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Quantum Mechanics

Homework 9: Time-Independent Perturbation Theory

017 qfull 00200 3 3 0 tough math: time dependent perturbation, square well
Extra keywords: (MEL-141:5.3), time dependent perturbation, infinite square well

1. At time t = 0, an electron of charge ẽ is in the n eigenstate of an infinite square well with potential

V (x) =
{

0, x ∈ [0, a];
∞ x > a.

At that time, a constant electric field Ẽ pointed in the positive x direction is suddenly applied. (Note
the tildes on charge and electric field are to distinguish these quantities from the natural log base and
energy.) NOTE: The 1-d infinite square-well eigenfunctions and eigen-energies are, respectively

ψn(x) =

√

2

a
sin

(nπ

a
x
)

and En =
h−

2
k2

2m
=

h−
2

2m

(π

a

)2

n2 ,

where n = 1, 2, 3, . . . The sinusoidal eigenfunctions can be expressed as exponentials: let z = πx/a, and
then

sin(nz) =
einz − e−inz

2i
.

a) Use 1st order time-dependent perturbation theory to calculate the transition probabilities to all
OTHER states m as a function of time. You should evaluate the matrix elements as explicitly:
this is where all the work is naturally.

b) How do the transition probabilities vary with the energy separation between states n and m?

c) Now what is the 1st order probability of staying in the same state n?

SUGGESTED ANSWER:

a) In this case the perturbation potential is given by

H(1) = (−ẽ)(−Ẽ)x = ẽẼx . (1)

The first order perturbation expression for the coefficent am (m 6= n) is then

am =
1

ih−

∫ t

0

eiωmnt′H(1)
mn(t′) dt′

=
1

ih−
eiωmnt/2 sin (ωmnt/2)

(ωmn/2)
ẽẼ〈ψm|x|ψn〉 , (2)

where

ωmn ≡
Em − En

h−
. (3)

The transition probability is

Pn to m(t) = |am|2 =
1

h−
2

sin2 (ωmnt/2)

(ωmn/2)
2 |ẽẼ|2|〈ψm|x|ψn〉|

2 . (4)

At time zero, the transition probabilities grow everywhere as t2 as can be seen by a 1st
order expansion of the sine function about zero. As time passes, the probabilities begin to
oscillate in time. Non-monotonic behavior (which we can call the beginning of oscillation) sets
in for state m when

π

2
<
ωmnt

2
(5)

holds for that state. The probability would continue to grow as t2 only for states degenerate
with state n: i.e., for cases with ωmn = 0. But there are no degenerate states for 1-dimensional
infinite square well.
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One must recall that 1st order theory can not be valid for long times: i.e., for Pn to m(t)
growing significantly close to 1.

The remaining problem is just to evaluate and simplify the expression for the matrix
element:

〈ψm|x|ψn〉 =
2

a

∫ a

0

sin
(mπ

a
x
)

x sin
(nπ

a
x
)

dx

=
2

a

1

(−4)

( a

π

)2
∫ π

0

(

eimz − e−imz
)

z
(

einz − e−inz
)

dz

=
2a

π2

1

(−4)

∫ π

0

z
(

ei(m+n)z + e−i(m+n)z − ei(m−n)z − e−i(m−n)z
)

dz , (6)

where we have used the transformation z = πx/a. Here we note that

∫ π

0

zeiℓz dz =
π

iℓ
(−1)ℓ +

(−1)ℓ − 1

ℓ2
, (7)

where ℓ is an integer. The first terms from right-hand side of equation (7) that appear in
integral of equation (6) all cancel out in fact. The second terms from right-hand side of
equation (7) that appear in integral of equation (6) yield the factor

2
[(−1)m−n − 1]

(m+ n)2
+ 2

[(−1)m−n − 1]

(m− n)2
=

−8mn

(m2 − n2)2
[(−1)m−n − 1] , (8)

where we have use the fact that if m + n is even then m − n is even too, and so (−1)m+n =
(−1)m−n. The final results are

〈ψm|x|ψn〉 =
8a

π2

mn

(m2 − n2)2

{

[(−1)m−n − 1]

2

}

(9)

and

|〈ψm|x|ψn〉|
2 =

64a2

π4

m2n2

(m2 − n2)4

{

[(−1)m−n − 1]

2

}2

. (10)

We can see from the matrix element that all even transitions (i.e., those with m − n even)
vanish in 1st order theory.

b) How does energy separation of states m and n affect the matrix elements? Recall from equation
En is proportional n2 and is always greater than zero. Consider the function

f(r) =
rb

(r − b)4
. (11)

The derivative is
df(r)

dr
= −

b(b+ 3r)

(r − b)5
. (12)

Evidently, the function f(r) for r > 0 and b > 0 decreases with r for r > b and increases
with r for r < b. Thus f(r) decreases always as |r − b increases. In our case r = m2 and
b = n2. We can see that the squared modulus of the odd matrix element decreases with
increasing energy separation. Thus the transition probabilities decrease with increasing energy
separation between states n and m.

c) The first order amplitude for staying in the same state is

am =
1

ih−

∫ t

0

H(1)
nn (t′) dt′

=
1

ih−
tẽẼ〈ψn|x|ψn〉 . (13)
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Now

〈ψn|x|ψn〉 =
2

a

∫ a

0

x sin2
(nπ

a
x
)

dx =
2

a

( a

nπ

)2
∫ nπ

0

z sin2(z) dz

=
2

a

( a

nπ

)2
{

z

2

[

z −
sin(2z)

2

]
∣

∣

∣

∣

nπ

0

−

∫ nπ

0

1

2

[

z −
sin(2z)

2

]

dz

}

=
2

a

( a

nπ

)2
{

(nπ)2

2
−

1

2

[

z2

2
+

cos(2z)

4

] ∣

∣

∣

∣

nπ

0

}

=
2

a

( a

nπ

)2 (nπ)2

4

=
a

2
(14)

Then we find

P (t) =
t2

h−
2 |ẽẼ|2

a2

4
. (15)

The 1st order probability of no transition increases quadratically with time. Note a 1st order
calculation for no transition is probably not that great. One should probably do a 2nd order
calculation.

Redaction: Jeffery, 2001jan01

024 qmult 01600 1 4 4 easy deducto-memory: Einstein stimulated em.
2. “Let’s play Jeopardy! For $100, the answer is: An effect discovered by Einstein by means of a

thermodynamic equilibrium detailed balance argument.”

What is , Alex?

a) spontaneous emission b) special relativity c) the photoelectric effect
d) stimulated emission e) spontaneous omission

SUGGESTED ANSWER: (d)

Wrong answers:

e) I’m subject to this effect myself.

Redaction: Jeffery, 2001jan01

024 qmult 01900 1 1 2 easy memory: electric dipole transitions
3. Typically, strong atomic and molecular transitions are transitions.

a) electric quadrupole b) electric dipole c) magnetic dipole d) electric monopole
e) magnetic metropole

SUGGESTED ANSWER: (b)

Wrong Answers:

e) Metropole is not in my dictionary, but I think it is a word meaning metropolis. If I recall
correctly, Wallace Stevens uses metropole in cute poem.

Redaction: Jeffery, 2001jan01

024 qfull 00300 2 5 0 moderate thinking: classical EM scattering
Extra keywords: reference Mi-83

4. Say we had a classical simple harmonic oscillator (SHO) consisting of a particle with mass m and charge
e and a restoring force mω2

0 where ω0 is the simple harmonic oscillator frequency. This SHO is subject
to driving force caused by traveling electromagnetic field (i.e., light):

~Fdrive = e ~E0e
iωt ,

where ~E0 is the amplitude, ω is the driving frequency, and we have used the complex exponential form
for mathematical convenience: the real part of this force is the real force. The magnetic force can be
neglected for non-relativistic velocities. The Lorentz force is

~F = e

(

~E +
~v

c
× ~B

)
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(Ja-238) and ~E and ~B are comparable in size for electromagnetic radiation, and so the magnetic force is
of order v/c smaller than the electric force. (See also MEL-130.) An oscillating charge is an accelerating
charge and will radiate electromagnetic radiation. The power radiated classically is

P =
2e2a2

3c3
,

where ~a is the charge acceleration. This radiation causes an effective damping force given approximately
by

~Fdamp = −mγ~v ,

where

γ =
2e2ω2

0

3mc3
.

The full classical equation of motion of the particle is

m~a = −mω2
0~r + e ~E0e

iωt −mγ~v .

a) Solve the equation of motion for ~r and ~a. HINTS: The old trial solution approach works. Don’t
forget to take the real parts although no need to work out the real part explicitly: i.e., Re[solution]
is good enough for the moment.

b) Now solve for the time average of the power radiated by the particle. HINT: You will need the
explicit real acceleration now.

c) The average power radiated must equal the average power absorbed. Let’s say that the particle is
in radiation flux from a single direction with specific intensity

I0 =
cE2

0

8π

(Mi-9), where time averaging is assumed como usual. The power absorbed from this flux is σ(ω)I0,
where σ(ω) is the cross section for energy removed. Solve for σ(ω) and then find show that it can be
approximated by a Lorentzian function of ω with a coefficient πe2/(mc). HINT: It is convenient
to absorb some of the annoying constants into another factor of γ.

d) Now rewrite the cross section as a function of ν = ω/(2π) (i.e., the ordinary frequency) and then
integrate over ν to get the frequency integrated cross section σν int of the system. What is the
remarkable thing about σν int? Think about how it relates to the system from which we derived it.
Evaluate this frequency integrated cross section for an electron. HINT: The following constants
might be useful

α =
e2

h−c
=

1

137.036
, h− = 1.05457× 10−27 erg s , and me = 9.10939× 10−28 g .

SUGGESTED ANSWER:

a) Let ~r = ~r0e
iωt and substitute this into the equation of motion and cancel out the exponential

factor:
−ω2m~r0 = −mω2

0~r0 + e ~E0 − iωmγ~r0 .

Well we find

~r0 =
(e/m) ~E0

ω2
0 − ω2 + iγω

,

and so

~r = Re

[

(e/m) ~E0e
iωt

ω2
0 − ω2 + iγω

]

and
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~a = Re

[

−ω2(e/m) ~E0e
iωt

ω2
0 − ω2 + iγω

]

.

b) Behold:

~a = −ω2(e/m) ~E0
(ω2

0 − ω2) cos(ωt) + γω sin(ωt)

(ω2
0 − ω2)2 + γ2ω2

.

The time average of the square of the magnitude of ~a is

〈a2〉 =
[

ω2(e/m) ~E0

]2 1

2

(ω2
0 − ω2)2 + γ2ω2

[(ω2
0 − ω2)2 + γ2ω2]2

=
[

ω2(e/m) ~E0

]2 1

2

1

(ω2
0 − ω2)2 + γ2ω2

,

where we have used the facts that

1

2π

∫ 2π

0

sin2(x) dx =
1

2π

∫ 2π

0

cos2(x) dx =
1

2
and

1

2π

∫ 2π

0

sin(x) cos(x) dx = 0 .

The time-averaged power is then

〈P 〉 =
e4ω2E2

0

3m2c3
1

(ω2
0 − ω2)2 + γ2ω2

,

c) Behold:

σ(ω) =
〈P 〉

I0
=

8πe4ω4

3m2c4
1

(ω2
0 − ω2)2 + γ2ω2

.

Given the denominator, σ(ω) may well be sharply peaked about the SHO frequency ω0. Thus
only the strongest variation on ω needs to be retained. One can approximate ω elsewhere
by ω0. Well the big trick, and I admit to never having thought of it myself, is to make the
following approximation

ω2
0 − ω2 = (ω0 + ω)(ω0 − ω) ≈ 2ω0(ω0 − ω) .

One then approximates the ω4 by ω4
0 , divides numerator and denomitor by 4ω2

0, and absorbs
some constants into another γ factor to get

σ(ω) =
πe2

mc

γ

(ω0 − ω)2 + (γ/2)2
.

d) Well

σ(ν) =
πe2

mc

1

π

γ/(4π)

(ν0 − ν)2 + (γ/4π)2
.

The normalized Lorentzian is

L(x) =
1

π

Γ/2

(x− x̄)2 + (Γ/2)2
,

where Γ is the FWHM (i.e., full-width at half maximum) and x̄ is the mean value of the
distribution. It follows that

σν int =
πe2

mc
.

The remarkable thing about this frequency integrated cross section is that it is independent
of the restoring force of the simple harmonic oscillator. It is sort of a universal result. Now
microscopic systems are not classical nor often exactly simple harmonic oscillators, and thus
one does not expect σν int to apply. However, σν int evaluated for an electron is frequently used
as a unit of frequency integrated cross sections. Atomic frequency integrated cross sections can
be written out

σν int atomic =
πe2

mc
fij ,
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where fij is a dimensionaless quantity called the oscillator strength of the transition from
lower level i to upper level j. Only for the strongest atomic transitions does ij approach unity
(Mi-84).

For an electron, we find

σν int =
πe2

mc
=
πh−α

m
= 0.02654 cm2/s .

We note that the units are area per time. The per time is there because we integrated over
frequency.

Fortran Code
print*

pi=acos(-1.)

finestr=1./137.036

hbar=1.05457e-27

emass=9.10939e-28

oscon=(pi*hbar*finestr/emass)

print*,’The classical frequency integrated cross section is’

print*,’oscon=’,oscon ! 0.0265400279

Redaction: Jeffery, 2001jan01


