeon moves 

through space and time compared to light.  By the way, your answer to question 3.8 ought to be 

identical to figure 3.2b! 

Chuck reminds Dean that all the experiments done by scientists to identify the 

lumeniferous ether, the substance through which light was supposed to travel, failed.  

So unlike the pigeon, whose speed is with respect to air, light apparently travels in a 

more mysterious manner.  Their experiment showed that Earth and bus observers 
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moving at 
3

5
 the speed of light with respect to one another measure exactly the same 

speed for a light flash.  And that speed does not depend on whether the laser producing 

the flash is on the bus or attached to Earth.   Moreover, the measurements were made 

with identical rulers and watches and both sets of observers used the same protocol to 

synchronize their watches.  Dean says nothing to this little speech by Chuck, but his 

body language makes it clear that from his perspective, light should not be allowed to 

behave this way! 

Anne is pacing around with her eyes closed.  Her three friends watch and wait.  Finally 

Anne summarizes her picture of light as it moves through space and time.  She says, 

“Apparently, light has to travel from here to there without violating the Principle of 

Relativity.”  That remark is met with puzzled stares from her three friends.  She 

reminds them, “Measuring the speed of light is one particular experiment that can be 

done in the super bus or in an Earth-based lab, or for that matter in any two different 

reference frames moving with respect to one another.  If light is going to travel through 

space and time in a manner consistent with the Principle of Relativity, every set of 

observers in an inertial reference frame measuring its speed are preordained to get the 

same value.”  Dean rolls his eyes, and whispers, “Preordained my foot.” 

Our space and time explorers have learned that the speed of light in a vacuum is independent of 

the state of motion of either the source of the light or the observers measuring it. This property is 

often referred to as the Principle of the Constancy of Light.   

Bev says, “Our experiment certainly seems to force the conclusions voiced by Chuck 

and Anne.  But the speed of light is the ratio of a measured distance (space) to a 

measured time that are determined using rulers and watches.   Do the results of our 

experiment have implications for the way rulers and watches measure space and time?” 

Bev’s simple question changes the tone of the discussion.  The ephemeral properties of light are 

left behind.  The conversation shifts to the properties of real material things like rulers and 

watches and how they are used to measure velocity instead of the peculiar way light moves 

through space and time.  But before they get too deeply into this new topic, they decide to take a 

short lunch break. 
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The Effect of Motion on Space 

After lunch, Bev cuts to the chase by stating, “There is no doubt that I was standing 200 

feet to the right of Anne.  On the other hand, we all measured the boom that held Ed’s 

rolling seat and agreed that it was 60 feet long putting him 160 feet in front of Chuck.”  

Her three friends nod in agreement.  She continues, “But it is abundantly clear from the 

spacetime graph in figure 3.2a, that when Chuck and Anne are adjacent, Ed and I are 

passing one another.  At that moment of crossing, Ed’s watch read zero, exactly the 

same time as Chuck’s watch.  Consequently, Chuck and Ed conclude that I am 160 feet 

in front of Anne.  But neither Anne nor I moved during the experiment, so the distance 

between us never changed.  It was 200 feet during the entire experiment.  How could 

the distance between Anne and me be both 160 feet and 200 feet?”  Bev’s remarks are 

met with silence. 

Dean, though still uneasy about the apparent way light moves through space and time, 

joins this discussion.  In a questioning voice he says, “A & B measure their separation 

the same way Chuck and I measure the length of the bus.  We take our certified rulers 

and mark off the distance between two locations that are fixed in our respective 

reference frames.  But how are the lengths of moving objects measured?  For example, 

how would A & B measure the length of our bus as it zipped past them at 0.6 ft/ns?” 

Chuck points to the spacetime graph in figure 3.2b.  My and Dean’s slanted worldlines 

on that graph also represent the spacetime locations of the front and rear of the bus as it 

moves through A & B’s reference frame.  If A & B want to measure the length of the 

bus, they would simultaneously locate the two ends of the bus.  The intersection of any 

horizontal constant time line with our two slanted worldlines determines the exact 

space locations of the front and rear of the bus at that time.  Then A & B could use their 

rulers to measure the distance between those two points to determine the length of the 

bus. 

Dean nods at Chuck, “So if A & B used the horizontal TEarth = 0 line on figure 3.2b to 

determine the length of our 100 foot super bus, would I be correct to surmise that A & B 

measure our bus to be only 80 feet long?”  Chuck looks at Dean and then at figure 3.2b, 

before nodding in agreement and adding, “It appears that A & B conclude that our bus 

is only 80 feet long.” 

Anne says, “Of course, it has to be that way and shows her friends the table 3.1. “ 
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Measurements 

made by Chuck & 

Dean in the bus 

frame 

Measurements 

made by Anne & 

Bev in the Earth 

frame 

Length of the Super Bus 100 feet 80 feet 

Distance Between Anne and Bev 160 feet 200 feet 

     Table 3.1 

She quickly continues, “When C & D measured the separation between me and Bev, 

they got 160 feet or 80% of 200 feet.  On the other hand, when Bev and I measured the 

length of the bus we got 80 feet or 80% of 100 feet.  We each saw the “moving” 

separation to be 80% as long as the stationary separation.  Space separations moving 

through a reference frame with a speed of 0.6 ft/ns appear to be only 80% as long as the 

separation in their “home” frame.  The Principle of Relativity survives another test since 

the amount of shrinkage measured is the same for bus and Earth observers.” 

Imagine that Bev and Anne made a 100 foot long life-size model of the super bus.  C & D come 

zipping by passing A & B and their model super bus.  A & B measure the passing super bus to 

be only 80 feet long.  On the super bus, C & D, see the life-size model rushing toward them.  

They measure its length as it zooms past and they also get 80 feet.  The Principle of Relativity 

requires that each set of observers measure equivalent amounts of shrinkage for the moving 

“bus.”  That is exactly what Anne concluded from the data in the table she showed her friends. 

 The separation between two locations in the reference frame in which those locations are fixed is 

called the “proper separation or distance.”  In the above example, the proper separation between 

A & B was 200 feet while the proper length of the bus was 100 feet.  Any set of observers moving 

with respect to the proper frame measure the length or separation to be less than its value in the 

proper frame.  In our example with observers moving at 0.6 ft/ns lengths appear to be 80% as 

long as their proper values.  

Question 3.9:  In figure 3.2b, Ed was adjacent to Bev when her watch read 120 ns.  Use 

that information to find Ed’s location, XEarth, at TEarth = 0. 

Question 3.10:  Is your answer to question 3.9, the separation between Chuck and Ed 

according to A & B, consistent with the 80% rule? 



50 
 

Dean reluctantly concedes that the experimental results, namely the constancy of the 

speed of light, forces moving rulers to appear shorter than identical stationary rulers.  

He points to Bev and says, “When Bev passed me, Bev’s watch read 200 ns and mine 

read 100 ns.  This difference arose despite the fact that Bev carefully synchronized her 

watch with Anne’s and I, just as carefully, synchronized my watch with Chuck’s. And 

as both spacetime graphs, figures 3.2a and 3.2b, make clear, Anne and Chuck passed 

one another when their watches read zero.  My unnerving conclusion is that during the 

time interval between the start of the experiment and Bev and me passing one another, 

Bev’s watch ran twice as fast as mine.  Will someone please tell me what is going on 

here?” 

Bev yawns, and says time can wait until tomorrow.  No one argues and they pack it in 

for the day. 

Earlier in this section, Chuck used the spacetime diagram to answer Dean’s question about how 

to measure the length of an object moving through a reference frame.  But there are other ways 

for A & B to measure the length of the bus.  In particular, question 3.1 had an unknown bus 

passing A & B.  Using their synchronized watches, they could take three straightforward time 

measurements to determine both the velocity and length of the bus.  Anne notes the times the 

front and rear of the bus pass her, TAnne,1 and TAnne,2.  Bev writes down the time the front of the 

bus reaches her, TBev,1. 

After the rogue bus disappears, A & B compare notes and conclude that the front of the bus 

traveled the known distance between them, D, in time T1 = TBev,1 – TAnne,1.  Therefore the velocity 

of the bus was just v = D/T1. 

The bus took time T2 = TAnne,2 – TAnne,1 to pass her.  Since she knows that the bus was traveling 

with a speed v, she can calculate the length of the bus, L, by multiplying v times T2, L = v T2. 

This simple procedure can be used to find the length and velocity of any object moving through a 

reference frame. 

Question 3.11:  A bus comes zipping through A & B’s reference frame.  They carefully 

use their synchronized watches to record the information required to determine the 

velocity and length of bus.  After the bus passes, Anne says that the front of the bus 

passed at TAnne,1 = 13 seconds and the rear 150 ns later.  Bev saw the front of the bus pass 
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her at TBev,1 = 13 seconds plus 125 ns.  A & B were standing 100 feet apart when they 

recorded the times listed above.  What was the velocity of the bus and how long was it? 

The Effect of Motion on Time 

That night, all four dreamt of watches with wings flying about and ticking at different 

rates and reading strange times.  The next morning, they are eager to explore whether 

or not the strange way light moves through space and time impacts the rate at which 

watches and clocks run.  Of course, as Dean already pointed out, the fact that his watch 

read 100 ns when Bev passed him carrying an identical watch that read 200 ns, 

suggested that time was behaving in some strange and unnerving way. 

Before they can begin, Anne points out that comparing the rates at which two watches 

run is going to be difficult if not impossible.  She asks her friends to look at figures 3.2a 

which makes it very clear that the worldlines of Chuck and her cross only once when 

each of their watches read zero.  Since they never pass one another again, it is 

impossible for her to directly compare the ticking rate of her watch with the ticking rate 

of Chuck’s.  The best they could do, which is exactly what they did do, was to compare 

the values on their respective watches as they zipped past one another. 

More generally, in any given experiment with observers in two inertial reference frames moving 

with respect to each other, a given observer in one frame passes observers in the other frame only 

once.  This makes the direct comparison of watch rates impossible. 

Dean agrees but suggests a different method for comparing ticking rates.  He refers to 

figure 3.2a, when Bev passed Ed, Bev’s watch read 120 ns and Ed’s read zero.  When 

Bev reached him, her watch read 200 ns and his read 100 ns.  Therefore, as she moved 

from Ed to him, Bev’s watch ticked off 200 – 120 ns = 80 ns.  But he and Ed, by 

comparing their watches, conclude that it took her 100 ns.  Anne exclaims, “The 80% 

factor returns but now shows up in time measurements.  Bev’s watch ticked off only 

80% as many nanoseconds as she moved from Ed to Dean.”  

Chuck joins the discussion and points out that in Dean’s scenario, Bev in the Earth 

frame carried a watch from one bus observer, Ed, to another, Dean.  They can also use 

figures 3.2a and 3.2b to compare the time ticked off his watch as he moved between two 

Earth observers, A & B.  If the Principle of Relativity holds, A & B ought to see his 

moving watch run slow just like Ed and Dean’s conclusion about Bev’s watch. 
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Unfortunately, figure 3.2a does not quite have enough of a time slice to include the point where 

Bev passed Chuck, but the graph makes it obvious that she had to travel 160 feet to reach him.  

On the other hand, figure 3.2b makes it clear that Bev would claim that Chuck traveled 200 feet 

as he moved from Anne to her. 

Question 3.12:  Assuming the experiment went long enough, use figure 3.2a to calculate 

the time on Chuck’s watch when Bev passed him.   

Question 3.13:  What did Bev’s watch read when Chuck passed? 

Dean does calculations out loud.  “Bev is moving with a speed of 0.6 ft/ns and has to 

cover 160 feet to reach Chuck.  The time it took Bev to cover the 160 feet is given by the 

equation, Time = Distance/Speed, which in this situation is 160/0.6 = 266.6 ns.  But Bev, 

using figure 3.2b, concludes that Chuck moved 200 feet with a speed of 0.6 ft/ns to reach 

her.  So her watch ticked off 333.3 ns during the time it took Chuck to travel from Anne 

to her.  Therefore A & B say that Chuck’s watch ticked off 266.6 ns during the time their 

watches recorded a difference of 333.3 ns.”  And guess what folks, “80% of 333.3 is 

exactly 266.6!” 

So in each case, the moving watch ran slow.  In the first case it was Bev’s watch moving through 

the bus frame.  In the second case, it was Chuck’s watch moving through the Earth frame.  And 

in both cases, the moving watch ticked of 0.8 ns for each 1 ns ticked off the “stationary” watches. 

Remember the high tech watches used in these experiments are accurate to 0.1 ns.  Consequently, 

the times calculated by Bev are listed to tenths of nanoseconds.  The smaller decimal 

contributions, hundredths, thousandths, etc of nanoseconds have been dropped in the 

calculations since they represent fractions of time too small to be measured by the watches used 

by our spacetime probers. 

Dean has followed these calculations very carefully and agrees with everything said so 

far about the ticking rates of clocks.  But it seems impossible for him and Ed to observe 

Bev’s watch run slow while at the same time A & B observe Chuck’s watch to run slow.  

Dean asks his friends, “If observers in reference frame 1 conclude that observers in 

reference frame 2 have clocks that run slow, doesn’t that imply that the observers in 

frame 2 would see the watches in frame 1 run fast?  Since this apparently does not 

happen, I must be missing something important.” 
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Anne volunteers to explain why observers in each frame can conclude that watches in 

the other frame run slow.  “Look at figure 3.2a.  Chuck sees Anne pass when both their 

watches read zero.  At that same time according to Chuck, Bev is passing Ed whose 

watch also read zero.  But as Bev passed, Ed saw that her watch read 120 ns.  Later, 

when Bev passed Chuck his watch read 266.6 ns while hers read 333.3 ns.  Since Ed’s 

watch read zero when Bev passed, Chuck concludes that it took 266.6 ns for Bev to 

travel from Ed to him.   But he and Ed claim that during that trip Bev’s watch ticked off 

only 333.3 – 120 ns = 213.3 ns.  And wonder of wonders, 213.3 is just 80% of 266.6 ns!  Ed 

and Chuck conclude that Bev’s watch ran slow as she moved from Ed to Chuck.  From 

these three examples, it appears safe to conclude that moving watches run slow.” 

A watch carried by an observer is necessarily stationary with respect to that observer and ticks 

off what is called “proper time.”  Stationary watches tick off proper time just like any two 

stationary observers are separated by a proper distance. 

Dean is still not satisfied but Anne ignores him and makes the following sketch, figure 

3.3, based on figure 3.2b: 

     Anne    Chuck           Bev    Ed 

 

 

  

 

Figure 3.3 

Then she quickly draws a table 3.2 summarizing the data collected during the 

experiment. 

 Bus Observers Earth Observers 

 Event Xbus (ft) Tbus (ns) XEarth (ft) TEarth (ns) 

A 0 0 0 0 

B 160 0 200 120 

C 100 100 200 200 

  Table 3.2 



54 
 

Anne reminds her colleagues that event B was the spacetime point where Ed and Bev 

passed one another.  The bus observers claim that passing happened at Tbus = 0 while 

Earth observers saw that happen at TEarth = 120 ns.  For bus observers, that passing was 

simultaneous with the start of the experiment.  On the other hand, she and Bev 

conclude that event B happened 120 ns after the start of the experiment. 

Pointing back at figure 3.3, Anne says, “The red line connects events A and B which bus 

observers claim happened at Tbus = 0.  Therefore the red line is actually the Xbus-axis 

where Tbus = 0.   The horizontal black line is the XEarth-axis where TEarth = 0.  So for Bev and 

me, any event that takes place simultaneously with the start of the experiment must 

have a spacetime point lying on the black line.  C & D would dispute that because for 

them, events simultaneous with the start of the experiment have to have spacetime 

points lying on the red line.  This disagreement about what constitutes simultaneous 

events is a consequence of the fact that the watches that were carefully synchronized by 

Bev and I are not synchronized according to C & D.  And of course, Bev and I make the 

same claim about the watches that were carefully synchronized by C & D.  This 

disagreement allows each of us to conclude that moving watches run slow.”  

Dean nods slowly, and thanks Anne and says, “If I have this right, our experiment with 

the light flash in the bus forces us to the following conclusions about space and time: 

1. Moving clocks run slow. 

2. Moving rulers shrink. 

3. And watches that were properly synchronized in one inertial reference frame 

appear to be unsynchronized when viewed from another reference frame. 

Have I missed anything?” 

Her friends smile and give him pat on the back.  That cogent summary is a good place 

to stop for the day, suggests Bev.  Agreement is unanimous and they decide to celebrate 

their improved understanding of space and time with a dinner out. 

Light Moves through Space and Time in a Very Strange Way 

Before leaving this chapter, it might be useful to look at a more extreme situation where two sets 

of observers moving with respect to one another measure the speed of a light flash. 
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Imagine two super buses each moving at 0.9 ft/ns.  The red bus is zipping away from Anne and 

the blue one towards her.  Anne uses her laser to send a light flash, the red dot, off to the right as 

shown below. 

Anne         

The light flash passes through the windows of the red and blue buses before exiting stage right.  

Observers riding in each bus, measure the speed of the light flash as it passes through their bus. 

Question 3.14:  What is the speed of the light flash according to observers riding on the red bus? 

Question 3.15:   What is the speed of the light flash according to observers riding on the blue 

bus? 

 Remember light moves through space and time in a way that “forces” observers in any inertial 

reference frame to measure the same speed for light, 1 ft/ns.  So as bizarre as it seems, riders on 

the red bus, who are moving away from the light flash at 0.9 ft/ns, and riders on the blue bus, 

who are moving toward the flash at 0.9 ft/ns, both measure the speed of the flash to be 1 ft/ns.  

Those are the properties of light and spacetime that were uncovered by Anne, Bev, Chuck, and 

Dean, with the help of Ed, in this chapter. 

In order for light to have the same speed in all inertial reference frames, rulers and watches have 

to behave according to Dean’s succinct summary at the end of the previous section. 

If this still seems unbelievable or implausible, you may want to reread this chapter to review the 

results of the crucial experiment that led to these conclusions before moving on to Chapter Four. 
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Chapter Four:  Generalizing the Observations 

The essential details of the experiment done with the light flash on the super bus are captured by 

the spacetime graphs in figures 3.2a and 3.2b.  That experiment was done with the bus moving 

at a specific speed, 0.6 ft/ns.  In this chapter and the next, we will generalize those spacetime 

graphs by analyzing the results of a “gedanken” experiment done with a bus moving with a 

velocity v.   

The experiment done in Chapter Three by our four friends demonstrated the important fact that 

light travels through space and time with a speed that is independent of: 

1.  The velocity of the laser that emitted the flash -- nothing changed when the laser was 

moved from the bus to Earth. 

2. The velocity of the observers measuring the speed – the bus and Earth observers measured 

the same speed for the flash 

As you work your way through this chapter, keep in mind that the constancy of the speed of light 

is central to the derivation of the rules governing space and time.  One last admonition, there is a 

bit of messy algebra in this chapter.  Although following all the algebraic manipulations is not 

essential to grasping the main thrust of the arguments presented, keeping up with the algebra 

will increase your confidence in the conclusions reached this chapter.  Needless to say, it will also 

improve your algebraic skills. 

After enjoying a vacation from thinking about space and time, our four friends meet for 

dinner to talk about the best way to continue their investigation of space and time.  

During that meeting, Bev points out that the strange behavior of rulers and watches 

discovered in Chapter Three were completely absent during the experiments they did 

in Chapter One with the pigeon and bus that cruised at a pedestrian 30 ft/s. 

Chuck is not bothered by this because he is pretty confident that the slowing of clocks 

and the shrinking of buses must somehow depend on the speed of the bus.  Anne and 

Dean agree with Chuck but are not satisfied with his conclusion that the observed 

effects must “somehow depend on speed.”  Anne asks Chuck, “What is the exact 

relationship between the speed of the bus and the behavior of watches and rulers?”  

Before a serious discussion can get started, Dean suggests they get a good night’s rest 

and wait until tomorrow before trying to answer Anne’s question.  His friends agree 

and break up for the evening with the promise to get an early start the next day. 
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Defining the New Problem 

The next morning, the four friends meet to discuss how to generalize their conclusions 

from Chapter Three.  Anne and Bev are the more analytic pair, so C & D wait for them 

to take the lead in directing the discussion.   Bev tells her friends that one of the first 

things she learned in her algebra class in high school was to carefully define the 

quantities involved in the problem.  

Before Bev can continue, Dean groans, “I was never any good at algebra.”  

Chuck encourages Dean by reminding him that he made some important contributions 

to their earlier discussions about space and time.  Dean takes a deep breath, and nods 

toward Bev.  Bev takes that as a signal to start up again. 

She reminds her friends that the quantities involved in the experiment were the 

distance between Anne and her, the length of the bus, assorted times, and the velocity 

of the bus.  These are the quantities that we need to define in terms of symbols to 

replace the particular numerical values they had in Chapter Three.  Anne suggests that 

if they are going to symbolically define the quantities listed by Bev, they also ought to 

assign a symbol to represent the velocity of light.  “Great idea,” says Bev, “Especially 

since the numerical value for the velocity of light depends on the units used; 186,000 

miles a second or 300 million meters a second as well as the 1 foot per nanosecond we 

used during our experiments.”  Dean and Chuck have nothing to add and let A & B 

continue to lead the discussion.   

Before Bev can continue, Anne makes another suggestion.   They ought to start by 

analyzing the effect motion has on space measurements before worrying about the 

effect on time.  C & D enthusiastically endorse that idea since it may make the 

forthcoming analysis easier for them to follow. 

Bev spends a couple of minutes writing in her pad.  Then she rips a page out of the pad 

and holds it up for everyone to see.   Bev uses her pencil as a pointer and says, “L will 

represent the length of the bus and D the distance between her and Anne.  But since 

Earth and bus observers get different values for L and D, I added the subscripts “Earth” 

or “bus” to distinguish between the values measured by Earth and bus observers.”   

Anne, Chuck, and Dean stare at Bev’s list shown below. 
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1.  Lbus = length of the bus measured by bus observers (bus is stationary in this 

frame) 

2. LEarth = length of the bus measured by Earth observers (bus is moving in this 

frame) 

3. Dbus = distance between Anne and Bev measured by bus observers (Anne and 

Bev are moving in this frame) 

4. DEarth = distance between Anne and Bev measured by Earth observers (Anne and 

Bev are stationary in this frame) 

5. v = the relative speed between the two reference frames (Bus observers and Earth 

observers agree on this value – Principle of Relativity) 

6. c = speed of light (Anne’s suggestion) 

Before going on it may be useful to explain the strategy that our friends are going to use to find 

an expression for the shrinkage factor that depends on the quantities defined above.  The logical 

arguments are the same as used in Chapter Three except the values for the various quantities, 

100 feet for the length of the bus according the C & D, the speed of light being 1 ft/ns, and the 

speed of the bus, 0.6 ft/ns, are going to be replaced by general values, Lbus, c, and v for the three 

examples listed. 

In this chapter, the time it takes the light flash to cross the bus according to C & D is Lbus/c, 

distance/speed.  In Chapter Three that same time was 100 ft/(1 ft/ns) = 100 ns.  Both expressions 

use the same basic relation, namely speed = distance/time, which can be re-written as time = 

distance/speed.  Sometimes it may be useful to think about a given calculation first in terms of 

the specific values from Chapter Three before converting to the more general values defined by 

Bev in the table she presented to Anne, Chuck, and Dean that defined Lbus, LEarth, etc. 

Finding the Shrinkage Factor 

Dean reminds them that one of the key insights from last chapter was that the Principle 

of Relativity required the amount of shrinkage seen by the bus observers to equal the 

amount of shrinkage seen by Earth observers.  Chuck nods in agreement.  He and Dean 

measured the distance between A & B to be only 80% of the proper separation between 

them while A & B measured the bus to be 80 feet long, 80% of its proper length. 

Bev points to her list and says, “Lbus and DEarth are proper lengths while LEarth and Dbus are 

the results of measurements made on distances moving through the Earth and bus 

frames respectively.   Notice that I wrote the proper lengths in red and the moving ones 



59 
 

in blue to remind us of the difference.”  Bev writes equation 4.1 on her pad and 

continues, “The Principle of Relativity requires that each of these ratios, 
𝐵𝑢𝑠 𝐿𝑒𝑛𝑔𝑡ℎ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝐴 & 𝐵

𝑃𝑟𝑜𝑝𝑒𝑟 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐵𝑢𝑠
=

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 & 𝐵 𝑀𝑒𝑎𝑠𝑟𝑢𝑒𝑑 𝑏𝑦 𝐶 & 𝐷

𝑃𝑟𝑜𝑝𝑒𝑟 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐴& 𝐵
  have to equal the 

shrinkage factor.”  Then she points to her pad where those ratios are written in terms of 

the parameters she defined earlier.  

LEarth/Lbus = Dbus/DEarth = shrinkage factor       (4.1) 

Chuck makes a couple of rough spacetime sketches, figures 4.1a and 4.1b, to help him 

picture the relationships between the quantities appearing in equation 4.1.  

Chuck explains that figure 4.1a is from the perspective of observers on the bus and that 

figure 4.1b is from A & B’s point of view.  His worldline along with those of Dean and 

Ed are in blue while A & B’s worldlines are in black.  The laser flash is shown in red as 

usual. 

Anne    Chuck    Bev  Dean  Ed    Anne  Chuck          Bev Dean Ed 

 

 

 

 

  

  Figure 4.1a      Figure 4.1b 

Anne thinks they can use Chuck’s sketch in figure 4.1a to write Dbus, the separation 

between her and Bev as measured by C & D, in terms of Lbus, the proper length of the 

bus.   If they can do that, the same strategy applied to figure 4.1b will let them find an 

analogous relationship between DEarth, the proper separation between her and Bev, and 

LEarth, the length of the bus according to Bev and her.  Those two expressions can then be 

used to eliminate Dbus and DEarth from equation 4.1.  If this works, the resulting equation 

would give them LEarth in terms of Lbus and the shrinkage factor. 

Dean, picking up on Anne’s suggestion, immediately points to the figure 4.1a and adds 

two additional lines.  Thinking out loud, he says, “Chuck is located at Xbus = 0 while I 
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am at Xbus = 100 feet.”  Bev gently reminds Dean that in this gedanken experiment he is 

actually located at the more general location, Xbus = Lbus.   Dean silently internalizes Bev’s 

comment before continuing, “the distance Chuck and I measure between A & B, Dbus, is 

just Lbus plus the amount Bev moved during the time it took the laser flash to travel 

from Chuck to me.  On figure 4.1a, that corresponds to adding the lengths of the heavy 

yellow and heavy green lines.”  Dean’s remarks are greeted with nods of agreement. 

Gaining confidence, he adds that since the laser flash traveled a distance Lbus while 

moving with a speed of c, it must have taken a time Lbus/c to traverse the length of the 

bus.  During that time Bev was traveling with a speed of v.  That makes the length of 

the heavy green line v Lbus/c.  Now he combines these factors and writes the following 

equation in Bev’s pad, 

Dbus = Lbus + v Lbus/c = Lbus (1 + v/c)        (4.2) 

Chuck claps his hands and exclaims, Dean you just did algebra.  Nice job.” 

This equation relates the distance measured by Chuck and Dean for the separation between Anne 

and Bev, Dbus, to the proper length of the bus, Lbus. 

Anne looks at Chuck’s right-hand sketch, figure 4.1b, and following Dean’s strategy 

adds two new lines.  Then while pointing to figure 4.1b, says, “DEarth equals the sum of 

LEarth (the heavy yellow line) and the distance Dean moved while the flash traveled from 

me at XEarth = 0 to Bev at XEarth = DEarth (the heavy green line).  Bev and I saw the flash 

travel for a time DEarth/c.  During that time, Dean moved v DEarth/c.”  Now she adds her 

equation to Bev’s pad,   

DEarth = LEarth + v DEarth/c. 

Bev quickly solves this equation for DEarth, to get an equation analogous to 4.2 except this 

one relates DEarth to LEarth, 

𝐷𝑒𝑎𝑟𝑡ℎ =
𝐿𝑒𝑎𝑟𝑡ℎ

(1 −
𝑣

𝑐
)⁄  .         (4.3) 

Bev quickly substitutes the values found for Dbus and DEarth, equations 4.2 and 4.3, back 

into equation 4.1 to get, 
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𝐿𝑒𝑎𝑟𝑡ℎ

𝐿𝑏𝑢𝑠
=  

𝐷𝑏𝑢𝑠

𝐷𝑒𝑎𝑟𝑡ℎ
=   

𝐿𝑏𝑢𝑠(1+
𝑣

𝑐
)

𝐿𝑒𝑎𝑟𝑡ℎ

(1−
𝑣
𝑐

)

=  
𝐿𝑏𝑢𝑠

𝐿𝑒𝑎𝑟𝑡ℎ
(1 − (

𝑣

𝑐
)

2

) .      (4.4) 

 While her friends are straining to keep with her, she solves for the ratio  
𝐿𝐸𝑎𝑟𝑡ℎ

𝐿𝑏𝑢𝑠
, 

(
𝐿𝑒𝑎𝑟𝑡ℎ

𝐿𝑏𝑢𝑠
)

2

= 1 − (
𝑣

𝑐
)2, 

And takes the square root of both sides to get, 

LEarth/Lbus = √1 −  
𝑣2

𝑐2 = shrinkage factor.       (4.5) 

The expression, 
𝐿𝑏𝑢𝑠(1+

𝑣

𝑐
)

𝐿𝑒𝑎𝑟𝑡ℎ

(1−
𝑣
𝑐

)

, in equation 4.4 can be rewritten as 
𝐿𝑏𝑢𝑠

𝐿𝑒𝑎𝑟𝑡ℎ

(1+
𝑣

𝑐
)

1

(1−
𝑣
𝑐

)

 .  To simplify this 

further, multiply by 
(1−

𝑣

𝑐
)

(1−
𝑣

𝑐
)
 which equals one so it does not change the value of the expression.  

Remember this same trick was used to change the units for the speed of light in Chapter Two.  

Here that trick simplifies the above expression to 
𝐿𝑏𝑢𝑠

𝐿𝑒𝑎𝑟𝑡ℎ
(1 +

𝑣

𝑐
) (1 −

𝑣

𝑐
).  Next, remember that 

when 1 – something is multiplied by 1 + something the result is just 1 – (something)2.  In this 

example the something is just 
𝑣

𝑐
 . 

While Anne, Chuck, and Dean stare at equation 4.5 with a growing sense of 

comprehension, Bev calculates the shrinkage factor for a super bus moving at 
3

5
 the 

speed of light.  She claps her hands and writes the results on the pad, LEarth/Lbus = 0.8, in 

exact agreement with their experiment! 

Then Anne points out that the since the shrinkage factor depends on v2 it has the same 

value for bus observers who saw Anne and Bev move with velocity v = −
3

5
 ft/ns just as 

required by the Principle of Relativity. 

Dean says, “Wow, aren’t we the clever spaceketeers!”  Three speechless people nod in 

agreement.   

In Chapter Three v was 
3

5
 = 0.6 ft/ns and c was 1 ft/ns so v/c = 0.6 = 

3

5
.  Also notice that the 

constancy of the speed of light snuck into this calculation when bus and Earth observers used the 

same value for the speed of light, c, for calculating how long it took a light flash to travel a given 

distance.  Before they actually did the experiment with the super bus, A & B “predicted” that 
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they would measure a different speed for light than their friends riding on the bus.  Their 

misunderstanding of the behavior of light was the reason Bev was standing in the “wrong” place 

the first time they did the experiment.  In fact, as Dean pointed out after the experiment was 

done correctly, their prior experience with the pigeon led them to believe that the speed of light 

with respect to Earth ought to have been 1.6 ft/ns instead of the measured 1 ft/ns! 

The Ticking Rate of Moving Clocks 

The various lengths L and D will no longer be color coded but the subscripting will continue.  

Remember the subscript refers to the observers making the measurement.  For example, Dbus, is 

the separation between Anne and Bev who are stationary in the Earth frame as measured by 

Chuck and Dean on the bus. 

Full of confidence, the four friends are ready to tackle the impact of motion on time.  

Chuck points back to his two sketches, figures 4.1a and 4.1b.  We can use the spacetime 

graph 4.1a to find the time ticked off my watch, Tbus, when I saw Bev pass me 

remembering that my watch read zero when Anne passed.  Since Bev had to travel Dbus, 

that time is just, 

𝑇𝑏𝑢𝑠 =  
𝐷𝑏𝑢𝑠

𝑣
 .             (4.6) 

But it is clear from diagram 4.1b that Anne and Bev conclude that I traveled a distance 

DEarth to go from Anne to Bev.  The time it took for me to travel from Anne to Bev 

according to their watches is just, 

𝑇𝑒𝑎𝑟𝑡ℎ =  
𝐷𝑒𝑎𝑟𝑡ℎ

𝑣
 .            (4.7) 

Bev jumps in to remind everyone that since it was Chuck’s watch that was compared to 

two “stationary” watches, his watch ticked off less time that the time recorded by Anne 

and her.  Consequently, she triumphantly writes the following equations on her pad, 

𝑇𝑏𝑢𝑠

𝑇𝑒𝑎𝑟𝑡ℎ
= 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  

𝐷𝑏𝑢𝑠
𝑣⁄

𝐷𝑒𝑎𝑟𝑡ℎ
𝑣⁄

=  
𝐷𝑏𝑢𝑠

𝐷𝑒𝑎𝑟𝑡ℎ
= √1 − (

𝑣

𝑐
)2 .    (4.8) 

No one speaks for several seconds because Bev’s demonstration that time is affected by 

the same algebraic expression that explained the shrinkage of distances was so 

straightforward and elegant.  Finally Dean breaks the silence and says, “bravo!”  Then 

he highlights Bev’s conclusion by writing,  
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Tbus/TEarth = √1 − (
𝑣

𝑐
)2 ,         (4.9) 

on Bev’s pad.  Chuck looks back at his notes from the experiment done in Chapter 3 to 

find the numerical values for Tbus and TEarth.  When he finds those values, Tbus = 266.6 ns 

andTEarth = 333.3 ns, he quickly checks equation 4.9 for the bus speed of v/c = 0.6.  He 

claps his hands and announces to his friends that the agreement is perfect. 

Quantifying the Disagreement over Synchronization 

Bev reminds her friends that even though the bus observers, Chuck, Dean and Ed, and 

the Earth observers, Anne and her, used exactly the same procedures to synchronize 

watches, the bus and Earth watches ended up out of synch.  The lack of synchronization 

was vividly displayed by Anne in figure 3.3.  Before they can claim to have generalized 

the results of the experiment with the super bus, they need to come to grips with the 

“synchronization problem.” 

Chuck directs his friends’ attention back to figure 4.1b.  Ed is to the left of Bev at the 

start of the experiment according to A & B.  When he reaches Bev, his watch reads zero 

but Bev’s watch reads a time equal to the distance Ed traveled to reach her, the heavy 

purple line, divided by his speed.  He reminds his friends that in the experiment with 

the super bus going 0.6 ft/ns, Bev’s watch read 120 ns when Ed passed.  Now he looks at 

Anne, and asks if she can do some clever algebra to find an expression for the distance 

between Ed and Bev at the start of the experiment according to Bev and her. 

Anne takes up Chuck’s challenge and directs the attention of her friends to figure 4.1a, 

“The distance between Chuck and Ed in their reference frame, the sum of the heavy 

yellow and green lines, is just Dbus.  Since Chuck and Ed are fixed in place in the bus 

frame, Dbus is the proper separation between them.  On the other hand, Bev and I 

measure the separation between Chuck and Ed to be shorter because of the shrinkage 

factor, so we get for their separation Dbus times√1 −  
𝑣2

𝑐2 .” 

She gives her friends a second to catch up before continuing, “But Dbus is also the bus 

observers’ measurement of the proper distance between Bev and me, which for us is 

just DEarth.  The bus observers measure that distance shrunk by the same factor, so C & D 

conclude that Dbus = √1 − 
𝑣2

𝑐2 DEarth.  When Dbus in the previous expression is replaced by 
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√1 − 
𝑣2

𝑐2
 DEarth, Bev and I conclude that the distance between Chuck and Ed is just 

(1 −  
𝑣2

𝑐2)DEarth.  By the way, on figure 4.1b this distance is just the sum of the heavy 

yellow and green lines minus the heavy purple line.” 

Dean looks confused and gives Anne the timeout sign.  She stops and looks at her 

friends.  Finally, Dean nods and tells Anne to continue but to please speak more slowly.  

Anne takes a deep breath and begins, “From Bev’s perspective, pointing to figure 4.1b, 

Ed was a distance to her left given by the distance between me and her minus the 

distance between me and Ed, the heavy purple line of figure 4.1b.  Algebraically that 

distance is just DEarth - (1 −  
𝑣2

𝑐2) DEarth which simplifies to  
𝑣2

𝑐2 DEarth.  That is how far Ed had 

to travel to reach Bev.” 

As his three friends peer over his shoulder, Chuck writes that distance down and 

divides it by v, Ed’s speed according to A & B, to get the time it took Ed to travel the 

distance that separated him from Bev according to Anne and Bev.  His answer is 
𝑣

𝑐2 DEarth, the time that Bev’s watch should have read when Ed reached her.  Chuck 

points to the pad and says, “Since Ed’s watch read zero when he reached Bev, Bev 

concludes that Ed’s watch is out of synch with hers by 
𝑣

𝑐2 DEarth.”  

Dean grabs a pencil and quickly calculates the time that Bev’s watch ought to have read 

when they did the experiment with the 100 foot super bus moving at 0.6 ft/ns.  He 

mumbles, v = 0.6 ft/ns and DEarth was 200 feet, so Bev’s watch ought to have read 0.6 

ft/ns times 200 divided by (1 ft/ns)2 which equals 120 ns.  He blurts out, ‘The equation 

works perfectly, T = vDEarth/c2 predicts the time on Bev’s watch to a tee.” 

Bev adds that equation to her list of results. 

𝑇 =
𝑣𝐷𝑒𝑎𝑟𝑡ℎ

𝑐2              (4.10)    

Since c = 1 ft/ns, the numerical value found for the time on Bev’s watch does not depend on 

dividing by c2 in the equation T = vDEarth/c2.  On the other hand, the units of c, ft/ns, are needed 

to make the answer end up being in the correct units, namely nanoseconds.  Although c was 

explicitly included in the algebraic calculation, it can be ignored in numerical calculations when 

using units that make c = 1. 
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Chuck asks his friends to look at figure 4.2, a reproduction of figure 3.3.  “On that 

spacetime graph, my worldline is the both Tbus-axis and the Xbus = 0 line.  A & B see me 

moving with a velocity v with respect to them and since I passed Anne when TEarth = 0, 

my worldline on their spacetime diagram is represented by the equation, XEarth = v TEarth, 

or in the more standard form of t = mx + b, see Appendix A, as TEarth = 
1

𝑣
 XEarth.  So the 

Tbus-axis is represented by the line TEarth = 
1

𝑣
 XEarth on the Earth-based spacetime diagram.” 

     Anne    Chuck           Bev    Ed 

 

 

       B 

 

Figure 4.2 

Now Chuck points to the red line on figure 4.2.  “It is both the Tbus = 0 line and the Xbus-

axis and passes through the origin and point B where Ed passed Bev.  The coordinates 

of point B are XEarth = DEarth and 𝑇𝑒𝑎𝑟𝑡ℎ =
𝑣

𝑐2
𝐷𝑒𝑎𝑟𝑡ℎ.  I can use those two points to find the 

values of m and b in the general equation for a straight line, TEarth = m XEarth + b.” 

Question 4.1:  Follow Chuck’s directions and use the fact that the Xbus-axis passes 

through the origin, XEarth = TEarth = 0, and point B where TEarth = vDEarth/c2 and XEarth = DEarth 

to find m and b for the equation of the Xbus-axis, TEarth = mXEarth + b, on the XEarth vs TEarth 

graph. 

Chuck takes a minute or two to finish his calculation.  Then he adds the following two 

equations to Bev’s list. 

𝑇𝑒𝑎𝑟𝑡ℎ =
1

𝑣
𝑋𝑒𝑎𝑟𝑡ℎ  (Tbus-axis)         (4.11a) 

𝑇𝑒𝑎𝑟𝑡ℎ =
𝑣

𝑐2 𝑋𝑒𝑎𝑟𝑡ℎ  (Xbus-axis)        (4.11b) 

The four friends feel pretty pleased with themselves.  Dean says that space and time are 

way stranger than he first thought.  But he is gaining confidence that their analysis is 

correct though disconcerting. 
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Chuck, looking over the list of equations in Bev’s pad, suggests they test their algebraic 

equations by redoing the experiment with the bus and laser, except this time he and 

Dean will drive the super bus at v = 0.8 ft/ns or 
4

5
 the speed of light.  “Great idea,” says 

Anne, “Let’s meet again tomorrow with a plan for the new experiment.” 

Questions 4.2a to 4.2d:  The goal of these questions is find how far to the right of Anne 

Bev needs be standing to be adjacent to Dean when the light flash arrives when he is 

riding in a super bus traveling at 0.8 ft/ns? 

a) What is the value of shrinkage factor, √1 − (
𝑣

𝑐
)2 , for a bus moving at 

4

5
 the speed 

of light? 

b) Using the value find in part a), how long is the 100 foot bus according to A & B? 

c) The flash starts its trip when Anne and Chuck are next to one another.  

According to A & B, Dean is how many feet to the right of Anne, at that instant? 

At the instant described in part c), a light flash leaves the back of the bus traveling at 1 

ft/ns towards Dean at the front of the bus.  Meanwhile Bev is waiting patiently down 

the road.  Dean is moving toward Bev at 0.8 ft/ns, the velocity of the bus.  The place 

where the worldlines of the flash and Dean intersect marks the spacetime point where 

Bev needs to be in order to be adjacent to Dean when the flash arrives. 

d) The above information can be used to draw a careful Earth-based spacetime 

diagram that will show where Bev needs to be standing.  Alternatively, the 

information can be used to write down the equations for the worldlines of the 

flash and Dean in terms of XEarth and TEarth.  Solving those equations gives the 

coordinates, XEarth and TEarth, where the two worldlines meet.  Use one of these 

methods, or any other method, to find the place along the road that Bev needs to 

be stationed at the start of the experiment.   

Testing the Theory 

Our four experimenters did an experiment, the laser flash in the bus moving at 0.6 ft/ns, which 

was carefully observed by C & D on the bus frame and A & B on Earth.  The results conflicted 

with their view of space and time.  Namely, A & B expected to measure the speed of light to be 

1.6 ft/ns.  Remember that was the underlying assumption used when it was decided that Bev 

needed to be 160 feet to the right of Anne. 
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When they enlisted Ed and redid the experiment with Bev stationed 200 feet from Anne, they 

discovered that the speed of light was the same for bus and Earth-frame observers.  In this 

chapter they used the constancy of the speed of light to re-analyze the experiment.  They found 

that lengths shrunk and watches ran slow by the same factor, √1 − (
𝑣

𝑐
)2 , and that clocks got 

unsynchronized by an amount vDEarth/c2.  These results agreed perfectly with the numerical data 

collected during their experiment with the bus moving at 0.6 ft/ns. 

Having a theory that agrees with pre-existing data is very encouraging, but the real test of a 

theory is to make predictions about the outcome of an experiment before the experiment is done.  

That is the reason our four scientifically literate friends are so anxious to redo the experiment 

with the bus going at v = 0.8 ft/ns. 

Bright and early the next morning, when Anne and Bev arrive at the super bus’ garage, 

they find Chuck and Dean have already washed the super bus and have gotten 

everything ready for the experiment.  A & B ask C & D if they have calculated the spot 

along the road where Bev needs to be standing.  Chuck replies, “Of course, we drew a 

very nice spacetime graph to find the place Bev needs to stand.”  Anne replies, “Bev 

and I did a little algebra to find Bev’s location at the start of the experiment.”  

With that, Anne writes down the equations for the worldlines of the flash and Dean, 

Xflash,Earth = TEarth          (4.12a) 

XDean,Earth = 60 + 
4

5
 TEarth.         (4.12b)  

She used the values c = 1 ft/ns and v = 
4

5
 ft/ns in those equations.  Also, Anne reminds C 

& D, that according to her and Bev, the bus is only 60 feet long.  When the flash reached 

Dean, Xflash,Earth = XDean,Earth.   Then they solved that equation for TEarth to discover that Bev 

needed to be standing at XEarth = 300 feet.  

Dean smiles and points to figure 4.3, “We got the same answer by finding the place my 

worldline intersected the worldline of the light flash.” 
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Laser 

Bev 

Dean 

Chuck 

Since A & B and C 

& D agree on 

where Bev should 

stand, they are 

ready to do the 

experiment with 

the bus going 0.8 

ft/ns.  C & D head 

off in the bus.  A & 

B synchronize 

their watches and 

Bev marches 300 

feet down the 

road.  On the bus, 

C & D also 

synchronize their 

watches. 

Anne alerts Bev 

that the bus is 

coming.  The bus 

zips by, Anne sees Chuck press the button on the laser to start the flash on its way, and 

an instant later she sees Bev jumping up and down with excitement.  Bev yells to Anne, 

“the experiment confirmed our theory and calculations.”  Of course C & D were just as 

excited since Dean saw Bev out his window just as the flash arrived at the front of the 

bus. 

When the bus got back to the garage, A & B have champagne ready for a little 

celebration.  But to their surprise, Dean left the bus with a little bit of a frown. 

A Question about Synchronization 

Anne and Bev ask Dean, what’s up?  Dean replies, “On the way back to the garage, I 

began to think about how we synchronized our watches.  On the bus, we meet at the 

back and simultaneously start our watches.  Then I walk to the front of the bus.  After 

collecting data, I walk back to Chuck to share the data collected.”  A & B nod in 

agreement and Bev says, “We do basically the same thing.   What’s the problem?” 
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Dean explains, “According to our theory, my watch runs slow compared to Chuck’s 

while I am walking to the front of the bus and then back to Chuck after the experiment 

is over.  That ought to cause our watches to become unsynchronized.  But when I 

compared my watch with Chuck’s after the experiment, our watches appeared to be 

perfectly synchronized.  I don’t understand how that is possible!” 

Anne gives a sigh of relief, smiles, and says, “No problem.  The answer has to do with 

the immense difference between your speed walking in the bus and the speed of light.  

Even if you walked at a quick 10 ft/s, compared to light, your speed would be 

miniscule.” 

Question 4.3:  If Dean walked for 1 mile at 10 ft/s, how long would it take him?  Find the 

answer in terms of minutes and seconds, x minutes and y seconds. 

Anne works through the following calculation for Dean while her friends watch.  Light 

travels a billion, 109, feet in a second, so for v = 10 ft/s, the ratio 
v

c
 is ten over a billion, or 

in scientific notation, 10-8.  It takes Dean 10 seconds to walk from the back to the front of 

the 100 ft long bus.  During those 10 seconds, his watch ran slow by the factor √1 − (
v

c
)2 

compared to Chuck’s stationary watch.  But (
v

c
)2 is (10-8)2 = (10-8)( 10-8) = 10-16, an 

unimaginably small number.  So Dean’s watch ticked off 10 √1 − 10−16  seconds during 

his walk across the bus.  Most hand held calculators will evaluate 1 - 10-16 to be exactly 

1!   

Question 4.4:  Try to evaluate √1 − 10−16 on a calculator.  If you got an answer different 

than 1, make sure you did the evaluation correctly!  If you are convinced your calculator 

gave you a correct answer, compare it with the value found below by using the 

approximation  √1 − 𝑥 ≅ 1 −  
𝑥

2
 which works better and better the smaller the value of x.  

The agreement ought to be perfect. 

A simple way of proving the useful equation √1 − 𝑥 ≅ 1 −  
𝑥

2
 is to start with the expression 

√(1 −
𝑥

2
)2  which can be written in the following two ways:  

√(1 −
𝑥

2
)2 = (1 −

𝑥

2
)  
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√(1 −
𝑥

2
)2 = √1 − 𝑥 +

𝑥2

4
  

Now if x is small compared to 1 so that x2 is “much smaller” than x, the x2 term in the radical 

can be ignored giving√1 − 𝑥 +
𝑥2

4
 ≅  √1 − 𝑥 .  Combining the top equation with the 

approximation for the lower equation gives the desired relationship, 

√1 − 𝑥  ≅  1 −
𝑥

2
 .          (4.13) 

In the numerical example worked out by Anne below x is 10-16 making x2 = 10-32 which is 

unarguably much, much smaller than x!  For that numerical example, this is an extremely 

accurate approximation. 

Anne points out that the difference, (10 - 10 √1 − 10−16 ) seconds, is the amount of time 

Dean’s watch fell behind Chuck’s while walking to the front of the bus.  If we use 

equation 4.13 to find that difference, we get 
10−15

2
 seconds.  After the experiment is over, 

Dean walked back to Chuck and his watch loses another 
10−15

2
 seconds.   So at the end of 

the experiment, Dean’s watch was 10-15 seconds out of synch with Chuck’s. 

Triumphantly, Anne reminds Dean that their watches, though wonderfully accurate, 

are only accurate to tenths of a nanosecond, 10-10 seconds.  A time difference of 10-15 

seconds is 100,000 times too small to be measurable by their watches.  Consequently, to 

all intents and purposes, the watches on the bus stayed in perfect synchronization.  And 

of course, the same can be said about the watches she and Bev used during the 

experiment. 

Dean feels much, much better after this explanation and yells to no one in particular, 

“What’s holding up the champagne?” 

Global Positioning System (GPS) 

GPS technology is now found in all sorts of useful devices.  As it turns out, these devices are 

testing the correctness of both Special and General Relativity 24 hours a day 7 days a week.  

Satellites orbiting with very accurate clocks continually announce their position and time to 

GPS receivers on Earth.  The devices on Earth figure out how far they are from three or four of 

these satellites.  They do this by using their own internal clocks to calculate the time it took for 

the messages to arrive from each of the satellites.  Knowing the time and the fact that radio waves 
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travel at 1 ft/ns, the GPS on the ground figures out how far it is from each satellite.  Knowing 

the distance from three satellites fixes the location of the GPS on the ground.  The system works 

because the time for the radio messages to travel from the satellite to the GPS can be determined 

very accurately.  

The satellites are approximately 16,000 miles from Earth’s center and orbit at 8600 mph while 

the clocks on the ground, because of the Earth’s rotation, move at about 1000 mph.  Because 

moving clocks run slow, the clock in the satellite runs slower than an identical clock on the 

ground.  At the end of Chapter Ten, we will learn that clocks further from the center of Earth 

run faster than identical clocks closer to the center of Earth.  This is an effect of General 

Relativity, Einstein’s theory of gravity.  When calculated in detail, it turns out that the effects of 

General Relativity trump those of Special Relativity for orbiting clocks:  the net result is that 

orbiting clocks gain about 40,000 nanoseconds a day compared to Earth-based clocks.  At the 

speed of light, that corresponds to 40,000 feet or about 8 miles of GPS error if the orbiting clocks 

were not designed to correct for the effects of both Special and General Relativity.  The fact that a 

good ground-based GPS can fix locations on Earth with an accuracy of a foot or less is daily 

confirmation that moving clocks run slow just as predicted by Special Relativity and clocks 

further from the center of Earth run fast in accordance with General Relativity. 

  



72 
 

Chapter Five:  The Relationship between Bus and Earth Observers 

Combining Spacetime Graphs 

Over the next several days, Chuck keeps thinking about equations 4.11a and 4.11b, 

𝑇𝐸𝑎𝑟𝑡ℎ =
1

𝑣
𝑋𝐸𝑎𝑟𝑡ℎ  (Tbus-axis) and 𝑇𝐸𝑎𝑟𝑡ℎ =

𝑣

𝑐2 𝑋𝐸𝑎𝑟𝑡ℎ  (Xbus-axis).  Back in Chapter One, it 

was fairly straightforward to represent bus and Earth coordinates on the same 

spacetime graph.  He recognizes that the primary reason that it was simple back then 

was because Earth and bus times were the same, TEarth = Tbus = T.  So not only was one 

second of bus time equal to one second of Earth time, but two events that happened at 

the same bus time also happened at the same Earth time.  Consequently watches 

synchronized on the bus looked synchronized to Earth observers and vice versa.  The 

constant time lines for bus and Earth observers were just horizontal lines crossing the 

vertical constant XEarth lines and the slanted Xbus lines.  Furthermore, there was no 

disagreement among bus and Earth observers about the length of the bus or anything 

else.  All of that has changed.  Their careful experiments with the super bus showed that 

his previous understanding of space and time were wrong.  But Chuck is determined to 

find a new visualization of space and time that works for observers moving at 

relativistic speeds with respect to one another. 

This may be a good time to review the discussion in section The Galilean Transformation 

Equations and figure 1.5, the spacetime graph Chuck is trying to “fix” to make it consistent 

with the real space and time described in Chapters Three and Four. 

After making several sketches with axes labeled XEarth , Xbus, TEarth, and Tbus, he throws up 

his hands and yells over to Dean, “The endless writing of subscripts is driving me 

crazy!” Dean wanders over, looks at the scattered pile of graphs, and suggests that he 

stop using subscripts.  “Why not use lower and uppercase letters.  For example let XEarth 

= x, TEarth = t, Xbus = X, and Tbus = T.” 

Chuck jumps at Dean’s solution and enthusiastically gets back to work on finding a 

modification of the old spacetime graphs that will work regardless of the relative speed 

of the observers.  After a while, he calls Dean over to act as a sounding board.  As Dean 

watches, Chuck sketches and talks.  “Notice it is easy to draw a spacetime diagram that 

represents the spacetime coordinates of any event with respect to EITHER the Earth or 

bus observers.”  He shows Dean the following two sketches: 
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     t              T  

 

 

         x                 X 

Figure 5.1a -- Earth-based x vs t    Figure 5.1b -- Bus-based X vs T 

Dean looks at the two sketches and notices that Chuck has adopted his notational 

device to distinguish Earth and bus coordinates.  But other than that he cannot see any 

difference between the two graphs except one has blue lines and the other red.  But he 

decides to encourage Chuck and tells him the graphs are very, uh colorful.  Chuck 

agrees and explains that the horizontal lines correspond to constant times, blue for 

Earth times and red for bus times.  The vertical dotted lines correspond to constant x 

(blue) and X (red) values respectively. 

Chuck tells Dean, “But remember that if Earth observers conclude that two events are 

simultaneous for them, the bus observers will disagree.  Also the Earth observers see 

bus clocks running slow and measure proper bus-frame lengths to be shorter and of 

course the bus observers come to exactly the same conclusions with respect to Earth 

times and distances.  So I am having a hard time picturing lines of constant bus time 

and constant bus position on the Earth-based spacetime graph.” 

Dean points out that the spacetime graphs in figures 5.1a and 5.1b are indistinguishable 

as long as each set of observers keeps to their own coordinates.  Earth observers plot 

only x and t values on their graph while bus people plot only X and T.  This is another 

manifestation of the Principle of Relativity – the Earth and bus frames are 

indistinguishable so their spacetime diagrams also have to be indistinguishable. 

Chuck nods in agreement, but is still fixated on drawing a single spacetime graph that 

can be used to find the coordinates of an event for either set of observers.  He tells Dean, 

“I can use equations 4.11a and 4.11b to draw the X and T axes on the x vs t spacetime 

graph.”  Chuck shows Dean the sketch in figure 5.2 with both set of axes on the same 

graph.  
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This diagram is a little too abstract for Dean, so he asks Chuck to be more specific and 

to draw the diagram for the experiment they did with the super bus traveling at 0.6 

ft/ns. 

     Figure 5.2 

          t      T (Chuck) 

 

 

        X 

        x 

Chuck replies, “No problem,” and inserts v = 
3

5
  into equations 4.11a and 4.11b.  “The T-

axis is represented by the equation t = 
5

3
 x and the X-axis by t = 

3

5
 x.  But since my 

watches and rulers measure different elapsed times and distances than Earth observers, 

I am not sure how to fix the scales of the various axes.” 

Dean closes his eyes to help him picture Chuck moving through the spacetime of Earth 

observers.  Eyes still closed, he says, “When you pass the origin, your watch agrees with 

the watch of the Earth observer at their origin.  For concreteness, let’s have Anne at the 

Earth origin.  At that instant, when you are adjacent to Anne, both watches read zero.  

But as you travel through spacetime, you pass different Earth observers who notice that 

your watch is running slow compared to theirs.  For example, since you are moving at 

0.6 ft/ns, after 10 ns of Earth time, you have moved 6 feet of Earth distance putting you 

at the Earth spacetime point x = 6 feet and t = 10 ns.  When the Earth observer at that 

spot looks at your passing watch, she sees it reading only 8 ns, 80% of the time on her 

watch.  So the bus coordinates for that same spacetime point are X = 0 and T = 8 ns.”  

Dean opens his eyes in time to see Chuck staring at him with something akin to awe.  

Chuck quickly adds the t = 10 and t = 20 ns lines to the spacetime graph (horizontal blue 

lines): 

     t = 20 ns 

  Figure 5.3  t = 10 ns      
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Chuck looks at Dean and pointing to figure 5.3 says, “So my watch reads 8 ns when I 

cross the t = 10 ns line and 16 ns when I cross the t = 20 ns line.  For me, the “longer 

slanted distance” between those two lines corresponds to 8 ns but for Earth observers 

that “shorter distance” corresponds to a larger time interval, namely10 ns.  Therefore 

we can use those known time intervals to calibrate the t and T axes.”  Chuck looks at 

Dean, and asks, “What about the X-axis?” 

Dean closes his eyes again and imagines an Earth observer standing at the 10 foot road 

marker with bus observers moving by.  Eyes still closed, and speaking in a trancelike 

voice, Dean says, “Two passing bus observers, making a simultaneous measurement of 

the distance between x = 0 and x = 10 feet, would measure that proper separation to be 

only 8 feet.  Just as you pass the origin, another bus-frame observer is simultaneously in 

the bus frame passing the x = 10 foot marker.  That bus observer has bus coordinates X = 

8 feet and T = 0, a point that lies on the X-axis represented by the equation t = 
3

5
 x.  But 

we know that x = 10 feet at that point so t = 
3

5
 10 = 6 ns.  Therefore, the spacetime point x 

= 10 feet and t = 6 ns corresponds to X = 8 feet and T = 0.”  Before Dean can open his 

eyes, he hears Chuck feverishly adding new lines to his spacetime graph. 

      t       T 

               

 

         X 

           x=10 ft   x = 20 ft  x 

      Figure 5.4 

Dean opens his eyes just in time to see Chuck pointing to the blue dotted lines on figure 

5.4.  “As per your clever explanation,” Chucks says to Dean, “we know that the 

constant x = 10 and 20 feet lines cross the X-axis at 8 and 16 feet respectively.  So we can 

use those lines to calibrate the x and X-axes exactly like we calibrated the t and T-axes.” 

Chuck starts adding new lines to the sketch in figure 5.4 and talks simultaneously.  “All 

the bus observers are moving at the same speed.  So the bus observers at X = 8 and 16 

feet have worldlines parallel to mine at X = 0 (Remember Chuck’s worldline is also the T-
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axis.).  And of course those observers have watches that tick at the same rate as mine, so 

the distance between the T = 0 and 8 ns lines is the same for them as for me.  That means 

the constant T = 8 and 16 ns lines are parallel to the X-axis.”  With that he jumps up and 

startles Dean by hugging him as he waves figure 5.5 in front of his face.  Chuck says a 

little too loudly for Dean, “I have to call Anne and Bev and have them come over as 

soon as possible to see figure 5.5.”  Dean is happy to be released as Chuck scoots over to 

the phone. 

By the time A & B arrive, Chuck has a larger version of figure 5.5 proudly sitting on an 

easel. 

        t      T   

              t = 10 and 20 ns 

              T = 8 and 16 ns   

             

         X        x = 10 and 20 feet 

           x        X = 8 and 16 feet 

Figure 5.5 

Chuck quickly brings A & B up to speed by describing how he and Dean figured out 

how to draw the constant X and T lines on the x vs t spacetime diagram.  A & B ask 

some questions but after a short time come to fully appreciate the cleverness and utility 

of this combined spacetime graph. 

The distance from the origin to the dotted or solid blue lines corresponds to 10 ft or 10 ns along 

the x and t-axes respectively.  Meanwhile the place where those lines cross the X and T-axes 

corresponds to 8 ft and 8 ns in the bus frame.  Notice that 8 ft or 8 ns along the X or T-axes are 

represented by a larger physical distance on the graph than the 10 ft or 10 ns along the x or t-

axes.  That difference in scale is required to make spacetime graphs like figure 5.5 consistent with 

the spacetime of Special Relativity, which is of course the spacetime we actually live in!  In 

particular, since both Earth and bus observers measure the speed of light to be 1 ft/ns, a light 

flash passing through the origins of those coordinates has to pass through Earth points 10 ft and 

10 ns, 20 ft and 20 ns, etc.  Bus observers will also see that flash pass through equivalent points 

like 8 ft and 8 ns, 16 ft and 16 ns, etc. 
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Question 5.1:  Using graph paper, draw a spacetime graph for a super bus traveling at v 

= 0.8 = 
4

5
 ft/ns with respect to Earth that is analogous to figure 5.5.  Include constant x = 

10, 20, and 30 foot and t = 10, 20, and 30 ns lines along with the appropriate constant X 

and T lines.  (What does Chuck’s watch read when he crosses the t = 10 ns line?  The t = 

20 ns line?  These two answers ought to help you decide what the “appropriate X and T 

lines are.) 

Anne walks over to the easel and flips to a blank page.  She picks up Chuck’s colored 

markers and draws the spacetime graph in figure 5.6. 

            Chuck          Dean 

 

 

 

 

          

      Figure 5.6 

She looks at C & D, and says, “Your diagram highlights the fact that Earth and bus 

observers disagree about simultaneous events.  This disagreement caused much of the 

confusion we had in understanding the results of our experiment with the super bus.  

When we compared data taken at the start of the experiment we were comparing apples 

with oranges.” 

Now Anne points to her sketch, figure 5.6, which shows the location of the bus at three 

different times.  She lectures her friends, “The lowest pair of heavy blue and red lines 

shows the spacetime location of the bus at the beginning of the experiment when both t 

and T equaled zero.  Of course that is also the instant when I saw Chuck pass me.  At 

that moment, Earth-frame observers see the bus between the spacetime points x = 0 ft 

and t = 0 ns and x = 80 ft and t = 0 ns, the lowest heavy blue line on the graph.  But 

Chuck and his bus riding friends would disagree and instead claim the bus was the 

heavy red line that goes from him at X = 0 ft and T = 0 ns to Dean at X = 100 ft and T = 0 

ns.” 
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Bev asks Anne, “What about the two other pairs of heavy blue and red lines?” 

Anne answers, “A little later the bus has moved forward in time, up the spacetime 

graph, and towards the right.  The middle pair of heavy lines represents the bus at that 

later time.  The upmost pair of lines shows the bus at an even later time.  And just like 

at the start of the experiment, Earth observers claim the bus is represented by the heavy 

blue line while bus observers insist it is the heavy red line.” 

Chuck, who has been very quiet, points to the middle pair of “buses” on Anne’s graph 

and says, “Suppose I am at my usual spot in the rear of the bus.  I glance down at my 

watch and see it reading 8 ns.  That means the Earth observer who is adjacent to me has 

a watch reading 10 ns.”  He stops and sees Anne nodding in agreement, and takes that 

as a sign to continue, “So me and my bus riding colleagues would point to the heavy 

red line and say that is the spacetime location of the bus at the instant T = 8 ns.  But the 

Earth observer who is adjacent to me looks at her watch and disagrees.  For her and her 

colleagues, the bus at t = 10 ns is the heavy blue line.”  Anne agrees with Chuck that not 

only do bus and Earth observers disagree about how to represent the bus at a particular 

time on a spacetime graph, but they also disagree about the value of that particular 

time! 

Bev squints at Anne’s diagram and adds, “I can almost visualize the bus moving 

through spacetime as the heavy blue line sliding up the graph between the worldlines 

of C & D.”  C & D frown at Bev since they visualize the bus traveling through spacetime 

by the slanted heavy red line sliding up the T-axis. 

Question 5.2:  On the spacetime diagram drawn for question 5.1, there is not a large 

enough swatch of spacetime to draw a 100-foot bus.  So instead, replace the bus passing 

Anne and Bev by a van with a proper length of 18 feet.  On the figure you drew to 

answer exercise 5.1, draw a red line showing the spacetime location of the van 

according to A & B at t = 10 ns.  Then add a blue line representing the van in spacetime 

according to C & D when their watches read 10 ns.   

Notice that a question like “draw the location of the van in spacetime at 10 ns” is intrinsically 

ambiguous.  To remove the ambiguity, the question needs to include 10 ns on whose watch.  

Analogously questions that ask for the distance or time separations between two events must 

specify a particular set of observers.  For example, how long is the super bus, is a question with 

two valid answers, 100 feet or 80 feet.  In fact sets of observers moving with different speeds with 
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respect to the super bus could, in principle, see the super bus have any length from 1 inch to 100 

feet!  But none of these inertial observers could ever measure the bus to be longer than its proper 

length, 100 feet. 

Question 5.3:  How fast, relative to the bus, would observers have to be moving to 

measure the length of the bus to be only 1 inch? 

Bev Generalizes Chuck’s Spacetime Diagram 

The algebra in this section is comparable to that used at the end of Chapter Four.  The reward for 

persevering through this section is a derivation of the very useful and widely used Lorentz 

Transformation equations.  Therefore you are encouraged to follow the arguments carefully.  On 

the other hand, if you get too bogged down, read through material quickly and move on to 

Chapter Six.   Most of the topics covered in the remainder of the book can be understood without 

using the Lorentz Transformation equations.  And you can always return to this section later if 

you want to give it another go. 

 

Bev spent some time admiring figure 5.5, the spacetime diagram drawn by Chuck.  She 

noticed that any point on that spacetime graph is located at the intersection of a unique 

pair of constant x and t or X and T lines.  This conveniently allows the Earth and bus 

coordinates for every event that happens during an experiment to be exhibited on a 

single spacetime graph instead of on two separate graphs.  But figure 5.5 was drawn for 

the specific bus velocity of 0.6 ft/ns.  A different spacetime diagram would be needed to 

describe the intertwining of space and time for a bus moving at any other velocity, see 

question 5.1. 

 

After staring at the figure for a while, Bev begins to envision a way to develop a set of 

equations that would allow her to calculate the bus coordinates for any event given that 

she knew the Earth coordinates for the event and the velocity, v, of the bus. 

 

Back in Chapter One, our intrepid quartet came up with the Galilean transformation equations 

that related Earth and bus coordinates for any point in spacetime under the assumption that the 

law for the addition of velocities, VXY = VXZ + VZY, was true.  The relationship between 

coordinates was given by the simple equations, XEarth = Xbus + vT and Xbus = XEarth – vT.  What 

Bev is proposing to do, is to find a new set of equations connecting the bus coordinates X and T 
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to the Earth coordinates x and t that work for spacetime as it actually exists, the spacetime of 

shrinking buses and slow watches. 

 

By the way, the answer to question 5.3 is v = 0.99999965 ft/ns! 

 

Bev flips the page on Chuck’s pad sitting on the easel and sketches a spacetime diagram 

with the bus moving with a general velocity of v, figure 5.7.  Bev explains that she 

included a general line of constant T (parallel to the X-axis) that passes through point A 

on the Earth t-axis, (0, tA) and a constant X line (parallel to the T-axis) that crosses the x-

axis at point B, (xB, 0).  Those two lines are examples of any of constant T and X lines 

that could be drawn on figure 5.7.  Now she reminds her friends that any straight line 

on an x vs t graph can be described by an equation of the form t = mx + b, where m is 

the slope of the line and b is the t-intercept. 

 

x = 0    X = 0    
t-axis   T-axis    X 
      T 

         

A             

           X-axis (T = 0)  

           x-axis (t = 0)  

Figure 5.7    B 

On the pad, Bev re-writes equations 4.11a and 4.11b in terms of the new notation:  the T-

axis is represented by the line t = 
1

𝑣
 x and the X-axis by the line t = 

𝑣

𝑐2  x.  The slope of the 

T-axis is  
1

𝑣
  while the slope of the X-axis is 

𝑣

𝑐2  .  

She asks her friends to focus their attention on the X-axis which is also the T = 0 line and 

tells them, “All constant T lines have the same slope, m = 
𝑣

𝑐2  , but intercept the t-axis at 

different points.” Bev points out that the constant T line shown on the figure passes 

through the point (0, tA).  Anne interrupts Bev to remind them that when she passed 

Chuck both watches read zero and then she saw a series of bus observers pass as she 

stood at the Earth origin.  When she was at the spacetime point A, her watch read time 
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tA while the bus observer adjacent to her had a watch that read T ns.  Anne tells her 

friends, “In this scenario, it is my watch that appears to run slow compared to the two 

bus watches, so my watch reads time 𝑇√1 −  
v2

c2  at point A.  Therefore the x and t 

coordinates of point A are just (0, √1 −  
𝑣2

𝑐2
 ).” 

Bev continues with Anne’s chain of thought by substituting the values at point A into 

the equation, t = 
𝑣

𝑐2  x + b, to find the particular value of b for the constant T line shown 

in figure 5.7:  𝑇√1 −  
𝑣2

𝑐2  = 
𝑣

𝑐2  0 + b and solving that equation for b.  Bev writes the result 

on the pad, 

b = 𝑇√1 −  
𝑣2

𝑐2            (5.1) 

Bev uses equation 5.1 to re-write the equation for the constant T line on the x and t 

spacetime graph, 

𝑡 =
𝑣

𝑐2 𝑥 + 𝑇√1 −  
𝑣2

𝑐2 .         (5.2)  

Bev and Anne smugly point out that an analogous argument can be used to find the 

equation for any line of constant X.  But before they can continue their display of 

dazzling algebra, Dean screams, “Stop, please stop.  Would one of you kindly explain 

exactly what equation 5.2 means?” 

Question 5.4:  Earlier Chuck drew the spacetime graph for a bus velocity of 0.6 ft/ns, 

figure 5.1.  Use equation 5.2 to find the equations for the T = 8 and 16 ns lines on that 

graph. 

Question 5.5:  On figure 5.1, the constant T = 8 and 16 ns lines pass through the points x 

= 6 and t = 10 and x = 12 feet and t = 20 ns respectively.  Use those values of x and t to 

check your answers to question 5.4. 

Before anyone can reply to Dean, Chuck solves equation 5.2 for T, and draws a box 

around it. 
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            (5.3) 

Pointing to equation 5.3, Chuck enthusiastically says, “This is exactly the equation I was 

searching for earlier.  It gives me the bus time T for any spacetime point for which the 

Earth coordinates, x and t, are known.  Once we have the equivalent equation for X in 

terms of x and t, we can translate the Earth coordinates of any event directly into bus 

coordinates without having to draw a spacetime graph like figure 5.1.” 

Questions 5.6a to 5.6e:  Follow the outline below in conjunction with the steps that led 

to equation 5.3 to find the analogous equation that connects any spacetime point x and t 

to X.  (The primary purpose of this question is to help you better understand the derivation of 

equation 5.3.  If the algebra is more than you bargained for, skip this question and read on.) 

a) Any constant X line can be written in the form t = mx + b.  What is the slope m of 

this line? 

b) The constant X line in figure 5.7 passes through point B, (xB, 0), on the x-axis.  

What is the value of xB in terms of v, c, and X. 

c) Substitute m and the coordinates of point B into the equation t = mx + b and solve 

for b, the t-intercept of the constant X line in terms of X, v, and c. 

d) Use the values found for m and b to find the specific equation t = mx + b that 

represents any line of constant X. 

e) Solve your answer in d) for X.  This equation for X in terms of x, t, v, and c is 

analogous to equation 5.3. 

Chuck triumphantly writes down the equations for X and T in terms of x and t: 

𝑋 =
1

√1− 
𝑣2

𝑐2

(𝑥 − 𝑣𝑡)           (5.4a) 

𝑇 =
1

√1− 
𝑣2

𝑐2

(𝑡 −
𝑣

𝑐2 
 x).          (5.4b) 

Note that these equations can be solved to give x and t in terms of X and T.  Those two equations 

are written below.  Either pair, 5.4a and 5.4b or 5.5a and 5.5b, can be referred to as the Lorentz 

Transformation equations. 

𝑇 =
1

√1 − 
𝑣2

𝑐2

(𝑡 −
𝑣

𝑐2 
𝑥) 
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𝑥 =
1

√1− 
𝑣2

𝑐2

(𝑋 + 𝑣𝑇)           (5.5a) 

𝑡 =
1

√1− 
𝑣2

𝑐2

(𝑇 +
𝑣

𝑐2 
 X).          (5.5b) 

From the perspective of bus observers, Earth is moving with a velocity of – v.  Therefore 

equations 5.4a and 5.4b can be changed into equations 5.5a and 5.5b by merely switching the 

sign of v and interchanging the x and t’s with X and T’s. 

Notice that when 
𝑣

𝑐
 is small, both 

𝑣

𝑐2 and 
𝑣2

𝑐2 are very small.  For the speeds encountered in our 

everyday lives both 
𝑣

𝑐2 and 
𝑣2

𝑐2 can be replaced by zero in the Lorentz Transformation equations.  

When those substitutions are made, the Lorentz equations reduce to the Galilean equations from 

Chapter One, namely x = X + vT and t = T.  This had to be the case since the Galilean equations 

worked fine for velocities that were small compared to the speed of light. 

Dean, with glazed over eyes, says, “I am impressed with the algebraic virtuosity shown 

by the three of you, but would appreciate a bit of time to come to grips with the Lorentz 

Transformation equations before seeing any more algebraic manipulations.” 

A Simple Example for Dean 

Anne reminds Dean that when they did the re-run of the first experiment of the super 

bus, Bev passed Dean when Bev’s watch read 200 ns.  Also Bev was located at the 200 

foot marker along the road.  Consequently, the spacetime point that represented Bev at 

that instant was x = 200 ft and t = 200 ns.  

Table 3.1 on page 49 summarizes the data collected from that earlier experiment done in chapter 

three.   

Those values could be used in equations 5.4a and 5.4b to find his coordinates at the 

instant Bev passed.  Dean grabs a piece of paper and quickly calculates the values for X 

and T from those equations.  Dean looks up quite amazed and says, “the equations 

worked perfectly, X = 100 ft and T = 100 ns.” 

Question  5.7:  Check Dean’s arithmetic and convince yourself that equations 5.4a and 

5.4b transform the Earth coordinates of that event into the correct bus coordinates. 
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Anne also points out to Dean that when Bev saw, Ed at X = 160 feet and T = 0 ns, rush 

by, she looked at her watch and noticed that it read 120 ns.   

Question 5.8:  Use equations 5.5a and 5.5b to show that the spacetime point X = 160 feet 

and T = 0 converts to the correct Earth coordinates x and t, namely those occupied by 

Bev! 

Dean says, “Thanks Anne, for those examples, I feel much better now.” 

The Revised Equation for the Addition of Velocities 

Dean is now a tad more enthusiastic about the Lorentz Transformation equations.  He 

asks, “I was wondering if these equations could help us find the relativistic version of 

the equation, VXY = VXZ + VZY.” 

While his three friends ponder that question, he remembers the experiment where he 

had to catch the pigeon flying at 20 ft/s, a speed that was too small to cause any conflict 

with the intuitively pleasing equation, VXY = VXZ + VZY that worked just fine in Chapter 

One. 

“Remember that pigeon we used earlier that was trained to fly at 20 ft/s,” Dean asks.  

Now that he has recaptured the attention of his three friends, he points out that in the 

spirit of algebra, we can think of the pigeon flying at some unspecified speed U with 

respect to the bus.  Later we can pick U to be large or small compared to the speed of 

light but for now, it is just U.” 

His friends smile as Dean tiptoes into using algebra to analyze a problem.  He is too 

busy concentrating to notice their smiles, and continues developing his scenario with 

the pigeon, “If Chuck, at X = 0, releases the pigeon when T = 0, then for Chuck and me, 

the pigeon’s position in the bus is given by the equation X = UT.  The bus coordinates 

for the pigeon as it flies from Chuck towards me are just X = UT and T.”   Dean adds, 

“Anne is also at the spacetime point where the pigeon starts its flight.  Her Earth 

coordinates at that instant are x = 0 and t = 0.  According to her, the pigeon has a 

velocity u with respect to Earth.  So Anne assigns coordinates x = ut and t for the pigeon 

as it flies from her to Bev.” 

Keep in mind that as the pigeon flies from the rear to the front of the bus, its position can be 

described in bus coordinates by noting that it passes through a series of spacetime points with X 
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= UT at time T.  But that same sequence of spacetime points in Earth coordinates is just x = ut 

and t. 

Bev runs to the easel, flips up a clean sheet, and takes over the conversation from Dean.  

Before beginning, she gives Dean a high five and a quick pat on the back.  Anne and 

Chuck are still not quite up to speed, and Bev gives them no time to catch up.  She starts 

right in, “Dean’s analysis of the pigeon experiment was brilliant.  The bus coordinates 

of the pigeon are X = UT and T.  We can put those coordinates into equations 5.5a and 

5.5b to find the Earth coordinates for the flying pigeon x and t.”  She writes those 

equations down: 

𝑥 =
1

√1− 
𝑣2

𝑐2

(𝑈𝑇 + 𝑣𝑇)          

𝑡 =
1

√1− 
𝑣2

𝑐2

(𝑇 +
𝑣

𝑐2  UT).        

And continues, “But x = ut, so the velocity of the pigeon with respect to the bus is just 

the ratio of those equations, namely x/t.”  Bev, with a flourish, writes down the equation 

for u, 

u = 
𝑈+ 𝑣

1 +  
𝑣𝑈

𝑐2

 .           (5.6) 

Dean asks, “What happened to the capital T’s in the equations for x and t?”  Chuck 

shows Dean how all the capital T’s cancel leading to the equation written down by Bev.  

Dean nods with a satisfied look and mumbles, “Thanks.” 

Suppose the pigeon is replaced by a light flash.  The equation then would give the velocity of the 

light flash with respect to Earth in terms of the velocity of the light flash with respect to the bus 

and the velocity of the bus with respect to Earth.  That change is accomplished by replacing U, 

the velocity of the pigeon, with c, the speed of light, in equation 5.6.  What answer do you expect 

for u, the speed of the light flash with respect to Earth?  The question below helps you work 

through the calculation for u. 

Question 5.9:  Use equation 5.6 to find the speed of light with respect to Earth for a light 

flash on a bus moving with velocity v.  (A nice way to do the algebra in this problem is 
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to first multiply equation 5.6 by  
c

c
 , to get u = 

c(U+v)

c + 
vU

c

.  This is another example of the 

usefulness of the little trick of multiplying an expression by 
𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔

𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔
= 1.  

Question 5.10:  Redo question 5.9 with the laser flash moving from the front of the bus 

to the rear, from right to left.  In this case U is replaced by –c. 

Of course the answers to questions 5.9 and 5.10 are obvious because of the constancy of the speed 

of light.  Namely the Earth observers have to measure the same velocity for the flash as the bus 

observers, c in the first case and –c in the second.  Equation 5.6 was derived from the Lorentz 

Transformation equations that came from analyzing the spacetime diagrams that arose from the 

super bus experiments that demonstrated that Earth and bus observers measure the same speed 

for light.  Therefore it ought to come as no surprise that equation 5.6 “predicts” the constancy of 

the speed of light, since the constancy of the speed of light was the starting point for our 

explorations of space and time!  

Before Bev has a chance to sit down and admire equation 5.6, Anne comes up to the 

easel and adds the following three definitions to the sheet containing the equation: 

u = velocity of the pigeon with respect to Earth = VPE 

U = velocity of the pigeon with respect to the bus = VPB 

v = velocity of the bus with respect to Earth = VBE 

Anne points out that by using her definitions, equation 5.6 can be re-written as, 

𝑉𝑃𝐸 =
𝑉𝑃𝐵 + 𝑉𝐵𝐸

1 +  
𝑉𝑃𝐵𝑉𝐵𝐸

𝑐2

 .          (5.7) 

This shows that for situations where VPB and VBE are small compared to c so that the 

term  
𝑉𝑃𝐵𝑉𝐵𝐸

𝑐2
 in the denominator is very, very small compared to 1, equation 5.7 reduces 

to the familiar relative velocity equation, 

VPE = VPB + VBE. 

The relativistic velocity addition equation 5.7 written in terms of X, Y, and Z is just, 

𝑉𝑋𝑍 =
𝑉𝑋𝑌 + 𝑉𝑌𝑍

1 + 
𝑉𝑋𝑌𝑉𝑌𝑍

𝑐2

 .          (5.8) 
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Because the velocity of X with respect to X is still zero by definition, equation 5.8 with VXX = 0 

leads to the same conclusion found in Chapter One, namely that VXY + VYX = 0 and VXY = -VYX.  

If observers in reference frame X see reference frame Y moving with velocity v, then observers in 

Y see X moving with velocity –v.  This conclusion remains true for reference frames moving at 

relativistic speeds with respect to one another. 

Anne takes out a calculator to figure out what velocity equation 5.7 predicts for the 

pigeon flying in the bus in Chapter One.  The velocity of the bus was +30 ft/s and the 

velocity of the pigeon with respect to the bus was 20 ft/s.  The speed of light is 1 ft/ns or 

109 ft/s. 

When she punches these numbers into her calculator she gets 50 ft/s, the velocity 

measured in Chapter One! 

The exact velocity for the pigeon with respect to Earth is given by, 

u = 
20+30

1 + 
600

10−18

 = 
50

1+ 6 x 10−16 . 

The denominator in that expression is 1.0000000000000006 which Anne’s calculator rounded 

off to 1.00000000.  So Anne’s calculator did the best it could when it came up with +50 ft/s! 

In Chapter Four the handy approximation, √1 − 𝑥 ≅ 1 −  
𝑥

2
, was used, equation 4.13.  That 

equation is a specific example of the binomial approximation, 

(1 + x)n = 1 + nx,          (5.9) 

where n can be any number and x is small compared to 1.  In Chapter Four n = 
1

2
 . 

In the above example we need an approximation for 
1

1+ 𝑥
 = (1 + 𝑥)−1, so n equals -1.  Using the 

binomial approximation, 

1

1+ 𝑥
≅ 1 − 𝑥.  

Question 5.11:  Test the approximation  
1

1 + 𝑥
≅ 1 − 𝑥 for x = 1/100 = 10-2, x = 1/10,000 =   

10-4, and x = 1/1,000,000 = 10-6. 

When that approximation is applied to  
50

1 + 6 x 10−16, the exact velocity of the pigeon with respect 

to Earth is found to be 49.99999999999997 ft/s instead of 50 ft/s.  In order to have observed this 
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exact velocity, A & B would have needed to measure the time it took the pigeon to fly the exact 

distance of 250 ft with an accuracy of a millionth of a nanosecond! 

This was  impossible in Chapter One with watches accurate to 0.1 s and remains impossible even 

with the super accurate watches introduced in Chapter Three which measured time to tenths of 

nanoseconds. 

The “strange” conclusions of the experiments with light in Chapter Three seemed strange only 

because the earlier experiments were done with objects moving at pedestrian velocities compared 

to light. 

  



89 
 

Chapter Six:  Chuck Suggests an Experiment and Anne has a Dream 

Most of this chapter is a tutorial on using spacetime graphs, the velocity addition equation, and 

the Lorentz Transformation equations.  Successfully working through this chapter will make you 

an expert in the spacetime of Special Relativity.  The chapter ends with a discussion of the 

problems that arise if an object goes faster than the speed of light, superluminal travel. 

While at a garage sale, Chuck finds a pair of extraordinary robotic pigeons that can fly 

at speeds up to 0.9 ft/ns.  He immediately envisions a way to use the pigeons to test the 

new formula for adding velocities, u = (U + v)/(1 + Uv/c2).  So he purchases the pair and 

heads off to tell Dean, Bev, and Anne his idea for a couple of new experiments with the 

super bus and his robotic pigeons. 

First he reminds his spacetime comrades that they now know how to draw spacetime 

diagrams that contain both Earth and bus coordinates for any event in spacetime, figure 

5.5, and also have equations, 5.4a & b and 5.5a & b, which connect the coordinates in 

one reference frame to those in another.  He suggests that they perform the following 

two experiments to test their ever improving understanding of space and time. 

Chuck outlines his idea, “In experiment I, I’ll program both pigeons to fly at exactly 0.5 

ft/ns.  Then Dean and I will board the bus and drive it a ways down the road before 

turning it around and zipping by Anne and Bev at 0.6 ft/ns.  The experiment will begin, 

when I’m adjacent to Anne.  That will also be the origin, x = X = 0, of the coordinates for 

both reference frames.  At that instant, according to our synchronized watches, Dean 

will release one of the pigeons from the front of the bus and I’ll release the other from 

the back of the bus.   Dean’s pigeon flies to me and mine to him.  The experiment ends 

when the speeding pigeons are caught.  A & B will carefully note the Earth coordinates 

of those events.” 

Before anyone has a chance to respond, Chuck continues, “In experiment II, the pigeons 

will be reprogrammed to fly at exactly 0.75 ft/ns, ¾ the speed of light.  This time, the 

pigeons will be flying in the Earth frame, one from Anne to Bev who will be standing 90 

feet to the right of Anne and the other from Bev to Anne.  The pigeons will be released 

simultaneously according to A & B who, of course, have carefully synchronized their 

watches.  This experiment will also begin when I’m adjacent to Anne.  But now it will 

be Dean and me watching where and when the pigeons are released and caught with 

respect to our bus coordinates.” 



90 
 

Bev rolls her eyes a little and points out that they have become so adept at drawing 

spacetime diagrams that they do not really need to do the experiment.  Instead they can 

analyze what would have happened if they did do the experiment.  Anne and Dean like 

this because it’s expensive to get the super bus zipping along at 0.6 ft/ns!  Chuck is less 

sanguine because he is now the owner of two irrelevant but costly robotic pigeons.  But 

after a little haggling they agree to analyze the situation first and only do the actual 

experiment if their analysis runs into a snag. 

As a concession to the Earth-based observing team, Chuck and Dean agree that both of 

the experiments ought to be analyzed from the perspective of Earth.  Chuck makes one 

final suggestion, “Since you won’t let me actually do the experiment, let me devise a 

series of questions based on the two experiments for you guys to answer.  Answering 

the questions will be equivalent to performing the experiment.”   Dean, Bev, and Anne 

think that is a very cool idea and look forward to seeing what Chuck comes up with. 

This scenario is a tad contrived but seemed like a good way to give you the opportunity to check 

your understanding of the material covered up to now.  Although no one will be watching to see 

if you actually take the time to answer Chuck’s questions, Chuck would certainly appreciate it if 

you did!  After all, he was up most of the night writing up a series of questions about the two 

experiments.  Note that Chuck refers to himself in the two experiments as Chuck to avoid any 

confusion that might have arisen by using pronouns like I, me, mine, etc. 

Experiment I 

Chuck is adjacent to Anne at the start of the experiment when x = X = 0 and t = T = 0. 

Remember that lowercase letters are Earth coordinates and uppercase ones are bus 

coordinates.  The spacetime diagram, figure 6.1, has labeled x and t axes.  The bus is 

moving at v = 0.6 ft/ns which makes the shrinkage factor, √1 − 𝑣2 = 0.8 = 
4

5
 .  (Use figure 

5.5 as the model for this spacetime graph.) 

a) Draw the X and T-axes on the graph, figure 6.1, or on a different piece of 

graph paper. 

b) Use the scale on the x and t axes to calibrate the X and T-axes. 

c) Use Dean’s spacetime location at t = 0 to draw his worldline.  His worldline 

ought to cross the X-axis at X = 100 feet. 
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When Chuck=s clock reads zero, he releases the robotic pigeon which flies to Dean.  

According to Chuck and Dean the pigeon is zipping along at 2 the speed of light, 0.5 

ft/ns. 

d) Chuck and Dean assign what coordinates to the spacetime point B where 

Dean catches the pigeon?  XB =                    and TB =  __________    

e) On the spacetime diagram, find the starting point for the pigeon=s trip from 

Chuck to Dean and label it point A.  Also find and label point B on the 

graph.  Use points A and B to draw a dashed line representing the worldline 

of the pigeon as it travels from Chuck to Dean.  

At the same instant, according to Chuck and Dean, that Chuck releases his pigeon, 

Dean releases his which flies to Chuck. 

f) Find the starting point for the pigeon=s trip from Dean to Chuck and label it 

point C. 

g) Chuck and Dean assign what coordinates to the spacetime point D where the 

Chuck catches the pigeon?  XD =                    and TD =  ________.                    

h) Draw a dashed line representing the worldline of the pigeon as it travels 

from Dean to Chuck. 

The velocity of an object in any reference frame is just the distance traveled divided by 

the time of flight in that frame, 
𝑥𝑓−𝑥𝑖

𝑡𝑓−𝑡𝑖
 or 

𝑋𝑓−𝑋𝑖

𝑇𝑓−𝑇𝑖
 . 

i) Use the graph to find the coordinates Anne and Bev assign to points A, B, C, 

and D.  

xA = _______, xB = _______, xC = ________, xD = ________,  

tA = _______, tB = _____ __, tC = ________,  tD = ________. 

j) Based on the coordinates in i), what is the velocity of the robotic pigeon 

according to Anne & Bev? (Leave the answers as fractions.) 

Velocity of pigeon traveling from Chuck to Dean = _____________ 

Velocity of pigeon traveling from Dean to Chuck = _____________ 
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The addition of velocities equation, w = (v + U)/(1 + Uv), can also be used to find the 

velocity of the pigeon according to A & B.  Since the velocities are all written as 

fractions of the speed of light, c is equal to 1 in the velocity addition equation. 

w = velocity of the pigeon with respect to A & B 

v = velocity of the bus with respect to A & B 

U = velocity of the pigeon with respect to the bus 

k) Use the velocity addition equation to find the velocity of the pigeon 

according to A & B.  (Remember velocity is direction dependent:  velocities 

toward the right are positive while velocities towards the left are negative.) 

Velocity of the pigeon traveling from Chuck to Dean = __________ 

Velocity of the pigeon traveling from Dean to Chuck = __________ 

The velocities found in questions j) and k) ought to agree.  If they do not, try to find the 

reason for the discrepancies.  The answers to all these questions, including the 

spacetime diagram, can be found at the end of this chapter. 

Experiment II 

As usual, Chuck is adjacent to Anne at the start of the experiment but now it is A & B 

who release robotic pigeons.  Bev is standing 90 feet to the right of Anne at x = 90 ft.  

Each pigeon flies with a speed of 0.75 or 
3

4
 ft/ns with respect to Earth.  The bus is going 

its usual speed, v = 0.6 ft/ns. 

a) Draw the X and T axes on the figure 6.2 or on a separate piece of paper. 

b) Use the scale on the x and t axes to calibrate the X and T axes. 

c) Draw Bev’s worldline on the graph. 

d) Label the point where Anne releases the robotic pigeon as point A and the 

point where Bev catches the pigeon as point B.  Draw a dashed line showing 

the path of the pigeon through spacetime. 

e) Label the point where Bev launches her pigeon as point C and the point 

where Anne catches it as point D.  Draw a dashed line representing the path 

of the robotic pigeon from Bev to Anne. 
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To use the spacetime diagram to find the velocity of the pigeon with respect to Chuck 

and Dean riding on the bus, the bus coordinates of the points A, B, C, and D need to be 

found.  Remember that constant T lines are parallel to the X-axis and constant X-lines 

are parallel to the T-axis.  For example, the line parallel to the X-axis through point B is 

the constant TB line.  The value of TB can be found by noting where that line intersects 

the T-axis.  XB can be found analogously. 

f) Use the procedure described above to find the coordinates Chuck & Dean 

assign to points A and B.  (The more carefully the points of intersection are 

located, the more accurate the estimates will be for the values of XB and TB.) 

XA = _______, XB = _______,  

TA = _______, TB = _____ __. 

g) Use the values found in f) to find the velocity that C & D assign to the pigeon 

that flew from Anne to Bev.  

Velocity of pigeon traveling from Anne to Bev = __________ 

Now use the addition of velocity formula, U = (u + V)/(1 + uV) to find the velocity 

Chuck & Dean assign to the pigeon going from Anne to Bev.  

U = velocity of pigeon with respect to bus 

u = velocity of pigeon with respect to Anne and Bev 

V = velocity of Earth with respect to bus 

h) Velocity of pigeon traveling from Anne to Bev = __________ 

The velocities found in g) and h) are not exactly the same because the values read off 

the graph were approximate values.  The answer found in h), if done correctly, is the 

exact velocity of the flying from Anne to Bev according to Chuck and Dean. 

A serious problem arises when attempting to find the bus coordinates for events C and 

D from the spacetime diagram.  The intersection of the constant X and T lines that pass 

through spacetime points C and D lie outside the limits of the graph!  Check to make 

sure this is true for XC, TC, XD, and TD.   

The Lorentz equations 5.8a and 5.8b with c = 1 are written below, 

𝑋 =  
1

√1−𝑣2
(𝑥 − 𝑣𝑡) 𝑎𝑛𝑑 𝑇 =  

1

√1−𝑣2
(𝑡 − 𝑣𝑥), 
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can be used to algebraically determine XC, TC, XD, and TD from the known values of xC, 

tC, xD, and tD. 

i) Use the values of v and √1 − 𝑣2, 
3

5
 and 

4

5
, to rewrite the Lorentz equations 

with numerical coefficients in front of x and t. 

X = (         ) x – (       ) t   and  T = (         ) t – (         ) x. 

j) Now use the equations for X and T in i) to find, 

XC = __________, TC = ___________, 

XD = __________, TD = ___________. 

k) Use the values in j) to find the velocity of the pigeon, according to Chuck & 

Dean, which flew from Bev to Anne. 

Velocity of pigeon traveling from Bev to Anne = __________ 

l) As a check of the answers to question j) and k), use the velocity addition 

formula to find the same velocity. 

Velocity of pigeon traveling from Bev to Anne = __________ 

m) Lastly, use the Lorentz equations to check the accuracy of the values found 

graphically for XB and TB in f). 

XB from the Lorentz equation = ___________ 

TB from the Lorentz equation = ___________ 

Velocity of pigeon traveling from Anne to Bev = __________ 

The velocity of the pigeon going from Anne to Bev found by using the coordinates in m) 

ought to agree exactly with the velocity found from the formula in h). 
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Answers for Experiment I 

a) Draw the X and T axes on the graph, figure 6.1, or on a different piece of graph 

paper. 

The X-axis is the line t = 
3

5
 x and the T axis is the line t = 

5

3
 x.  The axes are drawn in 

red on figure 6.3. 

b) Use the scale on the x and t axes to calibrate the X and T-axes.   

The t = 100 ns line intersects the T-axis at 80 ns.  Analogously, the x = 100 foot line 

intersects the X-axis at 80 feet.  Note that each 20 nanoseconds or feet on the t or x-

axes correspond to 16 ns or feet on the T or X-axes.  Those correspondences were used 

to scale the T and X-axes.  The heavy red line is the T axis and Chuck’s worldline. 

c) Use Dean’s spacetime location at t = 0 to draw his worldline.  His worldline 

ought to cross the X-axis at X = 100 feet.   

Earth observers see Dean at x = 80 feet when t = 0.  Remember the bus appears 

shorter to Earth observers.  Dean’s worldline is in green.  Note that Dean’s worldline 

crosses the X axis, T = 0, right at X = 100 ft! 

d) C & D assign what coordinates to the spacetime point B where Dean catches the 

pigeon?   

Dean is located at XB = 100 ft.  It takes 200 ns for the pigeon to cross the bus; TB = 

200 ns. 

e) On the spacetime diagram, find the starting point for the pigeon=s trip from 

Chuck to Dean and label it point A.  Also find point B on the graph.  Use points 

A and B to draw a dashed line representing the worldline of the pigeon as it 

travels from Chuck to Dean. 

Point A is just the origin.  Point B can found by drawing the constant 200 ns line 

(dotted green line on the graph) until it intersects the X = 100 ft line.  That is point 

B.  The pigeon’s worldline is the black dashed line going from A to B. 

f) Find the starting point for the pigeon=s trip from Dean to Chuck and label it point 

C. 

XC = 100 feet and TC = 0 ns. 

g) Chuck and Dean assign what coordinates to the spacetime point D where the 

Chuck catches the pigeon? 

XD = 0 feet and TD = 200 ns.                          

h) Draw a dashed line representing the worldline of the pigeon as it travels from 

Dean to Chuck. 
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The black dashed line connecting C to D represents the pigeon’s trip from Dean to 

Chuck. 

i) Use the graph to find the coordinates A & B assign to points A, B, C, and D.  

    xA = 0             xB = 275 ft      xC = 125 ft        xD = 150 ft 

      tA = 0      tB = 325 ns      tC = 75 ns        tD = 250 ns 

j) Based on the coordinates in i), what is the velocity of the robotic pigeon 

according to A & B? (Leave the answers as fractions.) 

Velocity of robotic pigeon traveling from Chuck to Dean = 11/13 

Velocity of robotic pigeon traveling from Dean to Chuck = 1/7 

The addition of velocities equation, w = (v + U)/(1 + Uv), can also be used to find the 

velocity of the pigeon according to Anne and Bev.  Since the velocities are all given as 

fractions of the speed of light, c was set equal to 1 in the velocity addition equation. 

w = velocity of the pigeon with respect to Anne and Bev 

v = velocity of the bus with respect to Anne and Bev 

U = velocity of the pigeon with respect to the bus 

k) Use the velocity addition equation to find the velocity of the pigeon according to 

Anne and Bev.  (Remember velocity is direction dependent:  velocities toward 

the right are positive while velocities towards the left are negative.) 

(v = 3/5 ft/ns and U = 1/ ft/ns in the first case and -½ ft/ns in the second case) 

Velocity of the pigeon traveling from Chuck to Dean, w = 11/13 

Velocity of the pigeon traveling from Dean to Chuck, w = 1/7 

Note that the answers for j) and k) agree perfectly. 
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Answers for Experiment II 

a) Draw the X and T axes on the figure 6.2 or on a separate piece of paper. 

The X and T axes are the red lines on figure 6.4 

b) Use the scale on the x and t axes to calibrate the X and T axes. 

Same as experiment I 

c) Draw Bev’s worldline on the graph. 

Bev’s worldline is in black at x = 90 ft. 

d) Label the point where Anne releases the robotic pigeon as point A and the point 

where Bev catches the pigeon as point B.  Draw a dashed line showing the path 

of the pigeon through spacetime. 

Anne releases the pigeon at the origin.  It takes the robotic pigeon 90 ft divided by 

0.75 ft/ns to reach Bev, or 120 ns.  So point b is xB = 90 ft and tB = 120 ns.  The 

dashed line representing the path of the pigeon is in black.   

e) Label the point where Bev launches her pigeon as point C and the point where 

Anne catches it as point D.  Draw a dashed line representing the path of the 

robotic pigeon from Bev to Anne. 

Point C is at xC = 90 ft and tC = 0.  The pigeon released by Bev also takes 120 ns to 

reach Anne.  Point D is at xD = 0 and tD = 120 ns.  Again the path of the pigeon is in 

black. 

f) Use the described procedure to find the coordinates C & D assign to points A 

and B.  (The more carefully the points of intersection are located, the more 

accurate the estimates will be for the values of XB and TB.) 

The green dashed lines going through point B on the graph denote the lines of constant XB and 

TB.  The relevant parts of those lines are located at the place where the lines cross the X and T-

axes to give the values of XB and TB respectively.  Notice that there are 10 boxes between each 

tick mark, 32 ft or ns, on the X and T axes.  Consequently each box on the graph represents 3.2 

feet or nanoseconds.) 

XB falls about 7 boxes from the origin, 7 times 3.2 = 22.4 feet. So XB is about 22.4 ft. 

TB is approximately 4 boxes before 96 ns.  So TB is approximately 96 – 12.8 or 83.2 ns 

XA = 0,   XB ≈ 22.4 ft,  

TA = 0,  TB ≈ 83.2 ns. 
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g) Use the values found in question f) to find the velocity that Chuck and Dean 

assign to the pigeon that flew from Anne to Bev.  

Velocity of pigeon traveling from Anne to Bev = 
𝑋𝐵−𝑋𝐴

𝑇𝐵−𝑇𝐴
≈

22.4 − 0

83.2 − 0
 ≈ 0.269 

Now use the addition of velocity formula, U = (u + V)/(1 + uV) to find the velocity C & D 

assign to the pigeon going from Anne to Bev.  

U = velocity of pigeon with respect to bus 

u = velocity of pigeon with respect to Earth 

V = velocity of Earth with respect to bus 

h) Velocity of pigeon traveling from Anne to Bev 

        In this case, V is -3/5 ft/ns and u is ¾ ft/ns. 

Using the formula, the velocity of pigeon traveling from E to H is 3/11 = 0.273 ft/ns. 

We can compare the approximate velocity found from the graph in g) where we needed to 

estimate the values of XB and TB with the exact answer found by using the velocity addition 

equation in h) by calculating the percent error. 

The percent error is given by 
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 ℎ)−𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑔)

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 ℎ)
 × 100 = 1.5% 

The two answers are close enough to provide confidence that the questions were answered 

correctly. 

The problem with using the graph in figure 6.4 to find XC, TC, XD, and TD can be seen by 

following the dashed purple lines going through the spacetime points C and D as they travel 

towards the X and T-axes.  None of those four lines reaches the appropriate axes within the 

confines of the graph!  Consequently, the graph cannot be used to find the approximate values of 

XC, TC, XD, and TD. 

i) First use the values of v and √1 − 𝑣2, 
3

5
 and 

4

5
, to rewrite those equations with 

numerical coefficients in front of x and t. 

X = (5/4) x – (3/4) t and T = (5/4) t – (3/4) x. 

j) Now use the equations for X and T in i) to find, 

XC = 225/2 ft,  XD = -90 ft, 

TC = -135/2 ns,  TD = 150 ns. 
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k) Use the values in j) to find the velocity of the pigeon, according to Chuck and 

Dean, which flew from Bev to Anne. 

Velocity of pigeon traveling from Bev to Anne  = 
𝑋𝐷−𝑋𝐶

𝑇𝐷−𝑇𝐶𝐴
=

−90 − 225

150 –(−
135

2
)
 = −

27

29
 

l) As a check of the answers to question j) and k), use the velocity addition formula 

to find the same velocity. 

In this situation V = - 3/5 ft/ns and u = - 3/4 ft/ns.  Plugging those into the equation 

for U gives, 

Velocity of pigeon traveling from Bev to Anne, C to D, U = -27/29 ft/ns. 

m) Use the Lorentz equations to check the accuracy of the values found for XB and 

TB. 

XB from the Lorentz equation = 45/2 ft 

TB from the Lorentz equation = 165/2 ns. 

Velocity of pigeon traveling from Anne to Bev, A to B = 45/165 = 3/11 ft/ns 

As required, the velocity found by using the coordinates from the Lorentz equations agrees 

perfectly with the answer in h). 
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Anne has a Dream about a Superluminal Pigeon 

That night, after a full day of “doing” Chuck’s experiments and thinking about 

spacetime graphs and the velocity addition equation, Anne dreamt of robotic pigeons 

frenetically flying to and fro.  At one point, she became fixated on a particular pigeon 

which appeared to fly faster than any of the other ones in her dream.  Finally she 

realized that this pigeon was flying at three times the speed of light!  In her dream, she 

tried to capture the superluminal pigeon but in kept eluding her grasp.  Just as she was 

close to nabbing the elusive pigeon, it crashed into a tree next to Bev.  The crash woke 

her up and the last thing she could remember from the dream were seeing pieces of the 

robotic pigeon scattered everywhere!  

At breakfast, she told Bev about the dream.  Bev suggested that it would be easy 

enough to draw the worldline of the superluminal pigeon on a spacetime diagram.  So 

after eating, they sat down and drew a spacetime diagram depicting the flight of the 

pigeon from Anne to its untimely demise at the hands of the tree adjacent to Bev.  That 

diagram is reproduced below as figure 6.5.  

The flight of the pigeon is shown 

in green and appears perfectly 

reasonable to A & B.  The pigeon 

flies at 3 ft/ns and crashes into the 

tree 30 ns after leaving Anne.  

They decide to show the diagram 

to C & D. 

The first thing Chuck does is add 

the X and T-axes to the diagram 

for bus observers moving at 0.6 

ft/ns.  Those lines are shown in 

red on figure 6.6.  Dean, looking at 

Chuck’s spacetime graph, 

exclaims “The pigeon collided 

with the tree before Anne released 

it!”  While Chuck, Anne, and Bev 

ponder what he means, Dean 

plugs the coordinates for the 



105 
 

0

20

40

60

80

100

120

140

0 20 40 60 80 100

t 
in

 n
an

o
se

co
n

d
s 

x in feet 

Figure 6.6 

Demolished 
pigeon embedded 
in tree next to Bev 

T(ns) 

X(ft) 

T = -17.5 

C 

A 

B 
64 

32 

32 

64 

spacetime point where the pigeon hit the tree, point A on the graph, into the Lorentz 

equation for T and finds the pigeon hit the tree at TA = -30 ns, 30 ns before Chuck saw 

Anne release the pigeon!  

Dean shares his calculation of 

TA with his friends.  Anne and 

Bev point out that from their 

perspective the worldline of 

the superluminal pigeon 

traveling from Anne to Bev 

looks reasonable enough.  It 

starts at x = 0 and t = 0 and 

arrives at x = 90 ft, at t = 30 ns. 

Chuck and Dean, pointing to 

figure 6.6, totally disagree.  

Chuck says to Anne and Bev, 

“The bus observer at point A, 

XA = 90 ft and TA = -30 ns, sees 

the pigeon mysteriously 

appear out of thin air.  Then 

the pigeon immediately starts 

to fly backwards towards the 

origin.” 

Question 6.1:  Use the Lorentz 

equation to check that C & D have the correct bus coordinates for point A. 

Dean adds the constant T = -17.5 ns line in purple to figure 6.6 and says, “Things get 

even more bizarre for Chuck and me.  The two bus observers located at points B and C 

have watches reading identical times, T = -17.5 ns.  The observer at C sees the pigeon 

flying backward toward the origin.  Simultaneously, the observer at B sees pieces of the 

robotic pigeon scattered around the base of the tree!  At T = 0, Chuck sees the pigeon 

arrive at the origin from two directions; flying toward him and being carried by Anne 

who, from Chuck’s perspective, has not yet released the pigeon!  At that the same time, 
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the bus observer at X = 72 ft sees the smashed pigeon.  But an instant after Chuck sees 

the two pigeons arrive at the origin, both pigeons are gone.“ 

Question 6.2:  Draw the constant T = 16 ns line on figure 6.6.  According to bus 

observers, what is the X coordinate of the pigeon at that time? 

Flying faster than light in the Earth frame violates cause and effect in the bus frame since there 

are a series of bus times where the pigeon is simultaneously scattered at the base of the tree and 

flying backward toward Chuck.  Any object moving faster than light in one reference frame will 

be seen to move backwards in time in other reference frames.  Thus Special Relativity makes 

superluminal flight impossible unless we decide to not worry about cause and effect! 

Question 6.3:  Sketch a spacetime graph from the perspective of Chuck and Dean that 

shows the worldline of the pigeon.  Start with Anne carrying the pigeon toward the 

origin before she released it and end with the pigeon embedded in the tree.  (The answer 

to this question is at the very end of this chapter.) 

Question 6.4:  Use the addition of velocity equation to find the velocity of the 

superluminal pigeon according to bus observers.  (If the algebra is done correctly, by sheer 

accident, the velocity measured by Chuck and Dean turns out to be -3 ft/ns, the opposite of the 

pigeon’s velocity in the Earth frame!) 

Question 6.5:  Imagine the flight of a slower superluminal pigeon flying at u = 2 ft/ns 

with respect to Earth.  What do C & D measure for the velocity of this pigeon?  (This 

question shows that the answer to the previous question was mere coincidence.) 

Question 6.6: The denominator of the relativistic velocity addition equation is 1 + uV, 

where V is the velocity of Earth with respect to the bus, or - 
3

5
 in our example.  There is a 

particular pigeon speed with respect to Earth that makes the denominator zero.   What 

is that velocity, u, for the pigeon? 

Note that if the pigeon flies a tiny bit slower than the speed found in question 6.5, the bus 

observers “see” the pigeon flying from left to right with an essentially infinite speed, the 

numerator, 
5

3
 -  

3

5
 , divided by a positive number very, very close to zero is a very, very large 

positive number.  On the other hand, if the pigeon is flying a tad faster than the speed found in 

question 6.5, the sign of the denominator switches from positive to negative.  In this case, the bus 

people “see” the pigeon flying from right to left with an essentially infinite speed!  



107 
 

The absurdity of these conclusions reinforces the idea that traveling faster than light violates the 

laws of physics as currently understood. The breakdown highlighted by question 6.6 occurs when 

the denominator of the velocity addition formula equals zero, 1 + uV = 0, where u is the speed of 

the superluminal object with respect to Earth while V is the velocity of Earth with respect to the 

bus.  Solving for V, V = -1/u. 

This clearly demonstrates that for any object moving superluminally with respect to Earth, u > 

1, there will be a physically realizable relative speed for the bus, |𝑉| < 1, which makes the speed of 

the object with respect to the bus infinite. 

The sketch below shows the path of the pigeon, heavy red line, through spacetime from the 

perspective of C & D.  If we ignore the fact that time only goes in the forward direction, up on 

the spacetime graph, we could say that Anne carried the pigeon until she reached Chuck when 

she released it.  At that point, it flew backwards in time from Chuck until its untimely demise at 

the hands of the tree traveling at v = -0.6 ft/ns through C & D’s reference frame.  After the 

collision, the pigeon continues to move with the tree. 

The trouble with this reasonable sounding description of the pigeon’s motion through spacetime 

time is that bus observers see events happen simultaneously along horizontal slices of time 

moving up the spacetime diagram.  The sketch below clearly shows that the pigeon’s earliest 

appearance in the bus frame is when Anne is seen carrying the pigeon.  When T = -30 ns, there 

are now two pigeons; the pigeon being carried by Anne and the “same” pigeon suddenly appears 

by the tree.  Each horizontal time slice from then until T = 0 ns, has the pigeon in three places at 

once; being carried by Anne, flying toward Chuck at the origin, and smashed into the tree!  Time 

slices past T = 0 have a single pigeon stuck in the tree. So much for superluminal travel. 

T  

 Pigeon embedded in Tree 

 

    X 

     

 

Anne carrying the pigeon  
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Chapter Seven:  The Bus and the Garage 

This chapter examines the famous problem of the “pole and the barn” with the super bus playing 

the role of the pole and the garage built by Anne and Bev the role of the barn.  The primary goal 

of this chapter is to see how the tools and skills learned in the first six chapters can help to make 

sense of an apparently paradoxical situation. 

While Chuck and Dean were vacationing in the super bus, Anne and Bev decided to 

surprise C & D by building a garage for the bus.  Unfortunately, in their excitement to 

get the garage done before the bus returned, they built a 90 foot garage to house the 100 

foot bus!  Their error was apparent as soon as C & D returned from their vacation and 

pulled up alongside the garage.  But it was still a very nice garage with sliding doors at 

both ends. 

Dean pulled the first 90 feet of the bus into the garage and joined his friends outside.  

As the four of them walked around the garage examining the ten feet of bus sticking 

out, Bev made a curious observation.  If the bus traveled toward the garage at 0.6 ft/ns, 

it would be only 80 feet long and could comfortably fit in the garage.  On the other 

hand, because of the principle of relativity, C & D could just as legitimately assert that a 

runaway garage was approaching the stationary bus at v = -0.6 ft/ns!  From their 

perspective, the onrushing 90 foot garage would be only 72 feet long, 28 feet shorter 

than their bus! 

They agree that it seems strange that the bus could simultaneously fit and not fit in the 

garage.  As experienced relativists, they decide to draw spacetime diagrams that 

faithfully mirrored the actual driving of the bus through the garage with open doors at 

both ends.  As usual, the diagrams will be drawn with Chuck riding in the back of the 

bus while Dean drives.  Anne will stand at the entrance of the garage while Bev is at the 

other end. 

As they discuss the details of this gedanken experiment, it becomes clear there are four 

key events: 

1. Event A is the spacetime point where the bus first enters the garage.  This will 

also be the agreed upon origin on their spacetime diagrams.  (Notice that this 

experiment begins when Dean is adjacent to Anne.) 

2. Event B will be when the rear of the bus first enters the garage.  (At this event, 

Chuck and Anne are adjacent.) 
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3. The bus begins to exit the garage at event C.  (Dean and Bev are passing one 

another at event C.) 

4. And for completeness, event D will be the place where the rear of the bus exits 

the garage.  (Bev and Chuck are adjacent to one another.) 

Each of the four experimenters is fixed in their respective reference frames.  On the bus, Dean is 

at X = 0 feet and Chuck is at X = -100 feet. Chuck is to the left of the origin leading to a negative 

value for his location in the bus reference frame. On Earth, Anne is at x = 0 feet and Bev at x = 

90 feet.  And as usual, the watches are synchronized so that Anne and Dean pass one another at 

time zero in both frames.  

Question 7.1:  Use the information above and the equation, Time = 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑆𝑝𝑒𝑒𝑑
, to fill in the 

Earth and bus coordinates for events A, B, C, and D.  (For example, event B happens 

according to Anne & Bev at time tB when the rear of the bus reaches the front of the garage.  On 

the other hand, Chuck & Dean see the front of the garage reach the rear of the bus at TB.)  

Event 
Anne and Bev Chuck and Dean 

x t X T 

A     

B     

C     

D     

 

Anne and Bev grab a piece of graph paper and begin to plot the worldlines of the 

garage and bus.  Chuck and Dean do the same.  Bev yells over to Dean that they ought 

to include the location of the bus at the events labeled A, B, C and D.  Dean agrees and 

suggests they represent the bus with heavy red lines.  The finished spacetime diagrams 

are shown below, figures 7.1a and 7.1b. 
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The next two questions ask you to find the coordinates for events A, B, C, and D directly from 

the spacetime diagrams.  If everything is done correctly, the answers in the three tables ought to 

agree reasonably well.  But remember that oftentimes the coordinates read off a graph have to be 

estimated. 
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Question 7.2:  Without using the table from question 7.1, fill in the table below by using 

the spacetime diagram drawn by Anne and Bev, figure, 7.1a.  Your first step is to add 

the X-axis to the diagram.  (Dean’s worldline is the T-axis.)  Be careful estimating the 

values of TB and TC.  Note the box for TD is excluded because that value lies outside the 

range of the graph.  (Remember the scales on the x and t axes are different than the 

scales on the X and T axes.  In figure 7.1a, each box on the t-axis corresponds to 10 ns 

while the intersection of the T-axis with each box corresponds to 8 ns.) 

Event 
Anne and Bev Chuck and Dean 

x t X T 

A     

B     

C     

D     

 

Question 7.3:  Fill in the table below by using the spacetime diagram drawn by Chuck 

and Dean, figure, 7.1b, to find the coordinates of events A, B, C, and D.  Start by adding 

the x-axis to the figure.  (Anne’s worldline is the t-axis.)  Note that in this case it is tD 

that lies off the graph.  (In figure 7.1b, each box on the T-axis corresponds to 10 ns while 

the intersection of the t-axis with each box corresponds to 8 ns.) 

 

Event 
Anne and Bev Chuck and Dean 

x t X T 

A     

B     

C     

D     

 

Chuck points out that it is clear that the bus, represented by the red horizontal lines at 

events A, B, C, and D, is never completely inside the garage which lies between the 

worldlines of Anne & Bev on figure 7.1b. 
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Anne on the other hand uses figure 7.1a as evidence that the bus was inside the garage 

between times tB and tC.  Dean says, “That’s crazy because the front of the bus left the 

garage, event C, before the back of the bus entered it, event B!” 

Anne shakes her head says to Dean, “Event B happened when the back of the bus, 

which is 80 feet long, reached the front of the garage.  And since the garage is 90 feet 

long, the front of the bus was still 10 feet from the rear of the garage.” 
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The bus riders see this very differently.  From their perspective, event B happened when the 

entrance of the garage traveled the length of the bus, 100 feet.  They claim event C happen when 

the back of the 72 foot long garage reached Dean in the front of the bus.  Clearly event C 

happened before the front of the garage had time to travel the 100 feet to reach Chuck at the back 

of the bus. 

This conflict arises because Anne & Bev disagree with Chuck & Dean about the spacetime 

location of the bus at the events A, B, C, and D.  Anne captured the essence of this problem in 

figure 5.6.  Anne & Bev see event B happen, the back of the bus enter the garage, before C, the 

front of the bus leaving the garage, while Chuck and Dean see just the opposite, event C 

preceding event B.  No amount of arguing can resolve this difference.  Anne and Bev rightly 

argue that the bus is inside the garage for a whole 50/3 nanoseconds while Chuck and Dean 

correctly assert that 

the bus is never 

completely in garage. 

The differences in 

slope between lines 

of constant t and T 

on a given spacetime 

diagram is a 

pictorial 

representation that 

bus and Earth 

observers 

fundamentally 

disagree about the 

meaning of 

simultaneous events.  

Dean and Bev 

quickly amend the 

two figures to 

include the location 

of the bus at times TB 

and TC on figure 7.1a 



114 
 

0

50

100

150

200

250

300

350

-200 -150 -100 -50 0 50

T 
in

 n
an

o
se

co
n

d
s 

X in feet 

Figure 7.2b 

Anne                Bev Chuck      Dean 

bus 

bus 

D 

B 

C 

A 

and times tB and tC on figure 7.1b.  The heavy blue lines represent the bus at those times. 

Now Anne and Bev clearly see that according to Chuck and Dean the bus is never 

completely inside the garage.  It is also obvious from the picture that the constant time 

line representing TB hits the T-axis, Dean’s worldline, at a later time than TC. 

When Chuck and Dean examine figure 7.2b, they also get a deeper sense of how their 

view of the bus driving through the garage is fundamentally different than the view of 

Anne & Bev.  According to Anne & Bev, the spacetime location of the bus at events B 

and C are represented by the slanted blue lines, one slanting downward from event B 

and other upward from event C.  From figure 3.2b, it is clear that Anne & Bev rightly 

concluded that from their perspective event B happened before event C.  

Spend some time 

studying all the 

information 

contained in these 

two spacetime 

diagrams, figures 

7.2a and 7.2b.  Like 

many of the supposed 

paradoxes in Special 

Relativity, this one is 

due to the fact that 

simultaneous events 

in one frame are not 

simultaneous in a 

different frame 

moving with respect 

to the first. 

Anne is still 

puzzled because 

she can picture the 

bus inside the 

garage for 
50

3
 ns.  
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She wonders why she and Bev can’t close the doors of the garage during the 
50

3
 ns the 

bus is inside.  That surely would convince C & D that the bus was actually inside the 

garage for a time.  The next day, Anne, who has secretly coveted the super bus, makes a 

proposal to Chuck & Dean.  Bev, who has been enlisted to help Anne, is a little dubious 

about the proposal but agreed to help her. 

Anne’s Proposal 

When Chuck & Dean arrive at the garage the next day, Anne makes her proposal.  “If I 

can unequivocally demonstrate that the super bus fits in the garage, Bev and I get to 

keep it.  On the other hand, if my demonstration fails to convince you, Bev and I will 

lengthen the garage to 120 feet and upgrade it by adding an automatic bus washing and 

waxing machine.” 

Dean and Chuck find the idea of having a super garage for their bus enticing but are 

nervous about the possibility of losing the bus to A & B.  They go off for a while to 

study the spacetime diagrams depicting the trip of the bus through the garage.  They 

finally convince themselves that it is impossible for Anne to unequivocally prove that 

the bus is completely inside the garage at any time during the experiment.  So they 

agree to accept Anne’s proposal and drive the bus through the garage. 

While the bus is getting ready to drive back toward them, unbeknownst to C & D Bev 

closes the back door of the garage.  Then Anne shuts off all the lights in the garage so 

that Dean won’t notice the closed door at the back until the last possible moment.  

Anne’s plan is simple as well as diabolical.  As soon as the rear of the bus enters the 

garage, she will close the front door of the garage.  Once that door is closed, the bus is 

completely inside the garage because the rear door was closed before the experiment 

began!  The result of her clever scheme is that she and Bev will become the proud 

owners of the super bus. 

Some important features of the super bus have not been mentioned previously because they were 

not relevant.  The first is that Dean has a brake pedal that can instantly stop the front of the bus 

and Chuck has an equivalent pedal that can instantly stop the rear of the bus.  If you ever 

traveled in a super bus, you know these safety features are necessary.  The second feature is that 

Dean and Chuck communicate via radio while riding in the bus.  The reason for this ought to be 

obvious.  The speed of sound, 1000 ft/s, is way too slow. 
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For example, if Dean sees a nice restaurant 1000 feet in front of the bus and asks Chuck whether 

or not he wants to stop, traveling at the speed of sound the question takes about a tenth of a 

second to travel the 100 feet between them and another tenth for Chuck’s answer to return to 

Dean.  During 0.2 seconds, the bus has traveled 120 million feet and the restaurant is a distant 

memory!  Communicating by radio waves, which travel at the speed of light, cuts the time down 

to a mere 200 ns.  During that time, the bus travels only 120 feet, giving them plenty of time to 

stop for a bite at the restaurant. 

Anne eagerly waits for the bus to come zipping down the road.  Bev is less eager 

because she has more confidence in the logic of the spacetime diagrams than she does in 

Anne’s scheme.  From her perspective, the bus won’t be so easy to catch inside the 

garage. 

The Collision between Theory and Reality 

Anne sees the bus approaching rapidly.  As soon as Chuck passes her, she shuts the 

door of the garage.  Meanwhile at that same instant; Bev sees the front of the bus 10 feet 

from the closed door at the rear of the garage.  Dean does not notice the closed door 

rushing toward him until it is right at the front of the bus.  He instantly applies the 

brake stopping the bus just as the front bumper touches the rear garage door. 

The front of the bus has stopped.  What about the rear of the bus?  This leads to a strange 

question.  How does the rear of the bus know that the front of the bus has stopped? The simple 

answer is that the front of the bus sends a message to the rear of the bus, “I’ve stopped and you 

ought to stop also!” Usually the message is sent from one atom to its neighboring atom along the 

length of the bus.  This type of message sent from atom to atom through a material travels at the 

speed of sound in that particular material.  Although the speed of sound varies from one material 

to the next, it is insignificant when compared to the speed of light.  Consequently, at the same 

instant that Dean slammed the brake at the front of the bus, he sent a radio message to Chuck to 

stop the rear of the bus.  This light speed message sent to Chuck from Dean is the fastest possible 

way for the rear of the bus to learn that the front of the bus has stopped and arrives long before 

the message being passed along atom by atom from the front to the rear of the bus! 

The events enfold in the following way for A & B.  When the bus reaches the closed end 

of the garage, point C in figure 7.3a, Dean sends the frantic message to Chuck to stop.  

The front of the bus is now stationary and its worldline becomes vertical at point C.  

According to A & B, the back of the bus is 80 feet from Dean when the message is sent.  
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Chuck is moving toward the message at 
3

5
 ft/ns while the message moves towards him 

at 1 ft/ns.  It takes 50 ns for the message to reach him, point F on the spacetime diagram.  

During that time, the rear of the bus traveled 30 feet, from point E to point F.  Chuck 

immediately stops the bus causing the worldline of the rear of the bus to become 

vertical at point F.  The now stationary bus is only 50 feet long and uncomfortably fits in 

the garage!  The spacetime diagram in figure 7.3a shows the worldlines representing the 

bus that ends up at rest completely in the garage! 

Dean and Chuck 

describe the capture of 

the bus by the runaway 

garage somewhat 

differently but with the 

same outcome.  At 

point C on figure 7.3b, 

Dean has stopped the 

front of the bus so that 

it now moves in 

tandem with Bev at the 

rear of the garage. 

From point C forward, 

the worldlines of the 

front of the bus and 

Bev are identical.  At 

that instant in the bus 

frame, Chuck is still 

outside the garage at 

point E’.  It is important 

to keep in mind that E’ 

is a different place in 

spacetime than point E.  The first, E’, represents Chuck’s position at the instant Dean 

sent the message to stop from the perspective of the bus frame.  Point E represents 

Chuck’s location at the instant Dean sends the message according to Earth-based 

observers.  Chuck receives the message at point F, the same spacetime event in both 

frames, when the rear of the bus begins to move with the same velocity as the front of 
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the bus.  Figure 7.3b shows this sequence of events and includes the captured bus at two 

different times, the two short red horizontal lines.  The bus trapped in the garage moves 

through the original bus frame with velocity −
3

5
 ft/ns.  The tilted blue line represents the 

position of the captured bus at a single time in the Earth frame. 

It takes more imagination to decipher figure 7.3b than figure 7.3a.  Picture another group of 

observers traveling toward the garage on a flatbed truck adjacent to the bus.  These observers will 

drive by the garage and continue to take data after the capture of the bus.  From their perspective, 

the garage is rushing toward them and the bus.  After the bus gets caught in the onrushing 

garage, these observers see the garage and captured bus as stationary in the Earth frame which is 

rushing by them at −
3

5
 ft/ns.  The observers on the flatbed truck are the ones that can follow the 

fate of the super bus during its fatal interaction with the marauding garage, figure 7.3b.  These 

flatbed observers are the ones that see the captured bus as the short red horizontal lines on figure 

7.3b.  

Question 7.4:  The 

observers on the flatbed 

truck measure the 

length of the captured 

bus by examining 

figure 7.3b.  Is the 

length they measure 

consistent with the 50 

foot length reported by 

A & B for the stopped 

bus inside the garage? 

R.I.P. Super Bus 

Chuck and Dean crawl 

out of the remnants of 

the super bus, shaken 

but otherwise unhurt.  

Bev stares at the 

wreckage in awe and 

waits for someone to 
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say something.  Anne meekly breaks the ice by pointing out that she won the bet, the 

super bus is completely inside the garage.  No one disagrees with that statement.  Dean 

looks at Chuck, who nods, and he hands the keys to the bus over to Anne.  The four 

friends dejectedly walk out of the garage.  Bev says the obvious, “We won’t be doing 

any more experiments with that super bus.”  Anne tries to cheer them up by pointing 

out that super bus served them well in their explorations of space and time. 

The next day, Dean arrives at the garage with a big sign reproduced below: 

 

  

  

 

 

Chuck, Anne, and Bev begin to smile at Dean’s sign, and then all four start laughing. 

Luckily, the super bus has served its purpose and won’t be needed again.  The remainder of the 

book will deal with distances and times substantially larger than the feet and nanoseconds used 

up to this point.  In fact, Chuck and Dean end up using the insurance money from the wrecked 

bus to buy a space cruiser.  Their new goal is to visit some nearby star systems.  

  

Visit the World Famous Super Bus.          

Entry fee 25 cents 
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Chapter Eight:  The Solar System and Beyond 

Our solar system resides in a rather ordinary spiral galaxy, the Milky Way.  The sun is one of 

about 400 billion stars in the Milky Way.  And the Milky Way, unsurprisingly, has to be very 

big to be home to so many stars.  The usual unit used to describe the size of our galaxy is the 

light-year; the distance light travels in a year. 

Question 8.1:  What is the velocity of light in units of light-year/year?  (The answer is as 

simple as it seems!) 

Question 8.2:  How many seconds are there in a year? 

If you use the answer to question 8.2 and the velocity of light in meters per second, 3 x 108 m/s, 

it turns out that light travels about 9.5 x 1015 meters in one year.  That is almost 10,000 trillion 

meters, a number that is essentially meaningless because it is ungraspable.  The number of miles 

in a light-year is a little less daunting but still a mind numbing 5.9 trillion miles. 

It seems a lot easier to picture a light-year (l-yr) as the distance light travels in one year without 

trying to describe it as this many meters or that many miles.  For the next two chapters, 

distances will be measured in light years and time in years which conveniently make the speed of 

light 1!  (How far does light travel in one year?  One light-year.  How long did it take light to 

travel that distance?  One year.  Therefore c = 1 l-yr/yr) 

This makes the slope of the worldline of a light flash on a spacetime diagram with units of light-

years replacing feet and years replacing nanoseconds plus one for light traveling to the right and 

minus one for light traveling to the left. 

The Milky Way is roughly the shape of a disk with a diameter of 100,000 l-yrs and a thickness of 

about a 1,000 l-yrs.  As immense as this is, the Milky Way is just one of something like 200 

billion galaxies in the known universe.  On average, each of those galaxies has about 200 billion 

stars.  The upshot is that the universe is large and contains a dizzying amount of stars and 

galaxies. 

The nearest galaxy that is similar to the Milky Way, a spiral galaxy with hundreds of billions of 

stars, is 2.5 million light years away.  That neighboring galaxy is Andromeda.  It is a little larger 

than the Milky Way and contains something like 1000 billion or one trillion stars. 

The purpose for presenting this paralyzing array of numerical data is to give some notion of the 

immensity of space.  It also gives some context for wondering about the possibility of human 
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travel to other stars in our galaxy or even venturing further from home to visit a neighboring 

galaxy.  The rules governing space and time discovered earlier in the book give us the tools to 

make reasonable estimates of what is possible with respect to interstellar travel and what is 

impossible if we limit ourselves to the known laws of physics.   

Synchronizing Watches Separated by Large Distances 

Up to now the method described in Chapter Three for synchronizing a pair of watches has been 

perfectly workable since Anne and Bev or Chuck and Dean were never very far apart.  Therefore 

it was easy for them to meet, start their watches, and stroll off to their observing stations. 

Now we will be dealing with observers who are light years apart but also need to have 

synchronized watches.  Though we can imagine these observers meeting, starting their watches, 

and then traveling back to their outposts, a different more expedient plan for synchronizing 

watches is described below. 

Suppose we have observers stationed one light-year apart located along the x-axis from x = -5 l-

yrs to +5 l-yrs.  The two watches that are 5 light-years from the origin are set to read 0, the pair 

4 light-years from the origin are set to -1 year, and so on with the watch at the origin reading -5 

years.  When all the pre-set watches are in place, a light flash is sent out in both directions from 

the origin.  That flash immediately starts the watch at the origin and then starts the watches at 

the different outposts as it passes them.  When the watch at the origin reaches t = 0, each of the 

other ten watches in the remote locations will have been activated by the flash.  At that instant, 

all eleven watches will read t = 0 and will be running synchronously.  This procedure works 

perfectly for any number of observers in any given inertial reference frame.  It is the gold 

standard method for synchronizing the watches of observers spread throughout a given reference 

frame. 

Figure 8.1 graphically represents this procedure.  Each box represents a watch and the watches 

are separated by one light-year.  The two diagonal lines represent the light flashes traveling to 

the left and right that activate each watch.  Note that the watches inside or between the light 

flashes have been activated and are running while those outside the flashes have not been 

activated.  In the bottom row, none of the watches are ticking.  As time moves forward, upward 

with one year between rows, more and more of the watches are activated.  In the top row, all 

eleven watches are running and simultaneously read zero. 
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From this point forward in the book, all the observers in a given reference frame remain at fixed 

locations and with synchronized watches.  These observers are the data collectors for events 

happening in spacetime. 

Figure 8.1 

0  0  0  0  0  0  0  0  0  0  0 

                     

0  -1  -1  -1  -1  -1  -1  -1  -1  -1  0 

                     

0  -1  -2  -2  -2  -2  -2  -2  -2  -1  0 

                     

0  -1  -2  -3  -3  -3  -3  -3  -2  -1  0 

                     

0  -1  -2  -3  -4  -4  -4  -3  -2  -1  0 

                     

0  -1  -2  -3  -4  -5  -4  -3  -2  -1  0 

 

  



123 
 

Chapter Nine:  Chuck and Dean Travel to Alpha Centauri 

Our friends were sitting around discussing the famous “twin paradox” which involves 

a pair of twins, for example Sally and Sam.  Sally ventures forth in a fast moving space 

cruiser and upon her return to Earth, discovers that she is younger than her stay at 

home sibling, Sam.  Anne points out that this is reasonable because from Sam’s 

perspective, Sally was moving at a large velocity causing her watch to run slow.  

Therefore when she returned, less time had ticked off her watch than his.  Dean objects 

and counters that the Principle of Relativity ought to mean that from the perspective of 

Sally, it is Sam’s clock that runs slow. 

Chuck is ready to take a serious break from these discussions and could use a long 

vacation.  So he is not paying much attention to the conversation.  Dean suggests to 

Chuck that they use their new space cruiser, bought with the insurance money from the 

ill-fated experiment done to test whether or not the super bus fit into the garage, to both 

test the twin paradox and give Chuck an extended vacation.  Chuck finds Dean’s idea 

enticing and readily agrees.  Anne and Bev are perfectly content to remain home and be 

the “Sam” of the twin paradox.  

After checking a star chart, they decide to visit the Alpha Centauri system, a group of 3 

stars about 4 light-years from Earth.  Dean quickly calculates that if he and Chuck travel 

at 3/5 the speed of light, a roundtrip to Alpha Centauri will take more than 13 years!  

Chuck ignores him and begins to make a list of the provisions needed for the trip, 

including lots of books, DVDs, and video games.  Dean reminds Chuck to make sure he 

plans on having plenty of food! 

The four friends get together on New Year’s Eve, the day before C & D will depart.  

Sitting around sipping champagne, they decide to keep in contact by sending annual 

greetings each January 1.  A & B will keep the messages they receive and C & D will 

keep the messages they receive during the trip.  Dean has prevailed upon Chuck to 

spend as little time as possible at the Alpha Centauri outpost.  Consequently, their plan 

is to have a similar space cruiser fueled and ready for takeoff as soon as they arrive.  

Chuck figures it will take less than an hour to sign the necessary papers to trade their 

space cruiser in for the new one poised for the return flight. 

Question 9.1:  According to Anne and Bev, how long will it take Chuck and Dean to 

travel the 4 light-yrs to Alpha Centauri? 
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Question 9.2:  When C & D arrive at Alpha Centauri, they see that according to Earth-

frame observers, their trip took 6 
2

3
 years.  But they disagree and claim that the trip 

actually took them how many years? 

May 1, Thirteen Years Later 

Anne and Bev nervously await the return of Chuck and Dean.  Anne has sent 13 annual 

messages to Chuck while she and Bev have received only10 messages from them.  

Suddenly the ship appears overhead and makes a perfect landing at the spaceport.  

Peering through the windows of the terminal, A & B spot the returning travelers and 

notice that both are wearing serious looking neck braces!  After a cursory stop at 

customs, C & D are reunited with their Earth-bound friends.  On the drive home, A & B, 

ask about the neck braces, C & D tell their friends that every time the space cruiser 

started or stopped, they suffered a serious case of whiplash!  Bev finds that curious but 

the topic is dropped.  During the drive to take C & D home, the four friends decide to 

meet the next day with spacetime diagrams summarizing the trip to Alpha Centauri.  

The diagrams will be drawn from the perspective of a stationary Earth and will include 

the worldlines of the messages sent by A & B to the space cruiser and the messages C & 

D sent to Earth. 

The following day, after exchanging some pleasantries, Anne quickly steers the 

conversation to the two spacetime graphs, figures 9.1a and 9.1b.  She stares, shakes her 

head in wonder, and says, “We sent 13 annual messages to you and you sent 10 annual 

messages to us.  Therefore, assuming everyone’s watches ran correctly, the two of you 

aged three years less than we did back on Earth.  Although the conclusion seems 

strange, it seems incontrovertible since Bev and I received only 10 messages during 

your roundtrip to Alpha Centauri.  On the other hand, you received all 13 messages we 

sent.  So there is no disagreement about the fact that a different amount of time passed 

on Earth for Bev and me than passed for you during the trip!” 

The spacetime diagrams in figures 9.1a and 9.1b makes it appear perfectly reasonable that the 

space travelers age less than their stay at home friends. 

Dean asks, “What happened to the Principle of Relativity?”  Bev responds to Dean, 

“During the trip to Alpha Centauri, Anne and I saw the cruiser moving off at  
3

5
 ft/ns 

and received one message for each two sent.  The messages you sent reached Earth at 

half the frequency of the messages we sent to you.  Meanwhile, you saw Earth receding 
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at 
3

5
 ft/ns and received messages from Earth at half the rate that you were sending them.  

Therefore during the trip to Alpha Centauri the Principle of Relativity appeared to 

apply perfectly.” 

Chuck picks up on that argument by pointing out to Bev that during the return trip, 

when he and Dean saw Earth rushing toward them at 
3

5
 ft/ns, the frequency of the 

arriving messages was twice as high as the frequency of the sent messages.  Bev says, 

“Anne and I saw exactly the same change in received to sent messages, two arrived for 

each one sent to the returning space cruiser. 

The change in frequency caused by the relative motion of the source and observer which shows 

up here when C & D switch directions at Alpha Centauri is called the Doppler Effect.  When 

the source and observer are moving apart, the received frequency is lower than the sent 

frequency.  On the other hand, when the source and receiver are moving toward one another, the 

received frequency is higher than the sent frequency.  A derivation of the formula relating the 

sent to the received frequencies is presented at the end of this chapter. 

So Dean asks again, “If Chuck and I return about 3 years younger than you guys who 

stayed on Earth, doesn’t that violate the Principle of Relativity?”  Anne answers this 

time, “Dean, while the ship was cruising at constant velocity, the Principle of Relativity 

worked perfectly.  There was no disagreement about the affect motion had on the rates 

of sent versus received messages.  But, pointing to the neck braces worn by her friends, 

“That symmetry was broken when the space cruiser suddenly stopped at Alpha 

Centauri causing you to suffer neck injuries.  Unfortunately for you, the same thing 

happened when you left Alpha Centauri to return to Earth.  Meanwhile, Bev and I 

suffered no ill effects from your U-turn at Alpha Centauri!”  “Ha, ha,” says Bev. 

Anne ignores Bev and continues.  “A space traveler has to turn around to return home.  

During the turn around, the traveler feels the ship decelerate and then accelerate again.  

These are real measurable effects that act on the traveler but not on his stay at home 

friends on Earth.  Consequently the Earth and space cruiser reference frames are not 

equivalent during the time the cruiser is changing velocity.  This difference means that 

the Principle of Relativity does not apply during the time the ship is changing velocities.  

That break in the symmetry between you and Chuck and Bev and me accounts for the 

fact that you guys really did age less than Bev and I who remained on Earth.” 
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Question 9.3:  Make sure your answers to questions 9.1 and 9.2 are consistent with 

figures 9.1a and 9.1b. 

Chuck and Dean try to nod in agreement but their heads can only move a limited 

amount because of the neck braces.  Dean concedes, “Our injuries clearly confirm your 
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clever analysis and shows why the so-called `Twin Paradox’ is not really a paradox but 

instead a misunderstanding of the Principle of Relativity.” 

Now Anne points to the spacetime diagrams and speaking to Dean, says, “Everything 

that we have learned about space and time came about by comparing observers in two 

different reference frames that were moving with a constant velocity with respect to one 

another.  When we drew the worldline for the space cruiser that you and Chuck 

traveled in, we forgot to consider the question of how the cruiser went from sitting on 

Earth to moving at 
3

5
 ft/ns.  And that drastic change in speed happened three more times 

before we met up again after your trip, twice at Alpha Centauri and a last time when 

you arrived back to Earth.” 

At Alpha Centauri, Chuck and Dean quickly changed space cruisers and reversed their velocity 

from v = +0.6 to -0.6 ft/ns.  On the spacetime graph, that velocity change happened very abruptly 

when C & D jumped from the outgoing to incoming space cruiser.  No wonder they suffered 

whiplash injuries!  But their unfortunate injuries highlighted the distinction between the 

reference frame of the travelers and that of the stay at home observers. 

Chuck & Dean look at one another and then at their two friends with expressions that 

make it clear that they are not consoled by the fact that their injuries helped resolve the 

Twin Paradox.  But they are happy to be back on Earth and finished with space travel 

and they will be even happier when the neck braces are removed for good! 

The next chapter will show how to design a rocket trip that eliminates the disconcerting abrupt 

changes in velocity that played havoc with C & D.  But for now, the discussion of the classic 

twin paradox continues. 

Chuck is still curious about how the discrepancy between received and sent messages 

arose.  He points out that the symmetry between Dean and him, the travelers, and A & 

B, their stay-at-home friends, was broken when he and Dean turned around at Alpha 

Centauri.  Chuck asks no one in particular, “But how does the spacetime diagram know 

that the symmetry was broken when we turned around?” 

Bev stares at the diagrams and observes that when C & D changed rockets they also 

changed reference frames.  Bev says to her fellow spaceketeers, “During the trip out C & 

D were in a reference frame moving at +
3

5
 ft/ns with respect to Earth but on the return 
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trip their velocity with respect to Earth was −
3

5
 ft/ns.”  Three blank pairs of eyes 

watched and waited for her to continue. 

She quickly draws a new spacetime diagram, figure 9.2.  Then she shows her friends the 

diagram and says, “Point A is the spacetime location of C & D when they made the 

switch from outgoing, v = +
3

5
 ft/ns to returning, v = −

3

5
 ft/ns, rocket cruiser.  The two 

blue lines passing through that spacetime point represent the two constant time lines; 

one from the perspective of the outgoing rocket and the other from the returning 

rocket’s perspective.  From equation 4.11b, the slopes of those constant T lines are just 

+
3

5
  and −

3

5
 , respectively.  Knowing those slopes, I was able to add the two constant T 

lines to the spacetime graph.  Those constant T 

lines intersect with Anne & Bev’s worldline at B 

and C respectively”  

Chuck some quick calculating and jumps in and 

replaces Bev as the speaker, “Point B in figure 

9.2 marks the intersection of the constant T = 5⅓ 

year line with the x = 0 line, and represents the 

location of an observer in the outgoing rocket 

frame who is just passing Earth at the instant 

Dean and I arrived at Alpha Centauri, point A.  

That observer at B is in the same reference frame 

as Dean and me and has a watch that reads 5⅓ 

years.”  

Before anyone else can speak, Chuck continues, 

“On the other hand, the Earth observer at B has a 

watch reading 4
4

15
 years.   The observers in the 

outgoing rocket frame conclude that the Earth 

watch at x = 0 ticked off less time as it moved 

through their rocket frame.” 

Bev points out, “But the Earth observer at A has 

a watch that reads 6⅔ years.  She concludes that 

you and Dean had watches that ticked off less time than her Earth-frame watch during 
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your trip to Alpha Centauri.”  At this point, all four friends exclaim together, 

“Observers in each frame see the watches moving through their frame as running slow, 

conclusions that are consistent with the Principle of Relativity.” 

The four friends feel confident that they understand why the travelers record less time 

on their watches than the stay-at-home people.  But the neck braces on C & D also 

remind them that instantaneous changes in velocity are not suitable for real space 

travel, especially travel involving humans.  Therefore they decide to meet in a week, 

after C & D have a chance to recuperate more fully, to think about how to plan a trip 

into space that is less stressful on vertebra! 

The various watch readings in the last few paragraphs were calculated using the equation d = vt 

and the effect motion has on watches and rulers.  The next few questions give you the 

opportunity to check those.  The answers can also be found by using the Lorentz equations.  In 

either case, the algebraic answers ought to be consistent with the answers from figure 9.2. 

Question 9.4:  What is the reading on the watch of the outgoing rocket observer at point 

B?  Call this time TB. 

Question 9.5:  What is the reading on Anne’s Earth watch at point B?  This is tB. 

Question 9.6:  Anne carried her watch through the outgoing rocket frame from the 

origin to point B.  As the moving watch, time tB ought to be only 80% as large as TB.  Do 

your answers for 9.4 and 9.5 agree with that conclusion? 

Question 9.7:  According to Anne & Bev, exactly how much time passed during Chuck 

& Dean’s roundtrip to Alpha Centauri?  Call this ttrip. 

Question 9.8:  According to C & D, exactly how long did their roundtrip take trip?  This 

is Ttrip. 

Although the trip included some strange happenings during the turnaround at Alpha Centauri, 

there is a simple relationship between ttrip and Ttrip, namely Ttrip = √1 − 𝑣2 ttrip.  For the example 

in this chapter, the difference, ttrip - Ttrip = 2.67 years.  But the duration of the rocket trip 

according to the travelers can be made arbitrarily small by having the rocket travel at speeds 

closer and closer to the speed of light.  For example, if the rocket traveled at v = 0.99, the 

shrinkage factor equals √1 − 𝑣2 = 0.14 ≅
1

7
 .  At that speed, the travelers would age only one 

year for every seven that passed on Earth. 
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Question 9.9:  Are your answers to 9.7 and 9.8 consistent with Ttrip = √1 − 𝑣2 ttrip? 

In effect, Chuck & Dean not only made a trip to Alpha Centauri but they are also made a trip 

into the Earth’s future since more Earth time ticked off than C & D time!   

Question 9.10:  Aliens, from some distant star, visit Earth periodically to check up on us 

Earthlings.  Assume the alien rocket cruises at a constant speed of 0.99999999 ft/ns, eight 

9’s, and they conveniently keep track of time on their rocket in Earth years.  If they 

return to Earth at intervals of one rocket year, how many years pass on Earth between 

their visits? 

Using the Lorentz Equations 

Finding TA and tB using the Lorentz equations is straightforward.  For the trip to Alpha 

Centauri, the Lorentz equations are exactly the same as those used to answer part i) of 

Experiment II in Chapter Six. 

X = (5/4) x – (3/4) t and T = (5/4) t – (3/4) x.    (9.1a and 9.1b) 

From the perspective of A & B, it took 6 
2

3
 years for C & D to travel 4 lt-yrs at a speed of 0.6.  So 

at point A, xA = 4 lt-yrs and tA = 6 
2

3
 years.  Substituting those values into equations 9.1a and 

9.1b gives, 

XA = 0 and TA = 5 
1

3
 year, the expected results.  To find tB, note that at that spacetime point xB = 0 

and TB = 5 
1

3
 years.  Equation 9.1b can be used to find tB, 

5 
1

3
 years = (5/4)tB – (3/4) 0. 

Therefore tB equals 
64

15
  or 4 

4

15
 years.  If the Lorentz equations are used to find times for C & D 

during the trip back to Earth, things are less straightforward.  On this leg of the journey, v = -

0.6 instead of 0.6.  Switching the sign of v in equations 9.1a and 9.1b gives the Lorentz equations 

connecting coordinates in the reference frame of the returning rocket to those of A & B in Earth’s 

frame, 

X* = (5/4) x + (3/4) t and T* = (5/4) t + (3/4) x.    (9.2a and 9.2b) 

The asterisks are to remind us that X* and T* are coordinates assigned to spacetime points by 

observers riding in the reference frame of the returning rocket.  These coordinates are different 

from the X and T in equations 9.1a and 9.1b. 
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The Lorentz equations always require the origins of the two connected reference frames, x = X* = 

0, to be coincident at t = T* = 0.  When x = t = 0 in equations 9.2a and 9.2b, X* = T* = 0 as 

required.  Therefore the origin of the reference frame of the returning space cruiser is located at 

Earth when C & D start their trip.  This means the returning rocket is someplace other than the 

origin when T* = 0! 

In order for the returning rocket to be at Alpha Centauri when Chuck & Dean arrive, the rocket 

must be at x = 8 lt-yrs when t = 0.  These values can be substituted into equations 9.2a and 9.2b 

to find the coordinates of the returning cruiser in its reference frame.  The results are X* = 10 lt-

yrs and T* = 6 years.   

If we use the coordinates Anne & Bev assign to the spacetime point A, we find that 

XA* = 10 lt-yrs and TA* = 
34

3
 or 11 

1

3
 years. 

These answers though strange are perfectly reasonable.  The location of the returning rocket does 

not change in the returning rocket’s reference frame.  So if it was at X* = 10 lt-yrs when Chuck 

& Dean started their trip, it will still be at X* = 10 lt-yrs at Alpha Centauri and when it arrives 

back to Earth with its honored passengers.  The clock on the returning cruiser read 6 years at the 

start of C & D’s trip and 11 
1

3
 years when it arrived at Alpha Centauri.  So the rocket time for the 

trip to Alpha Centauri was 5 
1

3
 years, exactly the same time it took the similar rocket to travel an 

equal distance, 4 lt-yrs, from Earth to Alpha Centauri. 

On the other hand, when Chuck & Dean exchanged their original cruiser for the one used to 

return to Earth, the local times on the cruisers found by using the Lorentz equations went from 

5 
1

3
 years to 11 

1

3
 years!  Of course it did not take C & D 6 years to switch rockets and they 

sensibly reset the clocks on the returning cruiser to the 5 
1

3
 years it took them to reach Alpha 

Centauri. 

The primary motivation for the above discussion about the returning cruiser was to emphasize 

that care needs to be used when solving problems with the Lorentz equations.  It is usually much 

safer to analyze a spacetime problem by using the fact that moving clocks run slow and moving 

rulers shrink in conjunction with an appropriate spacetime diagram.  The Lorentz equations can 

help at the end of the analysis to make sure everything is consistent. 
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Looking at a Moving Watch – The Doppler Effect 

We have learned that a watch moving through a reference frame runs slow compared to 

synchronized watches in that reference frame.  What happens when an observer continuously 

monitors the time on a watch as it moves toward or away from him?  This latter situation allows 

for the direct comparison of one watch with another.  But in order for the observer to see the time 

on the moving watch, light has to travel from the moving watch back to the eyes of the observer. 

Suppose Anne peered through a telescope to monitor the time on a clock in Chuck & Dean’s 

rocket cruiser as it headed toward Alpha Centauri.  The image of that clock traveled at light 

speed from the rocket back to Earth.  The dashed red lines on figure 9.1b could have represented 

the images of that clock when it read 1, 2, 3, etc years instead of the yearly messages sent from C 

& D to A & B.  As that spacetime graph makes clear, when Anne saw the rocket clock read one 

year, her Earth clock read two years.  How can this be reconciled with the fact that Anne, Bev 

and the other Earth-frame observers note that Chuck and Dean carry clocks that run slow 

compared to their synchronized Earth clocks by a factor of  √1 − 𝑣2 which equals 4/5 when v = 

3/5.   

Chuck and Dean on the rocket see an identical situation; their watches read two and four years 

when they received the image of the Earth clock reading one and two years. Those image signals 

going from Earth to the rocket are shown in figure 9.1a.  The clock receding at 3/5 the speed of 

light, when continuously observed is seen to run at half the rate of the stationary clock.  As 

mentioned earlier, that difference in rates is a consequence of the famous Doppler Effect. 

Question 9.11:  Study figures 9.1a and 9.1b to convince yourself that during the return 

trip, the Earth observers see the rocket clock ticking twice as fast as the Earth clock and 

vice versa, the rocket people see the Earth clock ticking twice as fast as their clock. 

The last thing to accomplish in this chapter is to generalize the Doppler Effect to clocks and 

watches moving at any velocity with respect to one another.  Before beginning, the equation for 

the Doppler Effect is usually written in terms of frequency and not time differences.  Frequency 

is just the rate at which messages are received.  In the earlier example, Anne on Earth received 

messages at ½ the rate that she was sending them to the receding rocket and received messages at 

twice the rate that she was sending them to the approaching rocket.  Frequency is just the inverse 

of the time interval, T, between messages, f = 1/T.  Our goal is find a relationship between freceived 

and fsent.  Figure 9.3 below and some algebra are all that is needed to derive the general equation.    
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The worldline of the approaching rocket is red and two Earth-bound messages are shown in blue.  

The messages were sent at rocket times TA and TB so that the interval between the sent messages 

is ΔTsent = TB– TA.  Anne back on Earth received those messages at Earth times t1 and t2 and 

Δtreceived = t2– t1.  The sent and received frequencies are just fsent = 1/ ΔTsent and freceived = 1/ Δtreceived. 

     Figure 9.3           t2 

                  

                      t1 

 

               B  

 

        A 

The first message was sent from the rocket from spacetime point A.  At that instant, Earth 

observers noted that the rocket was a distance D from Earth and the Earth clock at A read zero.  

This first message traveled a distance D at the speed of light and reached Earth at, 

 t1  = D/c.             (9.3) 

The Earth observers at A and B note that the rocket clock is running slow.  Therefore the time 

difference tB – tA is larger than TB - TA = 𝛥𝑇𝑠𝑒𝑛𝑡,  

𝑡𝐵 − 𝑡𝐴 = 𝛥𝑇𝑠𝑒𝑛𝑡

√1 − (
𝑣

𝑐
)2⁄

.         (9.4) 

 Since the first message was sent at Earth tA = 0, 

 
𝑡𝐵 = 𝛥𝑇𝑠𝑒𝑛𝑡

√1 − (
𝑣

𝑐
)2⁄

 .         (9.5) 

Earth observers saw the rocket move a distance x = v tB closer to Earth before sending the second 

message, 



134 
 

x = 
𝑣𝛥𝑇𝑠𝑒𝑛𝑡

√1 − (
𝑣

𝑐
)2⁄

 .         (9.6) 

The second message reaches Earth a time (D – x)/c after it was sent or,  

t2 = tB + (D – x)/c = ΔTsent/√1 − (
𝑣

𝑐
)2 + (D – x)/c.        (9.7) 

Use equations 9.3 and 9.7 to find Δtreceived = t2 – t1, 

Δtreceived = ΔTsent/√1 − (
𝑣

𝑐
)2 – 

𝑣

𝑐
 ΔTsent/√1 − (

𝑣

𝑐
)2  = ΔTsent(1 – 

𝑣

𝑐
)/√1 − (

𝑣

𝑐
)2   (9.8) 

Note that D, the original distance between the rocket and Earth cancels out.  The relationship 

between Δtreceived and ΔTsent depends only on the relative velocity between the sender and the 

receiver of messages and not on the distance separating them.  The last step in the derivation is 

to recognize that in equation 9.8 √1 − (
𝑣

𝑐
)2 can be written as√1 −

𝑣

𝑐
 √1 +

𝑣

𝑐
   and (1 −  

𝑣

𝑐
) 

as√1 −
𝑣

𝑐
 √1 −

𝑣

𝑐
 .  Consequently the √1 −

𝑣

𝑐
 terms in the numerator and denominator cancel to 

give, 

Δtreceived = ΔTsent 
√1 − 

 𝑣

 𝑐
 

√1 + 
𝑣

𝑐

            (9.9) 

In terms of frequency sent and received, equation 9.9 becomes,     

freceived = fsent   

√1 + 
𝑣

𝑐
 

√1 − 
𝑣

𝑐

 .          (9.10) 

Notice that in equation 9.10 the velocity is positive when the rocket is approaching Earth. 

Question 9.12:  Show that equation 9.10 gives the correct answer when v = 3/5, namely 

that messages are received at twice the rate that they are sent. 

Question 9.13:  Redo the derivation of equation 9.10 for a rocket receding from Earth 

with a speed of v so the second message takes longer than the first to reach Earth.   

 Question 9.14:  Does your answer to question 9.13 demonstrate that a rocket receding at 

v = 3/5 receives messages at half the rate that they are sent? 
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The answer to question 9.13 is identical to equation 9.10 with v replaced by –v.  This is 

reasonable because a rocket approaching with a velocity of –v is actually receding from Earth 

with a velocity of v!  

  



136 
 

Chapter Ten:  Space Travel 

Author’s Note:  This chapter has a little more mathematics than previous chapters.  On the other 

hand, the rewards for sticking with it are commensurate with the extra effort; learning how to 

treat accelerating rockets within the framework of Special Relativity and developing a deeper 

understanding of the difficulty of space travel. 

The material in the final two chapters does not depend on any of the results derived in this 

chapter.  Therefore if you find yourself struggling in this chapter, move on to the final two 

chapters.  You can always return to this chapter to give it another go at some later time. 

The Equivalence Principle 

After Chuck and Dean had their neck braces removed, they invite Anne and Bev over 

for dinner.  After eating, the four discuss the potential limits placed on human space 

travel by the theory of Special Relativity.   Not being engineers, they decide to ignore 

any possible technological limitations but agree instead that the imaginary travel has to 

be consistent with the known laws of physics. 

Since Dean was still a little sore from the return trip to Earth, he immediately reminds 

them that their imaginary rocket has to move through space and time without the bone 

crushing changes of velocity that he and Chuck suffered through on their trip to Alpha 

Centauri.  Chuck agrees that a discussion of changing velocities, especially changing 

them less abruptly, would be a good place to begin. 

Acceleration is the technical term for the rate of change of velocity, 
𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑡𝑖𝑚𝑒
 .  Up to 

now, we have only been considering reference frames and objects moving at constant velocity, 

situations where the “change in velocity” was zero, leading to zero acceleration.  Accelerations 

snuck into the twin paradox because the travelers had to turn around at Alpha Centauri to 

return to Earth.  Also, though less central to the understanding of the twin paradox, the trip to 

Alpha Centauri started with an acceleration at Earth and ended with a deceleration at Earth.  

Each time the velocity of the rocket changed abruptly, the occupants of the rocket were battered! 

Anne points out that Einstein had postulated an equivalence between gravity and 

acceleration.  “If I remember correctly,” she tells her friends, “a person standing inside a 

windowless rocket could not tell if the rocket was sitting on Earth or accelerating 

through empty space at 32 ft/s2.” 
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This equivalence means an experiment done by the person in the rocket would give exactly the 

same result regardless of whether the rocket was sitting on Earth or accelerating through empty 

space.  This equivalence is analogous to the earlier one encountered with the Principle of 

Relativity.  There we discovered that all reference frames moving at constant velocities were 

equivalent.  This one connecting acceleration and gravity is known as the Equivalence 

Principle.  Einstein used the Equivalence Principle to develop his General Theory of Relativity, 

a theory that lies well outside the scope of this modest book! 

Dean wants to know what is so special about an acceleration of 32 ft/s2.  Anne answers: 

“Imagine an object dropped into the Grand Canyon.  As the object falls, its speed 

increases by 32 ft/s every second due to the pull of gravity.   In fact, any object dropped 

near the surface of Earth accelerates at that rate.  So we call 32 ft/s2 the acceleration due 

to gravity.” 

Anne tells Dean, “Imagine you’re standing on a scale, gravity is still pulling on you but 

you aren’t falling; something is holding you up against the pull of gravity that is trying 

make you fall at 32 ft/s2.  That push up is exerted by the scale and balances the pull of 

gravity.  The size of that upward push is your weight.  On a different planet, your 

weight would be more (less) than on Earth depending upon whether an object near the 

surface falls with an acceleration of more (less) than 32 ft/s2.” 

Dean smiles and thanks Anne for the cogent explanation of why 32 ft/s2 is special for 

Earthlings. 

Question 10.1:  A rock is dropped into the Grand Canyon.  How fast is it going after 1, 2, 

3, 4, and 5 seconds? 

Chuck wants to know what this has to do with accelerating rockets.  Bev decides to give 

Anne a rest and reminds Chuck of Newton’s second law, F = ma, an equation that 

shows the connection between forces and accelerations. 

Bev asks Chuck a series of questions to help him see how this early discussion is going 

to connect to the issue of accelerating rockets. 

Question 10.2:  You are standing on a scale inside a rocket sitting on the surface of 

Earth.  What is your acceleration?  (Don’t let Bev fool you with this question!) 



138 
 

Question 10.3:  Based on your answer to question 10.2, what is the total force acting on 

you while standing on the scale inside the rocket? 

Question 10.4:  What does the scale in the rocket read? 

Question 10.5:  Now you are standing on the same scale inside the same rocket except it 

is accelerating upward through empty space at 32 ft/s2.  What does the scale read in this 

case? 

Chuck frowns and asks Bev to slow down to give him a chance to think.  Chuck begins 

to answer Bev’s questions, “Unless your first question had a hidden trick, my 

acceleration inside a stationary rocket is zero since I am standing still.  If my 

acceleration is zero, the net force acting on me must also be zero.  That means the scale 

is pushing up on me with a force equal to the downward pull of gravity.  Therefore the 

scale reads my weight.” 

Bev smiles, gives Chuck a thumbs up, and says, “One more question to go, Chuck.” 

Chuck stops to think some more before answering Bev’s last question.  He answers 

talking to himself and Bev at the same time, “Now I am accelerating which means that 

some force is acting on me.  Inside the rocket, I am standing on the scale, so the scale 

must be pushing up on me with just the right sized force to cause an acceleration of 32 

ft/s2.  From Newton’s Second Law, F = ma, the size of that force is just my mass times 32 

ft/s2.  Okay, I get it now.  My mass times 32 ft/s2 is the same as my weight on Earth.”   

Now speaking directly to Bev, Chuck says, “So the scale reads the same value, my 

weight, whether the rocket is sitting on Earth or accelerating through empty space at 32 

ft/s2.  For me inside the windowless rocket, there is no difference as long as the rocket 

accelerates at just the right rate, 32 ft/s2!” 

After listening to Bev and Chuck, Dean exclaims, “The equivalence between gravity and 

acceleration is very cool.  I have to give Einstein credit for coming up with that idea.” 

Question 10.6:  The engine in Chuck’s accelerating rocket breaks down and the rocket 

begins to coast through empty space.  Chuck looks at the scale, what does it read now? 

Now that Bev has brought Chuck and Dean up to speed, Anne shifts the conversation 

back to the imaginary rocket.  As her three friends turn towards her, she says, “Humans 

are used to living on a planet where the acceleration of gravity is 32 ft/s2.  I suggest that 
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our interstellar rocket move through space with a constant acceleration of 32 ft/s2.  That 

way, the spacefarers riding inside the rocket would be subject to a constant force 

equivalent to the pull of gravity at Earth’s surface.”  Chuck & Dean enthusiastically 

endorse that idea recalling the jarring takeoff from Earth on their trip to Alpha 

Centauri. 

When C & D switched space cruisers at Alpha Centauri, they changed their velocity from +0.6 

ft/ns to -0.6 ft/ns, for a net change of 1.2 ft/ns or 1.2 billion ft/s in one hour.  There are 3600 

seconds in an hour, so during that switch in rockets, they were subject to an average acceleration 

of 
1.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑓𝑡/𝑠

3600 𝑠
 = 333,333 ft/s2 which is about 10,000 times the acceleration of gravity, 10,000 

g’s.  No wonder they suffered from whiplash! 

Designing the Space Adventure 

 

         Acceleration  

 

Our friends come up with the following scenario for the rocket’s roundtrip.  First it 

accelerates for a fixed time.  This allows the rocket to slowly gain speed with respect to 

Earth.  Halfway out, the rocket turns around and uses its engine to decelerate slowly 

back to zero.  The second leg of the trip will take the same length of time as the first leg 

since the rate of change of speed is the same, 32 ft/s2.  After this leg of the journey, the 

rocket will be stationary and some large distance from Earth.  The diagram above 

shows the first leg of the trip and the diagram below shows the second leg. 

  

 Acceleration    

 

The return trip to Earth just repeats the first two legs except now the rocket is heading 

back home instead of away from Earth.  The complete trip consists of four legs of equal 

duration.  During the entire trip, the rocket maintains a constant acceleration designed 

to parrot the pull of gravity on the surface of Earth.   
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After agreeing to this basic outline, Chuck asks the group, “Whose time are we talking 

about?”  Good question, they all agree.  Bev says, “Based on our experience with the 

Twin Paradox, the watches on Earth will tick off more time than the watches carried by 

the occupants of the rocket.” 

A consensus is soon reached that the relevant time is the rocket time.  This led to the 

next obvious question, how long do our imaginary travelers spend on the trip?  Bev 

reminds them that their goal is to test the extreme limits of space travel.  After some 

haggling, they agree that the rocket ought to spend 10 rocket years during each of the 

four legs of the journey, for a total trip of 40 years.  Assuming our travelers begin when 

they are 20 years old, they will return to Earth at age 60.    

Anne feels good about the progress made creating a reasonable scenario for a trip into 

deep space.  But she wonders how are they going to figure out how far from Earth the 

imaginary travelers can get in 20 years?  She asks her fellow scientists, “Everything we 

have learned up to now about space and time assumed buses and rockets moving at 

constant speeds.  How are we going to figure out how an accelerating rocket moves 

through space and time?  Anne’s query is met with total silence.  Bev, Chuck, and Dean 

stare at the floor hoping that Anne was asking a rhetorical question! 

Anne wasn’t asking a rhetorical question but she finally says, “As long as the rocket’s 

speed is small compared to the speed of light, we don’t need to worry about the effects 

of Special Relativity because the factor √1 − (
𝑣

𝑐
)2  will be essentially 1.”  Chuck agrees 

but points out that as long as the rocket’s speed is small compared to the speed of light, 

the rocket is not going to get very far from Earth!   

Bev mumbles to no one in particular, “The rocket is always going slow with respect to 

some inertial reference frame.”  Then she draws the diagram below and holds it up for 

her friends to see. 

    

             Velocity of rocket = v 
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Earth coordinates    Local reference frame moving with velocity v 

She suggests that they think of the first 10 year leg as being made up of many little trips, 

for example 3650 one day trips as recorded by the rocket occupants.  Now Bev points to 

figure 10.1 and says, “Imagine that each new rocket day begins with the ship at rest in a 

local reference frame that is moving with respect to Earth.”  No one says anything, but 

the silence has an encouraging feel so Bev continues.  “At the end of a given day of 

accelerating, the rocket will have a speed U in the local reference frame.  That local 

frame with the moving rocket has a velocity v with respect to Earth.”  Bev gives her 

colleagues a chance to study figure 10.1.  Before she can continue, Dean tells his friends, 

“We know how to find the rocket’s new velocity with respect to Earth.”  And then he 

writes the relativistic addition of velocity equation derived in Chapter Five in Bev’s pad 

under her diagram of the two reference frames. 

𝑢 =
𝑈+𝑣

1+𝑈𝑣
            (10.1) 

Dean points to the equation and says, “v is just the velocity of the local reference frame 

with respect to Earth.  U is the velocity of the rocket in the local frame after one day of 

accelerating.  The velocity of the rocket with respect to Earth, u, is given by the 

relativistic sum of U and v.” 

At the start of each day, v, the velocity of the local frame with respect to Earth is a little larger 

than it was at the beginning of the previous day.  On the other hand U is the same every day 

because it is just the increase in speed of a rocket starting at rest and accelerating for one day at 

the rate of 32 ft/s2.  Remember that U, v, and u are all written in terms of units that make the 

speed of light one. 

Question 10.7:  How many seconds are in a day? 

Question 10.8:  Ignoring any relativistic effects, what is the speed of a rocket starting 

from rest and accelerating for a day at 32 ft/s2?  (Convert the answer to mph.  Your answer 

ought to be a very large compared to typical speeds encountered in normal life.) 

Question 10.9:  Rewrite your answer to question 10.8 as a fraction of the speed of light, 
𝑎𝑛𝑠𝑤𝑒𝑟 𝑡𝑜 10.8 𝑖𝑛 𝑓𝑡/𝑠

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑓𝑡/𝑠
 ?  (Remember that the speed of light in this book has been decreed to be 1 ft/ns 

or 1 billion feet/second, 109 ft/s.) 
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 If the answer to question 10.9 is small compared to the speed of light, relativistic effects can be 

ignored during each day’s acceleration.  Then U, the speed of the rocket at the end of each day of 

accelerating in the local reference frame, is just your answer to question 10.8.  On the other 

hand, if the answer to question 10.8 is some sizeable fraction of the speed of light, a day is too 

long of a time increment and the equation velocity = acceleration x time cannot be used to find 

U, the rocket’s speed in the local frame. 

The speed of the rocket after a day of accelerating at 32 ft/s2 is 0.00276 ft/ns or 0.276% the speed 

of light.  The shrinkage factor, √1 −  𝑣2,  for v = 0.00276 is 0.999996 which is very, very close to 

1!  This means that we don’t need to worry about the effects of Special Relativity when looking at 

the daily motion of the rocket in the local reference frame and U in equation 10.1 can be replaced 

by 0.00276 ft/ns, the answer to question 10.9.  But Special Relativity will be extremely 

important in analyzing the cumulative effect of accelerating for 3650 days in a row!  

For the rest of this chapter, the unit of time will be one day and the unit of distance the light-day, 

the distance light travels in one day.  These choices make the speed of light 1 light-day/day which 

is completely analogous to 1 ft/ns or 1 light-year/year.  Also note that 1 light-year is equal to 365 

light-days. 

Anne summarizes the plan as she now understands it.  The rocket starts from rest with 

respect to Earth on day one.  Therefore v = 0 at the start of that day.  At the end of that 

day, the rocket’s speed with respect to Earth is u =
𝑈+𝑣

1+𝑈𝑣
 .  But since v = 0, the speed of 

the rocket with respect to Earth after one day is just u = 0.00276.  At the start of day two, 

the new local reference is moving with velocity v equal to the previous day’s u, v = 

0.00276.  Therefore at the end of day two the velocity of the rocket with respect to Earth 

is, 

𝑢 =
0.00276+0.00276

1+0.00276∗0.00276
  = 0.00552. 

Chuck nods sagely and says, “The u at the end of each day becomes the v used to start 

the next day.  In this way, the speed of the rocket with respect to Earth increases a little 

each day for as long as the rocket keeps accelerating.”  Dean frowns and tells Chuck, 

“Doing that little calculation 3650 times could be a little tedious! “  His three friends 

smile and point to the computer in the room.  Dean feels better now that he has been 

reminded that his friends, unlike him, are very computer literate. 
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Bev asks Chuck, “Using equation 10.1, we can find the rocket’s speed with respect to 

Earth after an arbitrary number of rocket days.  But how do we determine the 

corresponding number of Earth days?” 

Chuck answers immediately, “No problem.  Remember, Earth observers see the clocks 

in the local reference frame moving with a velocity v and running slow by the factor 

√1 − 𝑣2.  So for a day when the local reference frame has a velocity of v with respect to 

Earth, Earth observers record 
1

√1−𝑣2
 days passing.  Meanwhile the watches worn by the 

occupants of the rocket run at essentially the same rate as the watches in the local frame 

since √1 − 𝑈2 = 0.999996.  So one day in the local reference frame is the same as one day 

traveling in the rocket.” 

Chuck finishes answering Bev’s question, “Summing those daily contributions of 
1

√1−𝑣2
 

gives the Earth duration of the trip.” 

A rocket moving for a time t with an average velocity of v covers a distance v t during that time.  

For our rocket, the average velocity with respect to Earth during any given day is just the sum of 

the velocity at the start of that day, v, with the velocity at the end of that day, u, divided by 2.  

Dean uses this simple result to calculate how far the rocket has traveled after some given number 

of days. 

Dean excitedly points out that each rocket day, Earth observers measure the rocket 

traveling for an Earth time of 
1

√1−𝑣2
 days with an average velocity of  

𝑢+𝑣

2
 .  That means 

that the rocket moved  
𝑢+𝑣

2

1

√1−𝑣2
 light-days further from Earth during each day of rocket 

travel.   Adding together any number of these daily increments gives the rocket distance 

from Earth, in light-days. 

Chuck is eager to work on this and suggests they call it quits for the night and meet 

again tomorrow.  He promises to use his computer skills to create a spreadsheet that 

calculates the amount of Earth time passed, in days, and distance traveled from Earth, 

in light-days, for a rocket that continually accelerates at 32 ft/s2 for 10 years or 3650 

days. 

The Results of Chuck’s Calculations 

The next day, Chuck starts by handing a copy of table 10.1, which has eight columns.  

Each row of the table corresponds to a rocket day.  For example, the first row gives 
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details of the rocket’s trip during the first day; the second row summarizes what 

happened the second day, and so on row-by-row.  The table has rows corresponding to 

the first three days of the rocket’s trip.  Below the table, Chuck has written a definition 

for each of the quantities in his table followed by a procedure to find those values in all 

the subsequent rows.  

     Table 10.1 

1 2 3 4 5 6 7 8 

TRocket TEarth XEarth VStart VEnd VAverage ΔTEarth ΔXEarth 

0 0 0 0 0.00276 0.00138 1.000001 00.00138 

1 1 0.00138 0.00276     

2        

 

1. TRocket is the rocket time at the start of that day. 

2. TEarth is the corresponding Earth time.  This is the time the travelers see on any 

Earth observer clock they pass. 

3. XEarth is rocket’s distance from Earth at the start of that day. 

4. VStart is the rocket’s speed with respect to Earth at the start of that day. 

At the start of the trip the quantities in the first four columns are all zero.   

5. VEnd is the velocity of the rocket at the end of that rocket day.  It is equal to  
𝑉𝑆𝑡𝑎𝑟𝑡+𝑈

1+𝑉𝑆𝑡𝑎𝑟𝑡𝑈
  where U is the velocity gained each day.  For this rocket U = 0.00276 

and is the same for the first 3650 rows.  When the rocket starts decelerating, U 

changes sign and becomes -0.00276 in the 3651th row. 

6. 𝑉𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑉𝑆𝑡𝑎𝑟𝑡+𝑉𝐸𝑛𝑑

2
  is the average velocity of the rocket with respect to Earth 

during that rocket day. 

7. 𝛥𝑇𝐸𝑎𝑟𝑡ℎ =  
𝛥𝑇𝑅𝑜𝑐𝑘𝑒𝑡

√1−𝑉𝐴𝑣𝑒𝑟𝑎𝑔𝑒
2

=
1

√1−𝑉𝐴𝑣𝑒𝑟𝑎𝑔𝑒
2
 is the length of that rocket day according to 

Earth observers. 

8. ΔXEarth = 𝑉𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛥𝑇𝐸𝑎𝑟𝑡ℎ is the distance traveled during that rocket day as 

measured by Earth observers. 

The quantities in columns 5 through 8 are calculated by using the values in the first four 

columns of that row.  Those values are explicitly shown for the first row.  The next 
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series of steps describes the procedure used to find the values in the second row.  That 

series of steps is repeated over and over for the duration of the acceleration phase of the 

rocket’s trip. 

9. TRocket becomes TRocket + 1.  In the second row, TRocket = 2 days 

10. TEarth becomes TEarth + 𝛥𝑇𝐸𝑎𝑟𝑡ℎ.  In the second row TEarth = 2.000001 days 

11. XEarth becomes XEarth + 𝛥𝑋𝐸𝑎𝑟𝑡ℎ.  In the second row, XEarth = 0.00138 light-days 

12. VStart becomes the VEnd from the previous day.  In the second row, VStart = 0.00276. 

Those new values are then used to find VEnd, VAverage, 𝛥𝑇𝐸𝑎𝑟𝑡ℎ, and 𝛥𝑇𝐸𝑎𝑟𝑡ℎ in that row. 

Chuck gives his friends time to review the definitions of the quantities in each of the 

eight columns and his instructions for constructing the table.  After a little while, Anne, 

Bev, and Dean shift their gazes from the table and definitions to Chuck.  He takes this as 

a signal to continue.  Chuck points at the table and says, “I thought it would be a useful 

exercise for each of you to calculate the missing values in the table.”  His colleagues nod 

in agreement, and each begins doing the necessary calculations to fill in the eleven 

blank spaces in the table. 

Question 10.10:  Follow Chuck’s instructions and fill in the eleven missing values in 

Table 10.1.   (The answers are given later in this chapter.) 

Before Dean finishes doing the calculations, he says, “ I can’t wait any longer; how far 

from Earth is the rocket after it accelerates for 10 years?”  Chuck smiles and notices that 

A & B have correctly filled in their tables.  He hands each of them copies of Table 10.2. 

      Table 10.2 

TRocket TEarth XEarth VStart VEnd VAverage ΔTEarth ΔXEarth 

3648 4273221 4272859 1 1 1 11810.42 11810.42 

3649 4285032 4284670 1 1 1 11843.06 11843.06 

3650 4296875 4296513 1 1 1 11875.80 11875.80 

 

After giving them a few seconds to glance over this new table, Chuck says, “This table 

summarizes the last three days of the rocket’s acceleration phase.  On day 3651, the 

rocket starts using its engine to decelerate.” 

 Use the values in Chuck’s table to answer the following questions. 
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Question 10.11:  After 10 years of travel, how much Earth time has passed in days?  In 

years? 

Question 10.12:  After 10 years of travel, how far is the rocket from Earth in light-days?  

In light-years? 

Question 10.13:  The rocket reaches its maximum distance from Earth after traveling for 

20 rocket years, speeding up for 10 years and then slowing down for 10 years.  What is 

the maximum distance from Earth in light-years?  How does this compare to the 

diameter of the Milky Way?  (Chapter Eight included the size of the Milky Way.) 

Question 10.14:  After 40 years of rocket time, the ship returns to Earth.  How much 

Earth time has passed in years? 

The rocket travelers return more than 35,000 years into the Earth’s future.  This aspect of time 

travel makes for great science fiction stories as authors imagine Earth tens of thousands of years 

in the future.  Traveling into the future is a natural consequence of Special Relativity, but 

making predictions about Earth’s future is not!   

This demonstration of the “twin paradox” avoids the abrupt changes of speed associated with the 

description in Chapter Nine.  Also notice that with respect to intergalactic distances, the rocket 

does not get very far from Earth and is confined to stay in the neighborhood of the Milky Way.  

Remember, our nearby sister galaxy, Andromeda, is 2.5 million light years from Earth! 

Dean, feeling smug, tells Chuck, “You must have done something wrong because the 

speed of the rocket, according to your table 10.2 is equal to 1, the speed of light!”  Chuck 

was prepared for that question and shows Dean the table below with expanded values 

for the velocity.  He points to the table and says, “Dean, the rocket’s velocity gets closer 

and closer to one but always remains a tad less than one.” 

     Table 10.3 

TRocket TEarth XEarth VStart VEnd VAverage ΔTEarth ΔXEarth 

3648 4273222 4272859 0.999999996 0.999999996 0.999999996 11810.42 11810.42 

3649 4285032 4284669 0.999999996 0.999999996 0.999999996 11843.06 11843.06 

3650 4296875 4296512 0.999999996 0.999999996 0.999999996 11875.80 11875.80 
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Looking at table 10.3, Bev notices that during the last rocket day of acceleration, 11875.8 

Earth days pass. “Yikes!” She says, “That is over 25 years of Earth time!”  Anne points 

out that √1 − 𝑣2 , the time stretching factor during the 3650th rocket day is very close to 

zero.  Anne pulls out her calculator and says, “In fact, on that day √1 − 𝑣2 equals 

0.000084 which stretches one rocket day to over 10,000 Earth days in perfect agreement 

with Chuck’s table.” 

Dean, Bev, and Anne pat Chuck on the back for a job well done. 

Question 10.15:  Use a spreadsheet software program to reproduce the results in 

Chuck’s table. 

Chuck is a little embarrassed by the accolades of his friends.  But he has one more thing 

to share with them.  Since he and Dean were the ones who suffered the effects of the 

debilitating accelerations in Chapter Nine, he made a graph of the rocket’s smooth shift 

in velocity at the turn around point.   He shows his friends the graph in figure 10.1. 

 

       Figure 10.1 
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As Anne, Bev, and Dean look at the graph, Chuck says, “It shows the motion of the 

rocket 20 years into the trip, just as it reaches its maximum distance from Earth and 

turns around.   The graph shows the motion of the rocket during the 500 days when its 

velocity changes from v = +0.6 to v = -0.6 ft/ns.”  Dean thinks back to the neck 

wrenching turn around at Alpha Centauri and says, “Those imaginary travelers have 

no idea how lucky they are!” 

Question 10.16:  How does a rocket accelerate while traveling through empty space?  

(Our spaceketeers never asked this important question during their conversations about space 

travel.  Before reading on, give this question some thought.) 

The table below includes the answers to Question 10.10 in the highlighted boxes. 

TRocket TEarth XEarth VStart VEnd VAverage ΔTEarth ΔXEarth 

0 0 0 0 0.00276 0.00138 1.000001 0.00138 

1 1 0.00138 0.00276 0.00552 0.00414 1.000009 0.00414 

2 2.00001 0.00552 0.00552 0.00828 0.0069 1.000024 0.0069 

 

How does a Rocket Accelerate? 

About a week after Chuck’s triumphant presentation, Anne asked Bev, “How does our 

rocket change its speed while moving through empty space?”  Bev’s response was, 

“Good question.  We analyzed the kinematics of space travel but completely ignored 

the dynamics.”  

This is physics talk:  kinematics is the study of motion while dynamics looks for the causes of 

motion, especially changes in motion like acceleration. 

Earlier, we used Newton’s Second Law to connect force to acceleration.  An external agent exerts 

a force on an object causing it to accelerate.  For example, the Earth pulls down on an object 

falling into the Grand Canyon causing to go faster and faster.  But there is no external agent 

acting on a rocket moving through empty space. 

Anne imagines the daily accelerations of the rocket.  After thinking for a minute or two, 

she says, “Each day the rocket starts in a local reference frame with zero velocity.  At 

the end of the day, the rocket’s velocity is 0.00276 ft/ns.  This happens day after day for 

ten years.”  Bev interrupts to remind Anne, “It happens every day for forty years, 
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twenty years of accelerating and twenty more decelerating.”  Anne impatiently nods in 

agreement and points out to Bev, “All we need to do is figure out how the rocket can 

change its speed by either plus or minus 0.00276 ft/ns in one rocket day.  Then we can 

use that speed changing trick over and over again for each day of the trip.” 

Notice that by starting each day in a new reference frame, the speed of the rocket is always small 

in that reference frame compared to the speed of light.  This is very helpful because it means that 

the daily changes in speed can be understood without having to resort to Special Relativity. 

Bev blurts out, “Momentum, conservation of momentum is what accelerates the 

rocket.”  Anne thinks about this for a couple of seconds before smiling in agreement.  

They decide to invite Chuck and Dean over for a picnic lunch.  After lunch, they will 

share their new insight into the connection between conservation of momentum and 

acceleration with their friends.  This will allow the four of them to wrap up their 

analysis of rockets and space travel as a team, just like all their earlier work on space 

and time. 

After lunch, A & B begin to explain how the rocket accelerates by conserving 

momentum.  But before they get very far, Dean asks, “Remind me please, what is 

momentum?”  

The amount of momentum an object has is the product of the mass of the object times its velocity.  

When there are no external forces acting on an object, like our rocket moving through empty 

space, the object’s momentum cannot change.  Or said another way, it takes a force acting on an 

object to change its momentum. 

Before Anne or Bev can reply, Chuck jumps in and says, “The momentum of the rocket 

is the product of the rocket’s mass times its velocity.  Our rocket starts each day with 

zero momentum in the local reference frame.”  Dean replies, “Thanks Chuck.  I 

remember now.  Momentum is that handy quantity that is conserved.”  But after 

remembering that, Dean looks confused, and adds, “But at the end of the rocket day, 

the rocket has momentum since it is moving with a speed of 0.00276 ft/ns.  So is 

momentum conserved or not?” 

While Chuck ponders Dean’s question, Bev replies to Dean, “Imagine that the 

occupants of the rocket toss some mass out the back.  That tossed mass has negative 

momentum since it was tossed out with a negative velocity.  But the total momentum of 
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the rocket plus tossed mass still has to add to zero, the initial momentum of the rocket.   

Tossing mass out the back causes the rocket to move in the positive direction.”  Bev 

looks at Dean and Chuck and emphatically states, “The rocket accelerates by ejecting 

mass out the back.  Nothing could be simpler!” 

A rocket engine is a machine designed to eject mass with the largest possible velocity or 

momentum causing the rocket to accelerate in the opposite direction.  Building an efficient rocket 

engine is much more difficult that stating what such an engine ought to do!  But remember, we 

agreed to not worry about technological details.  Our rocket engine will operate with maximum 

possible efficiency. 

Dean looks at his friends and says, “So momentum is like velocity, it has a direction.  If 

the negative momentum of the ejected mass is going to be balanced by the positive 

momentum of the rocket, the magnitudes of those two momentums have to be equal.”  

Since no one interrupts him, he continues by writing down the following equation, 

MEnd U = (MStart – m)U = m vejected.        (10.2) 

When he looks up, Anne, Bev, and Chuck are staring at him.  Dean says, “Equation 10.2 

just summarizes in equation form what Bev told me.  The mass of the rocket at the end 

of the day, MEnd, times the speed of the rocket at the end of the day, U, has to equal the 

amount of mass ejected by the rocket, m, times the speed of the ejected mass, vejected.  

And of course the mass of the rocket at the end of the day is just equal to rocket’s mass 

at the start of day minus the amount of ejected mass, MStart – m.”  His three friends 

smile, and congratulate him for quickly and correctly turning the conversation about 

the conservation of momentum into an algebraic expression. 

Chuck does a little mental algebra to solve for m, the amount of mass that needs to be 

ejected to give the rocket a forward speed of U.  When he is finished, he writes the 

results below equation 10.2, 

𝑚 =
𝑈

𝑈+𝑣𝑒𝑗𝑒𝑐𝑡𝑒𝑑
𝑀𝑆𝑡𝑎𝑟𝑡.          (10.3) 

Bev stares at the equation and comments, “A `good’ rocket is one that can change its 

speed by U every day by ejecting the smallest amount of mass, m, as possible.”  

“Right,” says Chuck, “and that happens when the ejected mass has the largest possible 
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velocity.” With that explanation he re-writes equation 10.3 with vejected equal to 1, the 

speed of light, the maximum velocity that a rocket engine can give to the ejected mass,  

𝑚 =
U

U +1
𝑀𝑆𝑡𝑎𝑟𝑡.           (10.4) 

Dean wonders how they are going to build such an engine, but he is cut short by Bev 

who points out that that is a problem for engineers.  Their mission is to use the most 

optimistic assumptions, consistent with the known laws of physics, to maximize the 

capabilities of their rocket. 

Anne has been silently mulling over equation 10.4.  Finally she says, “The mass of the 

rocket at the end of the day is related to the mass at the beginning by the following 

equation, 

𝑀𝐸𝑛𝑑 = 𝑀𝑆𝑡𝑎𝑟𝑡 − 𝑚 = 𝑀𝑆𝑡𝑎𝑟𝑡 −
𝑈

𝑈+1
𝑀𝑆𝑡𝑎𝑟𝑡 =

1

1+𝑈
𝑀𝑆𝑡𝑎𝑟𝑡 .     (10.5) 

Chuck sets U = 0.00276 in equation 10.5 and quickly calculates that 
1

1+𝑈
 is equal to 0.997 

for their rocket.  He looks at his friends and says, “So at the end of each day, the mass of 

the rocket is reduced to 99.7% of its starting mass.”  

If the mass at the start of the trip was M0, the mass after day one would be 0.997 M0.  A day after 

that, the mass of the rocket would be 0.997(0.997 M0) = (0.997)2 M0.  After 10 days, the 

remaining mass of the rocket would be (0.997)10 M0. 

Dean points out that the total trip is 14,600 days long and asks, “What is 0.997 raised to 

the 14,600th power!”  Bev punches some buttons on her calculator and writes down the 

answer to Dean’s question, 

𝑀𝑅𝑒𝑡𝑢𝑟𝑛 = 0.99714,600𝑀0 = 0.000000000000000000089 𝑀0. = 8.90 x 10-20 𝑀0.  (10.6) 

Dean says the obvious, “That is an astonishingly tiny fraction of the starting mass!”  

Remember that our friends used the theoretically most efficient possible rocket engine that ejected 

mass at the speed of light.  Any rocket powered by a real engine would have to eject a 

considerably larger fraction of its mass to make this trip. 

Question 10.17:  The maximum landing weight of the Space Shuttle, NASA’s work 

horse vehicle, is 100,000 kilograms.  A rocket that travels for 40 years and returns to 

Earth would likely have a substantially larger returning mass, but for the sake of 
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argument suppose the returning rocket had a mass equal to the Space Shuttle, 100,000 

kg.  Use equation 10.6 to calculate the initial mass, M0, for this rocket? 

Your answer to question 10.13 ought to be very large, but how large is very large.  The mass of 

Earth is 5.98 x 1024 kilograms.  Your answer to question 10.17 ought to be about 0.19 times the 

mass of Earth, or 19 % of the mass of our home planet!   

The primary purpose of this chapter was to show how relatively, pardon the pun, simple ideas 

can be used to establish practical limits on the ability of humans to explore space.  For those of 

you dismayed by these limitations, remember the limitations arose because our spaceketeers 

insisted on building an imaginary rocket that operated within the known laws of physics. 

Bonus Topic: A Peek at General Relativity 

We can use the Equivalence Principle and the Doppler Effect from Chapter Nine to 

show that clocks further from the center of Earth run faster than those closer.  This 

gravitational effect on clocks has to be corrected for in order for a GPS to accurately 

determine a location.  Figure 10.2 shows two identical rockets with clocks located at the 

positions labeled 1 and 2. 

     Figure 10.2  Acceleration 
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frequency to Clock 1.  When the message arrives at Clock 1, the local inertial observers 

who were stationary within the rocket when the signal was emitted now see Clock 1 

moving upward with a velocity v gained while the signal traveled the length of the 

accelerating rocket.  Therefore the observers in the rocket located at Clock 1 see the 

signal from Clock 2 Doppler shifted to a lower frequency.  They conclude that Clock 2 is 

ticking more slowly than their clock, Clock 1, or that their clock at the front of the rocket 

is ticking faster than clocks lower down in the rocket. 

The equivalence of acceleration and gravity requires that observers in the left-hand 

rocket that is sitting on Earth see exactly the same effect.  Namely, the clock at the top of 

the rocket, Clock 1, has to run faster than Clock 2 at the bottom of the rocket.  This 

gravitational effect on clocks sitting on Earth has nothing to do with the Doppler Effect 

since both clocks in this rocket are stationary!  In general, clocks further from the center 

of Earth will run faster than those that are closer.  Therefore clocks in orbit around the 

Earth run faster than clocks on the ground: a consequence of General Relativity that has 

been confirmed by the GPS system.  A quantitative analysis of this effect is presented in 

Appendix D. 

This slowing of clocks near a source of gravity is extreme when the clock is close to a 

black hole.  In fact General Relativity predicts that a clock will run at a slower and 

slower rate as it approaches a black hole.  The place where the falling clock would 

appear to stop ticking is called the event horizon of the black hole.  The clocks actually 

falls through the event horizon but observers outside a black hole can NEVER see the 

clock actually fall into the black hole.  Instead the clock will appear to move slower and 

slower but never quite reach the event horizon.  From the perspective of the clock, 

nothing strange happens at the horizon.  It just zips by and enters the black hole to 

never be seen or heard from again.  
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Chapter Eleven:  Does it Really Happen? 

One question that always gets asked at the end of a semester goes something like this, "clocks 

don't really run slow, do they?"  Or some equally unnerving question that convinces me that 

some students see the spacetime of special relativity as some sort of optical illusion or trick 

unconnected to reality.  This chapter is my last and very best effort at convincing the die-hard 

skeptic that moving rulers and clocks really do shrink and run slow just like the rulers and clocks 

used by Anne, Bev, Chuck, and Dean.  I will use two distinctly different arguments designed, for 

once and for all, to put to rest the notion that the effect motion has on space and time is just 

"theoretical." For the rest of this chapter, the rule that the author’s comments are in italics will 

be suspended! 

The Far-Away Observer (FAO) 

When Bev compared the time on her watch with the time she saw on Anne's watch, 

there was always a difference in readings because the image of Anne's watch took a 

finite time to reach Bev. 

Of course under normal circumstances in our daily lives that difference is much too 

small to register on our inferior clocks and watches, but remember that our intrepid 

experimenters have watches that read to 0.1 ns with reflexes to match! 

Therefore the time Bev saw was always a bit earlier than the time on her synchronized 

watch; the difference just being the distance between them divided by the speed of 

light.  For example, if they were 100 feet apart the time delay would be 100 ns.  If Bev 

saw exactly 10:00 a.m. on Anne's watch, her watch read exactly 100 ns after 10:00 a.m. 

The FAO has a privileged vantage point that lets her see the same time on Anne and 

Bev's watches.  This vantage point is gained by being far from both of them as shown in 

figure 11.1.  Although Bev is further from the FAO than Anne, that difference in 

distance can be made arbitrarily small by having the FAO move further away.  Notice 

that when the FAO shifts from point 1 to point 2 in the diagram below, the difference in 

distance between her and Anne and her and Bev gets smaller.  Imagine a circle drawn 

by the FAO with her at the center and with a radius equal to her distance to Anne.  The 

red line represents the arc of a circle centered at vantage point 1 and the black arc uses 

vantage point 2 as a center.  As the diagram makes clear, the difference in distance, 

which is proportional to the difference in time it takes light to reach the FAO from Anne 
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and Bev’s watches, can be made arbitrarily small by having the FAO move further and 

further away. 

Figure 11.1 

 

The watches used in this book were accurate to 0.1 ns.  We can easily calculate where 

the FAO has to stand to make the difference between the light travel times less than 0.01 

ns, too small enough to be noticed by observers using watches and clocks ticking off 

tenths of nanoseconds.  Of course, the FAO could move even further away to make the 

time difference even smaller than 0.01 ns if that was seen as prudent. 

Algebraically, the difference in time observed by the FAO is just her distance to Bev 

minus her distance to Anne divided by the speed of light.  The distance to Bev is the 

hypotenuse of the right triangle formed by Anne, Bev, and the FAO.  If Anne and Bev 

are L feet apart and the FAO is D feet from Anne, the difference in time is just,  

𝛥𝑇𝑖𝑚𝑒 = [√𝐷2 + 𝐿2  − 𝐷]/c         (11.1) 

Since light travels 1 foot in 1 nanosecond, a time difference of 0.01 ns corresponds to a 

difference in length of 0.01 ft, or about 1/8 of an inch.  If Anne and Bev are 100 feet 

apart, the FAO has to be about 500,000 feet away, or about 100 miles.   

Question 11.1:  Do the calculation outlined above to show that 500,000 feet is the 

appropriate distance between the FAO and A & B.  

Imagine the FAO 100 miles from Bev and Anne peering through a powerful telescope.  

She is watching A & B and the super bus with Chuck and Dean.  The FAO is stationary 

with respect to A & B and sees their watches reading “exactly” the same times though 

the images of their watches took 500,000 nanoseconds to reach her.  Exactly is in 

quotation marks because it actually took 500,000.01 nanoseconds for the image of Bev’s 
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watch to reach the FAO!   So in this case, “exactly” means accurate to within 0.01 ns.  

Therefore it is easy for the FAO to synchronize her watch with the readings she sees on 

the watches of A & B.  This allows her to observe an experiment through her telescope 

that takes place in the neighborhood of A & B without worrying about the confusing 

effects of different light travel times.  Her privileged vantage point makes the light 

travel time effectively the same from anyplace in the vicinity of Anne & Bev. 

Consequently the FAO sees events unfold in real time, but delayed by 500,000 ns, in A 

& B's reference frame.  For example if C & D drive the super bus through A & B's 

reference frame at 0.6 ft/ns, the FAO sees the entirety of the super bus at constant times 

according to A & B.  In figure 11.2, the worldlines for the super bus with Chuck in the 

back and Dean in front with properly synchronized watches are shown in red.  A & B 

are exactly 100 feet apart, the length of the stationary super bus, with Anne at the 

origin.  They also have properly synchronized watches.  This experiment, like most of 

the others discussed earlier, is arranged so that Chuck passes Anne when each of their 

running watches read exactly zero.  A & B's worldlines are in blue.  The super bus, as 

actually seen by the FAO, is shown at three different times. 

The FAO sees the watches of A & B perfectly in synch with hers.  On the other hand she 

sees C & D's watches running slow and not synchronized with one another.  At any 

given moment, she sees Dean’s watch reading 60 nanoseconds earlier than Chuck’s 

watch.  Also when she compares the length of the super bus to the 100 foot distance 

between A & B, it is clear to her that the bus is only 80 feet long.  There is nothing 

illusory about any of these effects.  If seeing is believing, the FAO is a believer! 

The peculiar features of special relativity that were so bedeviling early on are just part 

of the FAO's normal observations.  The only caveat is that she needs to be watching 

events in two different reference frames moving at relativistic speeds with respect to 

one another unfold from her privileged vantage point a large distance from the action.  

The only reason we have not observed the foreshortening of buses driving down the 

road is that there are no real buses that can travel at relativistic speeds! 
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Figure 11.2 
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For readers that need more convincing, Appendix C uses a device called a Light Clock 

to present a very clever alternative argument showing that the FAO sees moving clocks 

run slow and lengths shrink.  

A Dynamic Explanation for the Behavior of Watches and Rulers 

The FAO is an intelligent observer and asks herself the obvious question, "Why do 

moving clocks run slow and rulers shrink?" The FAO thinks about the internal structure 

of rulers and clocks. They are built of more fundamental entities like atoms and 

molecules.  The atoms and molecules consist of electrons, protons, and neutrons.  Even 

the protons and neutrons are made of more elementary units.  She draws the outline of 

a ruler and scatters the inside of the ruler with some negative and positive charges 

representing electrons and nuclei.  The nuclei contain both protons and neutrons.   

 

 

She wonders, “How do the electrons and nuclei know how to arrange itself themselves 

to form a ruler?”  Clocks and watches are much more complicated than rulers.   

Thinking about them makes her dizzy because of their internal complexity, so she 

concentrates on the structure of the ruler.  

Appendix C describes a particularly simple sort of clock, the light clock, that is easy to 

analyze but that is not the sort of clock or watch that the FAO is thinking about in the 

above paragraph.  

She begins by imagining a ruler sitting in Anne & Bev's laboratory which is not moving 

with respect to them or her.  From her understanding of physics, she knows that the 

positive and negative charges try to arrange themselves into the lowest possible energy 

configuration.  That energy is determined by the interactions between all the particles 

making up the ruler. 

The FAO knows how to use Maxwell's equations to calculate the electric and magnetic 

fields set up by charged particles moving around inside the ruler.  Then, at least in 

principle, she could use known laws of physics, to find the arrangement of charges that 

is optimum for the ruler.  If the calculation is done correctly, that arrangement ought to 

result in the twelve inch ruler sitting in A & B’s lab. 

+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - 
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Though she is a very talented and skillful physicist, she cannot actually do this 

calculation.  It is way, way too complicated.  But that does not stop her from thinking 

about what happens when she applies the same analysis to a ruler moving through 

Anne & Bev's lab.  She immediately recognizes that the situation is very different 

because Maxwell's equations predict that the charges inside the ruler moving through A 

& B’s lab produce very different electric and magnetic fields than those produced by the 

charges in the stationary ruler. 

The FAO concludes that the fundamental interactions between electrons and nuclei that 

hold the ruler together, and when arranged optimally produce a ruler of a given length, 

are different for stationary and moving rulers.  Might those differences cause the 

moving ruler to be shorter? 

A Model for a Hydrogen Atom 

Like all good physicists confronted by a problem too complicated to solve, she tries to 

come up with a simpler but related problem that is solvable.  Instead of thinking about 

the actual atoms that make up the ruler, she focuses on hydrogen, the simplest atom, 

which consists of one electron and one proton.  Starting with Newton's second law and 

Maxwell's equations, it is easy to show that the electron in this simplified version of a 

stationary hydrogen atom orbits the proton in circular orbits.  In fact this problem is 

completely analogous to the way Earth orbits the sun.  She can easily solve this problem 

but the FAO also knows the improved version of Newton's Second Law that includes 

effects due to Special Relativity.  This version of the simplified hydrogen atom is more 

accurate than the first version because it turns out that the electron in Hydrogen orbits 

the nucleus at relativistic speeds. 

The FAO sits down at her computer to solve the problem of an electron orbiting a 

moving proton.   First she uses Maxwell’s equations to find the electric and magnetic 

fields produced by the proton.  Next she calculates the forces those fields exert on the 

electron as it moves through those fields.  Finally she puts those forces into the 

relativistic version of F = ma and has the computer find the orbit of the electron around 

a proton moving with velocity v through A & B’s lab. 

To get a better picture of the problem she solved, imagine that the proton is being 

moved through the lab at a constant speed.  The electron’s path is calculated just as 

described above but the force the electron exerts on the proton is ignored because some 
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entity is “holding” the proton and moving it with constant speed.  This is a reasonable 

simplification because the proton is about 2000 times more massive than the electron so 

its motion is much less influenced by the fields of the electron than vice versa.  Also 

remember that the protons we are interested in are “held” inside a ruler riding at 

relativistic speeds inside a super bus. 

As a simple test of her solution, she first sets the proton’s velocity to zero.  In this 

situation, she knows that the electron’s orbit must be a circle.  She is gratified to see that 

the orbit generated by the computer is a circle.  With a sense of anticipation, she plugs v 

= 0.8 and v = 0.95 into her equations to find the orbits around protons moving at 

relativistic speeds with respect to her and A & B.  The orbits for these three situations, v 

= 0, 0.8, and 0.95, are shown in figure 11.3.  Note that the orbits are drawn for protons 

moving from the bottom to the top of the page. 

She stares at the result in disbelief and awe.  The moving hydrogen atoms are 

foreshortened in the direction of motion by exactly the amounts predicted by the 

shrinkage factor, √1 −  𝑣2 :  0.6 for a velocity of 0.8 and 0.31225 for a velocity of 0.95.  

The electron’s orbit becomes more and more elliptical as the velocity of the proton 

increases.  Note that the orbits are drawn so that the width of the atoms in all three cases goes 

from x = -1 to x = +1.  Although she made some simplifying assumptions, the results give 

her confidence that the reason moving rulers shrink is because the very atoms that 

constitute the ruler shrink along the direction of motion. 

To picture the foreshortened atoms in three dimensions imagine the ellipses rotated 

about their vertical axes.  The resulting shape is an ellipsoid. 

Now she goes back and calculates how long it takes the electron in the three examples 

to make one orbit around the central proton.  Again she finds results wonderfully 

consistent with special relativity.  The electrons orbiting the protons moving at 0.8 and 

0.95 take more time to complete one orbit than the electron orbiting the stationary 

proton.  Moreover, the times agree with the predictions of Special Relativity.  This 

suggests to the FAO that moving clocks run slow because the fundamental atomic time, 

the time for an electron to orbit its nucleus, is stretched out in atoms moving at 

relativistic speeds. 
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Figure 11.3 
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Chapter Twelve:  E = mc2 

Author’s Aside: Einstein’s most famous equation, E = mc2, is not directly connected to the 

material covered in this book.  On the other hand, to write a book about Special Relativity 

without saying anything about the relationship between mass and energy seemed negligent.  The 

following argument is an attempt to provide a rationale for the equation, E = mc2, that defines an 

equivalency between mass and energy.  Anne and Bev agreed to come out of retirement to help 

by participating in another set of gedanken experiments.  Chuck and Dean remained back on 

Earth but kept in radio contact with their friends. 

Anne and Bev are in separate but identical rockets floating adjacent to one another in 

empty space far from any source of gravity.  From their perspective, the two rockets are 

perfectly still.  At the start of the experiment, they are both standing at the rear of their 

respective rockets.  Bev’s job is to remain stationary while Anne is free to roam about 

her rocket. 

  

 

The first thing they notice is that Anne’s rocket moves back and forth with respect to 

Bev’s rocket.  At first, this seems very strange until they realize that the rocket only 

moves when Anne is strolling around.  (Since Bev does not move in her rocket, the 

relative motion between the two rockets is assigned to Anne’s rocket.  It would be 

strange indeed if Bev’s rocket moved back and forth while she remained stationary with 

the engines off!)  Whenever Anne stopped moving, her rocket was also stationary.  But 

Bev noticed that when Anne stopped, the two rockets were no longer perfectly aligned 

unless Anne stopped at her starting point at the rear of the rocket.  The largest shift in 

the position of Anne’s rocket occurred when Anne stopped at the front of her rocket. 

  

 

 

Anne ran from the front to the back of the rocket, her starting position, and stopped by 

smashing into the wall.  After picking herself up, she noticed that her rocket was 

perfectly aligned with Bev’s.  After making careful observations as Anne moved about 

Bev 

Anne 

        Anne 

Bev 
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at different speeds, it became clear that the shift in the relative positions of the two 

rockets was independent of her speed.  The size of the shift only depended on where 

Anne decided to stop. 

Bev finally recognized that their old friend conservation of momentum was at work 

here just like it was at work in the accelerating rocket problem in Chapter Ten.  Except 

here, there was no ejected mass, just Anne moving about inside the rocket.  Anne and 

her rocket had zero momentum to begin with so when Anne began to walk toward the 

front of the rocket, the rocket had to start moving backwards to keep the total 

momentum zero.  For the same reason, anytime Anne stopped, the rocket had to stop. 

Bev summarized the conservation of momentum statement in the following algebraic 

expression, 

𝑀𝑟𝑜𝑐𝑘𝑒𝑡𝑉𝑟𝑜𝑐𝑘𝑒𝑡 + 𝑚𝐴𝑛𝑛𝑒𝑣𝐴𝑛𝑛𝑒 = 0,        (12.1) 

where the velocities in the above equation are with respect to Bev’s stationary rocket.  

Note that in order to keep the total momentum zero, the two velocities have to be in opposite 

directions; if one is positive, the other must be negative.  The validity of equation 12.1 requires 

that Vrocket and vanne are much smaller than the speed of light.  This condition is obviously 

satisfied since Anne is meandering back and forth in the much more massive rocket.   

In terms of speed, equation 12.1 can be rewritten as, 

𝑀𝑟𝑜𝑐𝑘𝑒𝑡(𝑅𝑜𝑐𝑘𝑒𝑡′𝑠 𝑆𝑝𝑒𝑒𝑑) = 𝑚𝐴𝑛𝑛𝑒(𝐴𝑛𝑛𝑒′𝑠 𝑆𝑝𝑒𝑒𝑑).     (12.2) 

Bev continues to think through the details of the experiment.  Finally she says to Anne, 

“Suppose the distance your rocket shifted with respect to mine was x feet.  During the 

time it took you to walk to the front of the rocket, L feet away, you only moved L – x 

with respect to me.”  Anne cogitates on this for a bit before agreeing with Bev.  She 

remembers that when she reached the front of her rocket, the front of Bev’s rocket was x 

feet in front of her rocket. 

If Bev observed that it took T seconds for Anne to complete the trek from back to front, 

then she could easily find the ratio of the rocket’s speed to Anne’s speed.   The rocket 

moved x feet and Anne moved L – x feet during T seconds. 

𝑅𝑜𝑐𝑘𝑒𝑡′𝑠 𝑆𝑝𝑒𝑒𝑑

𝐴𝑛𝑛𝑒′𝑠 𝑆𝑝𝑒𝑒𝑑
=  

𝑥
𝑇⁄

(𝐿−𝑥)
𝑇⁄

=  
𝑥

𝐿−𝑥
        (12.3) 
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Equation 12.2 can be re-arranged to give a different relationship for the ratio speeds, 

namely, 

 
𝑅𝑜𝑐𝑘𝑒𝑡′𝑠 𝑆𝑝𝑒𝑒𝑑

𝐴𝑛𝑛𝑒′𝑠 𝑆𝑝𝑒𝑒𝑑
=  

𝑚𝐴𝑛𝑛𝑒

𝑀𝑟𝑜𝑐𝑘𝑒𝑡
.             (12.4)  

Setting the two equations equal to one another, Bev ends up with an equation that gives 

Anne’s mass in terms of the mass of the rocket, 

𝑚𝐴𝑛𝑛𝑒 =
𝑥

𝐿−𝑥
𝑀𝑟𝑜𝑐𝑘𝑒𝑡.          (12.5) 

Anne laughs and says “Bev if you wanted to know my mass you ought to have just 

asked instead of coming up with this elaborate way of determining it!” 

Normally the above equation is re-written so that x can be found when 𝑚𝐴𝑛𝑛𝑒 𝑎𝑛𝑑 𝑀𝑟𝑜𝑐𝑘𝑒𝑡 are 

known.  A little algebra is needed to get, 

 x = 
𝑚𝐴𝑛𝑛𝑒

𝑀𝑟𝑜𝑐𝑘𝑒𝑡+𝑚𝐴𝑛𝑛𝑒
𝐿.          (12.6) 

This equation can be used to answer question 12.1 below.  For our purposes, equation 12.5 is the 

preferred version as will become evident later in this chapter. 

Since the rockets are in empty space far from any masses, Anne, Bev, and the rockets are just 

floating about and weightless.  To walk from one end of the ship to the other, Anne would need 

the clunky magnetic shoes often seen in Sci-fi movies.  Or she could launch herself toward the 

front by pushing on the back end of the rocket.  When she arrived at the front, she could grab 

something to stop herself.  The details of how Anne gets from one end of the rocket to the other 

are irrelevant since Bev observed the shift in Anne’s rocket only depended on the place Anne 

stopped and not how she got there. 

Question 12.1:  Anne weighs 120 lbs and the 100 foot long rocket weighs 11,880 lbs.  

These weights were determined on Earth.  Use equation 12.6 to find the distance Anne’s 

rocket shifts, compared to Bev’s stationary rocket, when Anne walks from one end to 

the other?  (Note that weight is just mass times 32 ft/s2.  So the ratio in equation 12.6 is the 

same whether masses or weights are used for Anne and the Rocket.) 

Your answer ought to give an x that is easily measured with ordinary rulers. 
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The weary reader may have begun to wonder what any of this has to do with the 

famous equation, E = mc2.  Stay patient, important progress has been made toward our 

goal but more patience is required. 

Anne has a special spring powered laser in her rocket.  To fire a pulse of light, Anne 

compresses a spring, like in a pinball machine.  The compressed spring acts as an 

energy source analogous to a battery.  When the spring is released, it is used to power a 

laser that produces a flash of light.  All of the original energy in the spring ends up as 

light in the laser flash.  For example if the spring stored an energy E, then after that 

spring energy was released to power the laser, the resulting light flash had an energy E. 

At the front of the rocket, Anne has another clever bit of machinery that captures the 

energy in the laser flash with 100% efficiency and uses it to compress a spring that is 

identical to the spring at the rear of the rocket.  Before Anne activates the laser at the 

rear of the rocket, there is a compressed spring at the rear with stored energy E and an 

identical uncompressed spring at the front of the rocket. 

Bev had noticed these strange devices and gadgets in Anne’s rocket but paid them no 

mind.  But now she asks Anne for a demonstration.  Anne was waiting for an excuse to 

show Bev how she could “magically” move the energy stored in the compressed spring 

from the rear to the front of the rocket. 

Bev watched as Anne used the energy in the compressed spring to power the laser that 

then produced a light flash.  When the flash reached the front of the rocket, its energy 

was captured by Anne’s clever machine and used to compress the spring. 

It is important to note that the laser flash was on stage for only about 100 ns, the time it took to 

go from the rear to the front of the rocket.  All the energy carried across the rocket by the flash 

was converted into spring energy at the front of the rocket.  The net result of this experiment was 

the transfer of the energy stored in a compressed spring at the rear of the rocket to an identical 

spring at the front.  The laser and other required mechanical devices were introduced to facilitate 

this transfer of energy but after the dust settled, there was an uncompressed spring at the rear of 

the rocket and a compressed spring in the front.  The net result is that energy E has been 

transferred from the rear to the front of the rocket. 
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Meanwhile, Bev who barely noticed the laser flash cross Anne’s rocket, stared agape as 

she saw a spring at the rear of Anne’s rocket uncompress and an instant later an 

uncompressed spring at the front of Anne’s rocket became compressed. 

The original stored energy could have been chemical instead of mechanical with a battery 

replacing the spring.  Then the device at the front of the rocket would have had to convert the 

laser flash into chemical energy in the battery.  The spring was chosen because it is easier to 

visualize the energy stored in a spring than it is to picture the energy stored in a battery.  The 

key thing was that a light flash was used to move stored energy from one end of the rocket to the 

other. 

After getting over the surprise produced by the transfer of energy from one spring to 

the other, Bev notices that the two ships are no longer perfectly aligned.  Instead, just 

like when Anne walked from the rear to the front of her rocket, Anne’s rocket has 

recoiled a very small distance, x. 

Bev is amazed by this shift.  She asks Anne, “How can the two ships end up displaced 

by a distance x when no mass was sent from the rear to the front of the ship?  Equation 

12.6 clearly shows that the displacement of the rocket was proportional to the mass that 

moved from the rear to the front of the rocket.  The only thing that changed during your 

demonstration was the compressed spring at the rear of the rocket became 

uncompressed while the uncompressed spring at the front of the rocket ended up 

compressed.”  The two friends puzzle over this strange result. 

The last bit of information needed for the derivation was well known in the nineteenth century.  

Light, even when envisioned as an electromagnetic wave, was known to carry both energy and 

momentum.  The energy and momentum in light were simply connected by the equation, 

Momentum = Energy/Speed of Light, or 

 p = E/c,           (12.7) 

where p is the symbol for momentum.   

Remember, the laser was attached to the rocket and stationary before the flash was emitted.  If the 

flash carried momentum from the back to the front of the rocket, the laser and rocket had to recoil 

to conserve momentum.  The rocket was recoiling only for the very short time that the flash was 

in flight, but that was long enough for Anne’s rocket to shift with respect to Bev’s.  This recoil 

distance is very tiny but is in principle measureable. 
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Anne looking at Bev says, “Since the only thing that changed was the state of 

compression of the two springs, it seems like we are forced to conclude that the mass of 

a compressed spring must be larger than an uncompressed spring.  So the laser flash 

effectively moved mass from the back to the front of the rocket by moving the energy in 

the rear spring to the front spring.  Transferring energy must be equivalent to 

transferring mass!” 

Bev jumps in and points to equation 12.5 and tells Anne, “I measured the shift x caused 

by moving the spring energy from the back to the front of the rocket.  And we know the 

length and mass of the rocket.  So we can easily calculate the amount of mass that had 

to move to cause the observed shift!” 

Bev suggests they repeat the earlier calculation with the light flash replacing Anne.  Just 

like before, from Bev’s perspective, in time T the rocket recoiled a distance x while the 

flash moved a distance L – x.  So the ratio of speeds is given by an equation identical to 

equation 12.3 above, 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑅𝑜𝑐𝑘𝑒𝑡

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐿𝑖𝑔ℎ𝑡 𝐹𝑙𝑎𝑠ℎ
=  

𝑥
𝑇⁄

(𝐿−𝑥)
𝑇⁄

=  
𝑥

𝐿−𝑥
 .          (12.8) 

Conservation of momentum requires that the magnitude of the recoiling rocket’s 

momentum equal the magnitude of the light flash’s momentum, 

𝑀𝑟𝑜𝑐𝑘𝑒𝑡𝑉𝑟𝑜𝑐𝑘𝑒𝑡 = 𝑝𝑓𝑙𝑎𝑠ℎ = 𝐸𝑓𝑙𝑎𝑠ℎ/𝑐.        (12.9) 

But Eflash is just equal to Esping, the energy originally stored in the spring which is also the 

amount of energy transferred.  Bev solves equation 12.9 for Vrocket, 

𝑉𝑟𝑜𝑐𝑘𝑒𝑡 = 𝐸𝑠𝑝𝑟𝑖𝑛𝑔/𝑀𝑟𝑜𝑐𝑘𝑒𝑡𝑐, 

and uses that to find another expression for the ratio of speeds, 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑅𝑜𝑐𝑘𝑒𝑡

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐿𝑖𝑔ℎ𝑡 𝐹𝑙𝑎𝑠ℎ
=  

𝑉𝑟𝑜𝑐𝑘𝑒𝑡

𝑐
= 𝐸𝑠𝑝𝑟𝑖𝑛𝑔/𝑀𝑟𝑜𝑐𝑘𝑒𝑡𝑐2.      (12.10) 

Getting excited, Bev equates the two different expressions for the ratio of the speeds, 

equations 12.8 and 12.10 to get, 

𝑥

𝐿−𝑥
=

𝐸𝑠𝑝𝑟𝑖𝑛𝑔

𝑀𝑟𝑜𝑐𝑘𝑒𝑡𝑐2 .          (12.11) 
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Now she plugs equation 12.11 into 12.5 to get the mass equivalent of the transferred 

energy, Espring, 

𝑚𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 =
𝐸𝑠𝑝𝑟𝑖𝑛𝑔

𝑐2
 .  

Anne quickly solves for Espring to get, 

𝐸𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑚𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑐2.         (12.12) 

This looks much like Einstein’s famous equation relating mass to energy.  But the above 

argument is much more limited in that it shows that the mass of a spring is increased by 

a tiny amount when it is compressed.  In the end, the more general form of the equation 

that states that mass and energy are equivalent, 𝐸 = 𝑚𝑐2, has been tested 

experimentally over and over and is now assumed to be true. 

Note that the amount of mass associated with a given amount of energy is miniscule since c in 

the above equation is the speed of light in meters per second, 3 x 108 m/s.  The mass equivalent of 

1 Joule is 1.11 x 10-17 kg or written out with all the zeroes 0.0000000000000000111 kg!  

(Remember Appendix B is a primer on scientific notation.) 

On the other hand, the energy equivalent of 1 kilogram is 9 x 1016 Joules, an astonishingly large 

amount of energy.  To put that number into a better perspective, a typical house may use 1000 

kilowatt hours in average month.  In Joules, that is 3.6 x 109, or 3.6 billion Joules.  The energy 

equivalent of 1 kilogram, if convertible to energy with 100% efficiency, could supply the typical 

house with electricity for about 2 million years!  

Galileo established the equivalence between moving at constant speed and being stationary.  Our 

intrepid spaceketeers saw this first hand in the experiments done with the bus and super bus.  In 

Chapter Ten, the equivalence between acceleration and gravity was used to study the motion of 

an accelerating rocket.  In this chapter, we established the equivalence between mass and energy.  

These last two equivalences were discovered by Einstein and represent great advances in our 

understanding of space and time. 

This completes our journey into the strange world of Special Relativity which included a peek at 

General Relativity. 
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Appendix A:  Graphing 

The typical graph, x vs y, in a beginning algebra class has x values plotted in the 

horizontal direction and y values in the vertical direction.  Any straight line on an x vs y 

graph can be represented by the equation, 

y = mx + b. 

As a concrete example consider the line represented by the equation y = 3x -1.  In math 

parlance, x is the independent variable and y the dependent variable.  Pick any value 

for x and use the equation to find the corresponding value of y.  A good way to 

visualize the relationship between x and y is by making a table of associated values.  

A particular pair of associated values are written as (1, 2) or (3, 8) or more 

generally (x, y) with the understanding that the pair represent a point on the 

line.  Although it only takes two points to specify a given straight line, it is a 

good idea to use more than two points to draw a line on a graph.  Using more 

than two points acts as insurance against any numerical errors that might 

happen when using the equation y = 3x -1.  The four points in the table all have to lie on 

the same straight line.  If an error was made, that will not happen.  The graph, figure 

A.1, shows the four points as blue circles with the line representing y = 3x -1 in blue.  

The table and the graph both show that each time x 

increases by 1, y increases by 3.  That ratio, the change in y 

divided by the change in x, Δy/Δx, is just the coefficient of 

x in the equation y = 3x -1.  In the general equation, y = mx 

+ b, that ratio is m and is called the slope of the straight 

line. 

The red lines on figure A.1 represent other members of the 

family of lines with a slope of 3.  Notice that each line 

intercepts the y-axis at a different place.  The y-axis 

represents all the places on the graph where x = 0.  

Therefore the place where a given line intercepts the y-axis 

can easily be found by setting x = 0 in the equation y = mx + 

b.  The parameter b is called the y-intercept of the straight 

line.  For our example, b = -1. 

x y 
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1 2 

2 5 
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Every straight line is characterized by those two parameters; the slope which is a 

measure of the steepness of the line and the y-intercept which locates the line on the y-

axis.  Whenever the equation of a straight line is given, it is easy to rearrange it to put in 

into the standard form y = mx + b. 

Question A.1:  What are the slope and y-intercept of the line represented by the 

equation, 3x – 2y = 6.  Make a table of values and draw the line.  (Hint:  First manipulate 

the equation into the form y = something.) 

Drawing a graph of the line represented by a given equation is straightforward.  The 

inverse problem is to find the equation representing a given straight line.  Consider the 

line shown in figure A.2.  

It looks like the y-intercept is halfway 

between 5 and 6, 5 ½.  We can use the two 

circled points to find the slope.  Notice that y 

decreases by 2 as x increases by 4.  That 

corresponds to a negative slope of  -1/2.  The 

equation y = mx + b for the line in figure A.2 is 

y = -(1/2)x + 5 ½.  . 

Another method for finding the equation of 

line in figure A.2 is to use the x and y values 

of two “convenient” points that lie on the line.  

Convenient values are ones that are easy to read off of the graph.  In this example it is 

clear that the line goes through the pair of points (1, 5) and (5, 3).  Therefore the 

equation y = mx + b has to be satisfied when those values are substituted in for x and y.  

Making the substitution leads to the two equations: 

5 = 1 m + b 

3 = 5 m + b. 

These two equations can be solved for m and b in a variety of ways.  For example, 

subtract the second equation from the first to cancel the b’s.  The result is, 

2 = -4 m, 

or m = - ½ .  Now replace m by – ½  in either of the equations  to find b, 
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5 = 1 (- ½) + b,  

gives b = 5 + ½ = 5 ½. 

These are the basic skills required to make sense of the spacetime graphs in this book.  

The only difference between an x vs y graph and a spacetime graph is that for a 

spacetime graph the vertical axis is time, t, instead of y.  Therefore the standard 

equation for a straight line on a spacetime graph is, t = mx + b, instead of y = mx + b. 
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Appendix B:  Scientific Notation 

Scientific notation was developed to make it easier to deal with large numbers like 

40,000,000,000 and small numbers like 0.000000000000053. 

The basic form is, 

N x 10n, 

where N is a number between 1 and 10 that is multiplied by 10 raised to the nth power.  Aand n is 

a positive or negative integer or zero. 

When you see a number like 109, it really means 1 x 109. 

Some examples: 103 = 1000, 102 = 100, 10-3 = 0.001, 10-6 = 0.000001 

To change from scientific notation to regular notation for positive values of n all you need to do 

is move the decimal point to the right n times.  Zeros are added to fill the places created by 

moving the decimal point.  For example, 

3.4 x 106 = 3,400,000.0 (the decimal moved to the right 6 places) 

To change from scientific notation to regular notation when n is negative all you need to do is 

move the decimal point to the left n times.  Again zeros are added to fill the places created by 

moving the decimal.  For example, 

5.87 x 10-8 = 0.0000000587 (the decimal moved to the left 8 places) 

To multiply two numbers in scientific notation, you multiply the numbers in front of the 

powers of ten and add the numbers representing the powers of ten.  After performing that 

calculation, you can than adjust the decimal and the powers of ten to make the number N fit 

into the range between 1 and 10. 

Example:   (3.0 x 107) x (4.0 x 10-10) = 12.0 x 107-10 = 12.0 x 10-3 = 1.2 x 10-2 

To divide two numbers in scientific notation, you divide the numbers in front of the powers of 

ten and subtract the denominator’s power of ten from the numerator’s.  You can adjust the 

decimal and the powers of ten to make the number N greater than 1 and less than 10. 

Example:   (3.0 x 107) ÷ (4.0 x 10-10) = 0.75 x 107-(-10) = 0.75 x 1017 = 7.5 x 1016 

Note that 100 = 1 (This is necessary if dividing a number by itself is going to give the correct 

answer, namely 1!) 
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Appendix C:  The Light Clock 

Clocks, watches, and bacteria are complicated things.  Therefore trying to determine 

why a stationary Rolex watch ticks at a different rate than a moving one is daunting.  

Even more daunting is trying to come to grips with why a Petri dish with a colony of 

bacteria moving through the laboratory grows more slowly than a Petri dish with an 

identical strain of bacteria that is stationary in the lab. 

The Principle of Relativity mandates that all the clocks, watches, and bacteria keep time 

at identical rates in any given laboratory.  So if the FAO from Chapter Eleven, who is 

stationary with respect to Earth, sees one sort of clock running slow in the laboratory 

aboard a super bus moving at 0.8 ft/ns, then the whole collection of assorted time pieces 

on that bus have to run slow at the same rate. 

Instead of the typical internally complicated time pieces that we are used to, imagine a 

device one-half foot high with mirrors on top and bottom.  The bottom mirror goes 

“tick” every time light reflects off of it.  Since light travels one foot in one nanosecond, 

this light clock ticks once every nanosecond.  This wonderfully simple clock with no 

moving parts except for a light flash bouncing back and forth between the two mirrors 

has been given the obvious and descriptive name of “Light Clock.” 

Four identical light clocks are constructed.  Two are set up in an Earth-based lab and 

arranged perpendicular to one another, one parallel to the floor and the other stands 

vertically.  The diagram below shows the spatial relationship of the clocks as seen by 

the FAO.   

  

               FAO 

The other two clocks are arranged the same way in a super bus that will drive past the 

Earth-based lab with a relativistic velocity. 

Of course the two clocks in the Earth-based lab tick at the same rate since the 

orientation of the clocks cannot affect their ticking rates.  Likewise, the two clocks in the 

super bus tick at identical rates. 

When the FAO watches the two vertical clocks, one stationary and the other zipping 

through the lab at vbus, she sees the light flash in the stationary light clock going up and 
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down, ticking once every nanosecond.  On the other hand, she sees the light flash in the 

moving vertical clock taking a zigzag path as shown below in figure C.1.  Obviously 

that path is longer than the simple up and down path followed by the light flash in the 

lab.  Because of the Constancy of the Speed of Light, the FAO sees the vertical clock in 

the super bus ticking more slowly than the vertical light clock in the lab. 

Figure C.1 

 

tick      tick          tick          tick 

Moreover, the FAO sees the horizontal clock in the super bus ticking at a slower rate 

that is identical to the rate she sees on the vertical clock.  Some simple algebra will be 

used to show that the vertical clock in the super bus ticks off √1 − (
𝑣

𝑐
)2  nanoseconds for 

each nanosecond ticked off the stationary light clock.  It will also be shown that in order 

for the horizontal and vertical clocks in the super bus to tick at the same rate, the 

horizontal clock, as actually seen by the FAO, must be shorter than the identical 

horizontal clock in the lab. 

As the above arguments are fleshed out below, keep in mind that these conclusions are 

based on the Principle of Relativity and the Constancy of the Speed of Light and are not 

dependent on any of the material presented earlier in this book! 

 

        L 

    Figure C.2 

The FAO sees the light in the vertical clock in the bus travel up and down the isosceles 

triangle in figure C.2.   She uses her watch to measure how long it takes the flash to 

make one trip up and down, TFAO, in the moving vertical light clock.  The height of the 

clock is L.  During that time, the FAO sees the light clock move a distance vBus TFAO, the 

blue line, and the light flash move cTFAO, the sum of the two red lines.   As usual, c is the 

speed of light.  Therefore the length of the base of either of the right triangles in the 

above diagram is just ½ vBus TFAO while either hypotenuse is ½ c TFAO.  The FAO uses the 

Pythagorean Theorem to relate the two legs of the right triangle to the hypotenuse, 
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(
𝑐𝑇𝐹𝐴𝑂

2
)2 =  𝐿2 + (

𝑣𝐵𝑢𝑠𝑇𝐹𝐴𝑂

2
)2.         (C.1) 

When she solved equation C.1 for TFAO she got, 

𝑇𝐹𝐴𝑂 =
2𝐿/𝑐

√1−(
𝑣𝐵𝑢𝑠

𝑐
)2

            (C.2) 

The factor 2L/c in the numerator is just the amount of time it takes a light flash to make 

one trip up and down in the stationary light clock.  Therefore the FAO sees that it takes 

more time for the light flash in the moving light clock to make one round trip compared 

to the flash in the stationary one.  And the difference in rates is proportional to 

√1 − (
𝑣𝐵𝑢𝑠

𝑐
)2 just like expected. 

Question C.1:  Do the algebra necessary to go from equation C.1 to C.2. 

In the discussion above it was implicitly assumed that the height of the moving and stationary 

clocks remain the same height.  If the heights did change, then the top of the clock on the bus 

would pass above or below the top of the clock in the lab.  Neither possibility is allowed by the 

Principle of Relativity.  For example, if the top of the bus clock passed above the stationary clock, 

the FAO would conclude that moving objects perpendicular to the direction of motion appear 

taller than identical stationary objects.  But a different FAO attached to the reference frame of 

the super bus would have seen the moving clock, the one in the lab, as shorter than the identical 

clock in the super bus.  The only conclusion consistent with the Principle of Relativity is that the 

heights of the moving and stationary vertical clocks have to remain the same.  Also notice that 

the isotropy of space, the equivalence of moving left and right, snuck into the argument because 

the two FAOs see the “moving” frame going in opposite directions, but the height of objects 

moving to the left have to behave just like objects moving to the right. 

The FAO sees the moving horizontal light clock also tick every TFAO seconds, 

synchronously with the moving vertical clock.  The light flash in the horizontal clock 

follows an asymmetric path from the perspective of the FAO.  It takes the light flash, the 

red oval, longer to reach the receding mirror on the right than it takes on the return trip 

where the left-hand mirror is moving toward the flash.  See figure C.3 below.  But the 

total time for the round trip has to be TFAO seconds. 
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Figure C.3 

     

     

 

The FAO views the light flash make a round trip in the horizontal clock and writes 

down the following equation, 

TFAO = TRight + TLeft, 

Where TRight is the time it takes the light flash to reach the receding mirror, top picture, 

and TLeft is the time it takes to return to the starting point.   She uses the above diagram 

as a guide to writing down the following two equations where L’ is the length of the 

horizontal light clock.  She uses L’ for the length because, at this point in the book, she 

correctly suspects that the L’ will not be equal to L, the height of the moving vertical 

light clock. 

cTRight = L’ + vBus TRight and cTLeft = L’ – vBus TLeft 

Question C.2:  Solve the above equations separately for TRight and TLeft. 

Question C.3:  The FAO knows that the total time for the light flash to make one 

roundtrip in the moving horizontal clock is just TFAO = 
2𝐿/𝑐

√1−(
𝑣𝐵𝑢𝑠

𝑐
)2

 and that time has to also 

equal TRight + TLeft.  Substitute your answers from question C.2 into the equation for TFAO 

and solve for L’. 

After doing a little algebra, the FAO arrived at the following equation, 

2𝐿/𝑐

√1−(
𝑣𝐵𝑢𝑠

𝑐
)2

=  
2𝐿′/𝑐

(1−(
𝑣𝐵𝑢𝑠

𝑐
)2)

 ,        

which she immediately solved for L’ to get,  

L’ = L√1 − (
𝑣𝐵𝑢𝑠

𝑐
)2  .          (C.3) 
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She concludes that in order for the moving horizontal light clock to tick at the same rate 

as the identical moving vertical light clock, the horizontal clock has to be shorter by the 

factor√1 − (
𝑣𝐵𝑢𝑠

𝑐
)2 .  Again this is just what was expected. 

When the moving horizontal light clock passes the stationary horizontal clock in the lab, 

the FAO sees the moving clock in real time as being shorter by just this amount.  This is 

not an optical illusion.  The FAO, because of her distant vantage point sees the moving 

light clocks running slow compared to the identical clocks in the lab.  Furthermore, she 

sees the moving horizontal clock foreshortened compared to the identical stationary 

light clock. 

The Principle of Relativity forces her to conclude that all moving clocks have to run at 

the same rate as the light clocks in the super bus while all lengths parallel to the 

direction of motion have to shrink by the same amount as the horizontal light clock.  

These effects are exactly the ones observed by the FAO in Chapter Eleven. 
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Appendix D:  The Gravitational Clock Effect 

Figure D.1 shows two identical rockets, the one on the left is sitting on Earth and the 

one on the right is accelerating through empty space. 

     Figure D.1 

  

 

 

 

 

 

 

 

  Earth 

The distance between the two clocks is L.  The time it takes light to travel from Clock 2 

to Clock 1 is L/c.  During that time, the rocket’s speed changes by gt = 
𝑔𝐿

𝑐
, where g is the 

acceleration of gravity, 32 ft/s2 on Earth. 

The local inertial observers who were stationary with respect to the rocket when Clock 2 sent the 

signal to Clock 1 conclude that the signal actually traveled L + 
1

2
 gt2.  But the extra distance, 

which is just the average velocity, 
0+𝑔𝑡

2
, times t, is so small compared to L that it can be ignored. 

Question D.1:  Calculate the extra distance, 
1

2
 gt2, when L = 1000 ft.  This ought to convince 

you that ignoring that extra piece is more than reasonable! 

The observers at Clock 1 see the signals received from Clock 2 Doppler shifted to a 

lower frequency.  That shift is easily calculated by replacing v in equation 9.10 with -gt, 

𝑓𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑓𝑠𝑒𝑛𝑡   

√1−
𝑔𝐿

𝑐2  

√1+
𝑔𝐿

𝑐2

 .         (D.1) 
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The minus is used for the velocity because Clock 2 is receding from Clock 1.  Now we 

can use the binomial approximation to write 
√1−

𝑔𝐿

𝑐2  

√1+
𝑔𝐿

𝑐2

 as (1 −
1

2

𝑔𝐿

𝑐2
) (1 −

1

2

𝑔𝐿

𝑐2
) which when 

multiplied out and put back into equation D.1 gives, 

𝑓𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑓𝑠𝑒𝑛𝑡 (1 −
𝑔𝐿

𝑐2).          (D.2) 

The squared term, (
1

2

𝑔𝐿

𝑐2)2, was dropped because it was much smaller than the 
𝑔𝑡

𝑐
  term in 

equation D.2.  The received frequency is less than the sent frequency which means 

Clock 1 is running faster than Clock 2. 

Because of the equivalence between acceleration and gravity, the two clocks in the 

rocket sitting on Earth have to run at the same rates as those in the rocket accelerating in 

empty space.  Therefore equation D.2 not only shows that the clock at the front of the 

rocket runs faster than all the clocks below but also shows that clocks further from the 

center of a gravitating body run faster than those closer to the center. 

It is also possible to use the equivalence between mass and energy to directly show that 

Clock 1 runs faster than Clock 2 in the rocket sitting on Earth.  To do this we need to 

introduce two new ideas.  The first is that the energy in a light flash is carried by 

photons, little bundles of energy.  The energy of each photon is hf, where h is Planck’s 

constant and f is the frequency of the light.  But since energy and mass are equivalent, 

we can use Ephoton = hfphoton = mphotonc2 to define the mass of a photon sent from Clock 2 to 

Clock 1: 

𝑚𝑠𝑒𝑛𝑡 =
ℎ𝑓𝑠𝑒𝑛𝑡

𝑐2  .                (D.3) 

The second idea is that as an object moves up against the pull of gravity it loses energy.  

The amount of energy lost is equal to the object’s weight times the distance moved, 

mgy.  Therefore the photon moving up from Clock 2 to Clock 1 loses energy which, for 

a photon, corresponds to a drop in frequency.  This is the same effect we saw in the 

accelerating rocket which is not surprising since the Equivalence Principle mandates 

that clocks in the two rockets behave identically.  The mass of the photon that arrives at 

Clock 1 is given by, 

 𝑚𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 =
ℎ𝑓𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑐2  .         (D.4) 
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The average mass of the photon that travels the length L up the stationary rocket is 
𝑚𝑠𝑒𝑛𝑡+𝑚𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

2
 so the energy lost by the photon as it traveled between the clocks is, 

𝑚𝑠𝑒𝑛𝑡+𝑚𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

2
𝑔𝐿 . 

The energy of the photon arriving at Clock 1 is hfsent minus the energy lost moving up 

against gravity, 

ℎ𝑓𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = ℎ𝑓𝑠𝑒𝑛𝑡 −
𝑚𝑠𝑒𝑛𝑡+𝑚𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

2
𝑔𝐿 .       (D.5) 

Now replace the two masses by equations D.3 and D.4 and cancel the h’s, 

𝑓𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑓𝑠𝑒𝑛𝑡 −
𝑓𝑠𝑒𝑛𝑡

𝑐2 +
𝑓𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑐2

2
𝑔𝐿 .        (D.6) 

Now solve equation D.6 for freceived, 

𝑓𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑓𝑠𝑒𝑛𝑡

1−
𝑔𝐿

2𝑐2

1+
𝑔𝐿

2𝑐2

 .         (D.7) 

The last step is to use the binomial approximation to simplify equation D.7.  This step is 

analogous to the way equation D.1 was converted into equation D.2 and the results are 

the same.  Namely, equation D.7 becomes, 

𝑓𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑓𝑠𝑒𝑛𝑡  (1 −
𝑔𝐿

𝑐2).         (D.8) 

Equation D.8 is identical to D.2 showing that the difference in clock rates can be 

calculated by using the Doppler shift in the accelerating rocket or by using the 

connection between mass and energy in the rocket sitting on Earth.  These two different 

ways of calculating the ticking rate difference between Clocks 1 and 2 reconfirms the 

consistency of our conclusions.  First we used the Doppler Effect, which was derived by 

using Special Relativity, to calculate the rate difference between the two clocks in the 

accelerating rocket.  The Equivalence Principle connected the clock rates in the 

accelerating rocket to the rates in the rocket sitting on Earth.  Lastly, we used the 

equivalence between mass and energy to directly show the higher clock in the 

stationary rocket ran faster than the lower clock by the same factor found by using the 

Doppler shift in the accelerating rocket.  This ends our peek at General Relativity, 

Einstein’s theory of how mass and energy effect space and time.  


