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Quantum Mechanics NAME:

Homework 5: Multiple-Particle Systems, Identical Particles, and The Symmetrization
Principle

1. A central force is one which always points radially inward or outward from a fixed point which is the
center of the central force. The magnitude of central force depends only on:

a) the angle of the particle.
b) the vector ~r from the center to the particle.
c) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e) the uncertainty principle.

2. Say you have a differential equation of two independent variables x and y and you want to look for
solutions that can be factorized thusly f(x, y) = g(x)h(y). Say then it is possible to reorder equation
into the form

LHS(x) = RHS(y) ,

where LHS stands for left-hand side and RHS for right-hand side. Well LHS is explicitly independent
of y and implicitly independent of x:

∂LHS

∂y
= 0 and

∂LHS

∂x
=
∂RHS

∂x
= 0 .

Thus, LHS is equal to a constant C and necessarily RHS is equal to the same constant C which is called
the constant of separation (e.g., Arf-383). The solutions for g(x) and h(y) can be found separately
and are related to each other through C. The solutions for f(x, y) that cannot be factorized are not
obtained, of course, by the described procedured. However, if one obtains complete sets of g(x) and h(y)
solutions for the x-y region of interest, then any solution f(x, y) can be constructed at least to within
some approximation (Arf-443). Thus, the generalization of the described procedure is very general and
powerful. It is called:

a) separation of the left- and right-hand sides. b) partitioning.
c) separation of the variables. d) solution factorization. e) the King Lear method.

3. “Let’s play Jeopardy! For $100, the answer is: By writing the two-body Schrödinger equation in
relative/center-of-mass coordinates.”

How do you , Alex?

a) reduce a ONE-BODY problem to a TWO-BODY problem
b) reduce a TWO-BODY problem to a ONE-BODY problem
c) solve a one-dimensional infinite square well problem
d) solve for the simple harmonic oscillator eigenvalues
e) reduce a TWO-BODY problem to a TWO-BODY problem

4. The formula for the reduced mass m for two-body system (with bodies labeled 1 and 2) is:

a) m = m1m2. b) m =
1

m1m2
. c) m =

m1 +m2

m1m2
. d) m =

m1m2

m1 +m2
. e) m =

1

m1
.

5. The eigensolutions of the angular part of the Hamiltonian for the central force problem are the:

a) linear harmonics. b) spherical harmonics. c) square harmonics.
d) Pythagorean harmonics. e) Galilean harmonics.

6. Just about the only spherical harmonic that people remember—and they really should remember it
too—is Y00 =:

a) eimφ. b) r2. c)
1√
4π

. d) θ2. e) 2a−3/2e−r/a.

7. Conventionally, the spherical harmonic eigenstates for angular momentum quantum numbers

ℓ = 0, 1, 2, 3, 4, ...
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are designated by:

a) a, b, c, d, e, etc.
b) s, p, d, f , and then alphabetically following f : i.e., g, h, etc.
c) x, y, z, xx, yy, zz, xxx, etc.
d) A, C, B, D, E, etc.
e) $@%&*!!

8. The 2-body time-independent Schrödinger equation is

− h−2

2m1
∇2

1ψ − h−2

2m2
∇2

2ψ + V ψ = Etotalψ .

If the V depends only on ~r = ~r2 − r1 (the relative vector), then the problem can be separated into
two problems: a relative problem 1-body equivalent problem and a center-of-mass 1-body equivalent
problem. The center of mass vector is

~R =
m1~r1 +m2~r2

M
,

where M = m1 +m2.

a) Determine the expressions for ~r1 and ~r2 in terms of ~R and ~r.

b) Determine the expressions for ∇2
1 and ∇2

2 in terms of ∇2
cm (the center-of-mass Laplacian operator)

and ∇2 (the relative Laplacian operator). Then re-express the kinetic operator

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2

in terms of ∇2
cm and ∇2. HINTS: The x, y, and z direction components of vectors can all be

treated separately and identically since x components of ~R and ~r) (i.e., X and x) depend only on
x1 and x2, etc. You can introduce a reduced mass to make the transformed kinetic energy operator
simpler.

c) Now separate the 2-body Schrödinger equation assuming V = V (~r ) + Vcm(~R ). What are the

solutions of the center-of-mass problem if Vcm(~R) = 0? How would you interpret the solutions of
the relative problem? HINT: I’m only looking for a short answer to the interpretation question.

9. In the central force problem, the separated azimuthal part of the Schrödinger equation is:

d2Φ

dφ2
= κ2Φ ,

where κ2 is the constant of separation for the azimuthal part. The constant has been parameterized in
terms of κ2 because clairvoyance tells this is the good way.

a) Since the differential equation is second order, there should should be two independent solutions for
each value of κ2: i.e., the eigenvalue problem has degeneracy of 2 for the eigenvalue. Solve for the
general solution Φ for each κ2: i.e., the solution that is a linear combination of the two independent
solutions with undetermined coefficients. Note that writing the separation constant as κ2 is so far
just a parameterization and nothing yet demands that κ2 be greater than zero: it could be zero
or less than zero. HINT: Use an exponential trial function. But do not forget the special case of
κ2 = 0.

b) Quantum mechanics that wave functions and their derivatives be continuous, except that
discontinuities in derivatives are allowed when a potential goes to infinity which is just unreachable
ideal limit. For our system, we are not allowing any infinite potentials. Our solutions and all order
of derivatives are, in fact, continuous.

The space for azimuthal part is, in fact, finite, but unbounded. The coordinate φ = 0 runs
from 0 to 2π, but when you move 2π you are back where you started. So in a sense there are no
boundary conditions. But quantum mechanics also demands that wave functions be single-valued.
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Since we have no interpretation for multi-valuedness, we micropostulate that it doesn’t happen.
The single-valuedness condition replaces the boundary conditions for the azimuthal part. Impose
the single-valuedness condition on the general solution obtained in the part (a) answer and its
derivative, and so that this leads to κ (not κ2 note) must be an integer times the imaginary unit i.
Remember to consider the special case where κ2 = 0?

c) Writing im for κ where m is any integer, write down a general formula solution of the azimuthal
part for a single m value. The solutions for m and −|m| are the degenerate solutions for κ2.
By convention, no normalization constant is applied to the azimuthal part solutionsd: i.e., the
coefficient of the special function that is the solution is left as just 1. The normalization is applied
to the entire angular solutions which are the spherical harmonics. HINT: This is easy.

d) The orbital angular momentum z-component observable

Lz =
h−
i

∂

∂φ
.

To be Hermitian this operator, the only allowed solutions must satisfy certain boundary conditions
which for the interval [0, 2π]. The single-valuedness condition tells us these boundary conditions
must be periodic boundary conditions. What are the eigen states for this observable that satisfy
the periodic boundary conditions? Are the eigenvalues pure real as they should be? What is the
relationship between these eigen states and thos of the azimuthal angle part we found in the part (c)
answer?

e) Normalize the allowed eigensolutions of Lz Note these solutions are, in fact, conventionally left
unnormalized: i.e., the coefficient of the special function that is the solution is left as just 1.
Normalization is conventionally imposed on the total orbital angular momentum solutions, spherical
harmonics.

10. “Let’s play Jeopardy! For $100, the answer is: It is the quantum mechanics POSTULATE that the
state for identical fundamental particles must be symmetrized: i.e., must be symmetric or antisymmetric
under the exchange of any two particles in the state expression. Bosons have symmetric state and
fermions antisymmetric states. A second part of the postulate is that integer spin particles are bosons
and half-integer spin particles are fermions. The postulate evolved in the 1920s from the work of Pauli,
Fierz, Weisskopf, Heisenberg, Dirac, and others: there seems to be no one discoverer. An immediate
corollary of the postulate is that composite particles with identical constituent elementary particles
obey the postulates too even though the composite particles are not identical in their states because
of excitations and perturbations. The composite particles are identical in their properties (though not
their state), and so are called identical too. A composite particle is boson if it contains an even number
of fermions and a fermion if it contains an odd number of fermions.

Actually one needs to define exchange. A general definition is too much for here. For simplicity,
we will only consider two particles whose state is given in the spatial representation: i.e., by a wave
function. The formalism (justifed by it working) is to give each particle its own spatial coordinate and
spin coordinate. Particle 1 has coordinate set ~r1m1 and particle 2 has coordinate set ~r2m2. The state
of the system is the wave function

ψ(~r1m1, ~r2m2) .

In general, the function will have a different dependence on the two coordinate sets. If we exchange we
get the new state

ψnew(~r1m1, ~r2m2) = ψ(~r2m2, ~r1m1) .

In quatnum mechancis jargon, the coordinate set exchange is called exchanging the particles. The new
state is clearly in general a different mathematical state of the formal coordinate sets. The new state
will be the same mathematically as the old state only if it is symmetric: i.e., only if

ψ(~r2m2, ~r1m1) = ψ(~r1m1, ~r2m2)

for all values of the coordinate sets.
If the particles are physically distinct, we create in general a different state by particle exchange.

This is because the new state will evolve differently in time in general because the distinct particles are
affected by different potentials in general. Note that the two particles do have to have the same spin
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for the exchange to be mathematically and physically consistent. The only way the new state could be
the same physical state as the original state is if

ψ(~r2m2, ~r1m1) = eiφψ(~r1m1, ~r2m2) ,

where φ is a constant phase factor. A constant phase factor does not change the physical state though,
of course, it changes the mathematical state.

If the two particles are identical, then particle exchange creates clearly does not create a different
physical state even though it creates a different mathematical state. But this causes a paradox which
is called the exchange paradox. A linear combination state

ψcom(~r1m1, ~r2m2) = ciψ(~r1m1, ~r2m2) + cjψ(~r2m2, ~r1m1)

is mathematically and, a priori, physically distince from ψ(~r1m1, ~r2m2). The coefficients ci and cj are
only constrained, a priori, by the requirement that ψcom(~r1m1, ~r2m2) be normalized. In quantum
mechanics, ψcom(~r1m1, ~r2m2) describes the system in a superposition of states ψ(~r1m1, ~r2m2) and
ψ(~r2m2, ~r1m1). But how can an infinite continuum of distinct states be created by the superposition
of a state with itself. The paradox has no derivable solution. It is resolved by the postulate we are
describing.

To see the resolution, say that state ψ(~r1m1, ~r2m2) has the general exchange property that

ψ(~r2, ~r1) = eiφψ(~r1, ~r2) .

Now the linear combination state

ψcom(~r1m1, ~r2m2) = ciψ(~r1m1, ~r2m2)+cjψ(~r2m2, ~r1m1) = ciψ(~r1m1, ~r2m2)+cje
iφψ(~r1m1, ~r2m2) = (ci+cje

iφ)ψ(~r1m1, ~r2

which is physically the same state as before: mathematically it differs by a constant phase factor.
The general exchange property resolves the exchange paradox. But what sets the phase factor eiφ.
Arguments we will not go into here suggest that only eiφ = ±1 are reasonable phase factor values.
Observation tells us that eiφ = 1 holds for integer spin particles and eiφ = −1 holds for half-integer spin
particles. This observation becomes part of the postulate we are describing. Actually, the spin-statistics
theorem proves the spin rule, but that theorem itself depends on hypotheses which may not be true
(CT-1387). Also actually quasiparticles called anyons that exist in two-dimensional systems have the
general exchange property rather than just the eiφ = ±1 possibilities.

What is , Alex?

a) Born’s hypothesis b) Schrödinger’s dilemma c) Dirac’s paradox
d) Wigner’s last stand e) the symmetrization principle or postulate

11. The permutation operator P for functions of two variables has the seemingly arbitrary, but well defined,
property that

Pf(x1, x2) = f(x2, x1) ,

where f(x1, x2) is a general complex function of two real number variables or, one could say, coordinates.
Note that an operator is formally a mathematical entity that changes a function into another function or,
in a more general context, changes a generalized vector into another generalized vector. Thus Pf(x1, x2)
is NOT f(x1, x2) evaluated with exchanged argument values, but a new function of coordinates x1 and
x2 that has values equal to f(x2, x1). Of course, if one views x1 and x2 as just particular values and
not coordinates, then one can view Pf(x1, x2) just as f(x1, x2) evaluated with exchanged argument
values—but that’s not the way we view things in this question.

a) Say x1 and x2 are orthogonal coordinates with the x2 counterclockwise from the x1. Describe
Pf(x1, x2) in comparison to f(x1, x2). HINT: It might be helpful to consider specific points in the
x1-x2 plane (a, b) and (b, a) which are obviously mirror reflection positions relative to each other
about the x1 = x2 line.

b) Prove that P is a linear operator: i.e., that

P [f(x1, x2) + g(x1, x2)] = Pf(x1, x2) + Pg(x1, x2)] .
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HINT: Define

h(x1, x2) = f(x1, x2) + g(x1, x2) .

c) What is

P

[

∂f(x1, x2)

∂x1

]

equal to. HINT: You might consider a specific example first, e.g., one with

f(x1, x2) = x3
1x2 .

But for a general proof, recall the definition of the derivative

df(x)

dx
= lim

h→0

f(x+ h) − f(x)

h
.

d) Show that the permutation operation and the complex conjugation operation commute: i.e., show
that

[Pf(x1, x2)]
∗ = P [f(x1, x2)

∗] .

HINT: Decompose f(x1, x2) into real and imaginary parts.

e) Show from the definition of the Hermitian conjugate,

〈φ|Q|ψ〉 = 〈ψ|Q†|φ〉∗

(where Q is any operator), that P is a Hermitian operator: i.e., that P = P †. HINT: Recall that
for two spatial dimensions

〈φ|Q|ψ〉 =

∫

1

∫

2

φ(x1, x2)
∗Qψ(x1, x2) dx1 dx2 .

f) Solve for ALL the eigenvalues of P .

g) Show that any function f(x1, x2) can be expanded in eigenfunctions of P , and thus the
eigenfunctions of P form a complete set for the space of functions of two coordinates including wave
function spaces of two coordinates. Show explicitly that the eigenfunctions of different eigenvalues
are orthogonal. Since P is Hermitian and has a complete set of eigenfunctions for any wave function
space of two arguments, it is formally a quantum mechanical observable.

h) Given that A(x1, x2) is an operator, show that

PA(x1, x2)f(x1, x2) = A(x2, x1)Pf(x1, x2) ,

where A(x2, x1) could be a function operator, a differentiating operator or both. Recall that
operators act on everything to the right—except, of course, when they don’t: but that situation is
usually (but not always) made explicit with brackets. Do P and A commute in general? When do
they commute?

i) Show that P and the Hamiltonian for identical particles,

H = − h−2

2m

∂2

∂x2
1

− h−2

2m

∂2

∂x2
2

+ V (x1, x2) ,

commute. Show that if ψ(x1, x2) is an eigenstate of the Hamiltonian, then Pψ(x1, x2) is an
eigenstate. If ψ(x1, x2) is non-degenerate in energy, is Pψ(x1, x2) a physically distinct state? Show
that there are only two possibilities for what Pψ(x1, x2) is?

j) Given that P and H commute, show that P is a constant of the motion as far as Schrödinger
equation evolution goes.
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12. Consider the general normalized wave function for two particles

Ψ(~r1m1, ~r2m2)

where ~r is the spatial coordinate, m is the spin coordinate, and the labels 1 and 2 are formally assigned
to particles 1 and 2.

a) First, let’s assume that the two particles are physically distinct. This means that under some
circumstances, but not all in general, they we behave differently. Say we now act on the state with
the permutation operator P2,1 and obtain

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) = ±Ψ(~r1m1, ~r2m2) ,

where we recall that the two-particle permutation operator is Hermitian and only has eigenvalues
±1. Have we created a new physical state? Explain. Say we now act on the state with the
permutation operator P2,1

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) 6= ±Ψ(~r1m1, ~r2m2) .

Have we created a new physical state? Explain.

b) Now let’s say that the two particles are identical and

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) 6= ±Ψ(~r1m1, ~r2m2) ,

where we recall that the two-particle permutation operator is Hermitian and only has eigenvalues
±1. Have we created a physically distinct state? Explain. (For the moment, we are not assuming
the symmetrization principle.)

c) Carrying over the assumptions of part (b), consider the mixed state

Ψmixed = ciΨ(~r1m1, ~r2m2) + cjΨ(~r2m2, ~r1m1) ,

where the only constraint on coefficients ci and cj is the the normalization constraint coefficients
ci and cj

|ci|1 + |cj |2 + Re[cicj〈Ψ(~r1m1, ~r2m2)|Ψ(~r2m2, ~r1m1)〉] = 1 .

Note we are not assuming Ψ(~r1m1, ~r2m2) and P21Ψ(~r1m1, ~r2m2) are orthogonal.
Argue that Ψmixed is physically distinct from Ψ(~r1m1, ~r2m2) and P21Ψ(~r1m1, ~r2m2)?
Actually, there is a continuum infinity of possible Ψmixed which is only constrained by the

normalization constraint. This infinity of states that can be constructed from Ψ(~r1m1, ~r2m2) and
P21Ψ(~r1m1, ~r2m2) is called the exchange degeneracy (CT-1375).

Given the widely, but not universally, accepted quantum mechanical interpretation, that a
linear combination of states constitutes a particle or a set of particles in a superposition of those
states argue that the exchange degeneracy creates a paradox.

d) The paradox of part (c) is eliminated by invoking the symmetrization principle that states that the
only physically allowed state for a set of identical particles is one that is symmetrized: i.e., is one that
is symmetric (i.e., an eigenstate of the permutation operator with eigenvalue 1) or antisymmetric
(i.e., an eigenstate of the permutation operator with eigenvalue -1) under the exchange of any pair
of particles. Note identical particles of one type can have only one kind of symmetrized wave
functions: i.e., they must either have only symmetric ones in all cases (in which case they are called
bosons) or only antisymmetric ones in all cases (in which case they are called fermions). A separate
postulate or if one prefers an extra part of the symmetrization principle is that integer-spin particles
are bosons and half-integer-spin particles are fermions. Explain how the symmetrization principle
eliminated the paradox.

e) The Hamiltonian for a set of identical particles is necessarily symmetric. What does this imply for
the symmetrization state of the state as time passes?

f) Say that you had a set of non-identical particles that in a certain system had a symmetric
Hamiltonian. Say the particles were put into a symmetrized state. Would the state stay
symmetrized as time passes?
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g) The symmetrization principle can be taken as stated for fundamental particles only. But it applies
as an immediate corollary to identical composite particles where whether particle is boson or fermion
depends on whether it contains an even or odd number of fermions. Prove the corollary.

h) The Pauli exclusion principle is actually a corollary of the symmetrization principle. One version
is that the probability amplitude and therefore probability of density for two identical fundamental
fermions at the spatial coordinate and spin coordinate is zero. Prove this.

13. Say |ai〉 and |bi〉 are ORTHONORMAL single-particle states, where i is a particle label. The label
can be thought of as labeling the coordinates to be integrated or summed over in an inner product: see
below. The symbolic combination of such states for two particles, one in a and one in b is

|12〉 = |a1〉|b2〉 ,

where 1 and 2 are particle labels. This combination is actually a tensor product, but let’s not worry
about that now. The inner product of such a combined state is written

〈12|12〉 = 〈a1|a1〉〈b2|b2〉 .

If one expanded the inner product in the position and spinor representation assuming the wave function
and spinor parts can be separated (which in general is not the case),

〈12|12〉 =

[
∫

ψa(x1)
∗ψa(x1) dx1 ( c∗a+ c∗a− )1

(

ca+

ca−

)

1

]

×
[
∫

ψb(x2)
∗ψb(x2) dx2 ( c∗b+ c∗b− )2

(

cb+
cb−

)

2

]

.

A lot of conventions go into the last expression: don’t worry too much about them.

a) Let particles 1 and 2 be distinct particles. What are the two simplest and most obvious normalized
2-particle states that can be constructed from states a and b? What happens if a = b (i.e., the two
single-particle states are only one state actually)?

b) Say particles 1 and 2 are identical bosons or identical fermions. What is the only normalized physical
2-particle state that can be constructed in either case allowing for the possibility that a = b (i.e., the
two single-particle states are only one state actually)? What happens if a = b for fermions?

14. Say that we have obtained four distinct orthonormal single-particle eigenstates for identical spin 1/2
particles:

ψa(~r )χ+ , ψa(~r )χ− , ψb(~r )χ+ , ψb(~r )χ− ,

where the spinors are

χ+ =

(

1
0

)

and χ− =

(

0
1

)

.

To label a state for a particular particle i, we can write for example

ψa(~r i)χ+,i .

a) How many distinct two-particle product states can be constructed for identical particles 1 and 2
that are consistent with the Pauli exclusion principle? There is no distinction between which factor
state you give to which particle: i.e.,

ψa(~r 1)χ+,1ψa(~r 2)χ−,1 and ψa(~r 2)χ+,2ψa(~r 1)χ−,2

are the same product state for identical particles. Write down the product states. Are the
product states orthornormal? If the particles were distinct, how many distinct two-particle product
states could be constructed? How many distinct linearly-independent symmetrized states can be
constructed from the two-particle product states? HINT: The first part is a problem of choosing
k objects from n objects with no replacement and no distinction on ordering of choices.
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b) Are the linearly-independent symmetrized states created from orthonormal product states of single
particles always orthonormal? Prove your answer. HINT: The proof takes a bit of thinking.

c) Using the Slater determinant formalism construct from the part (a) product states all the
symmetrized states in which the only one kind of single-particle spatial state occurs. Remember to
normalize the symmetrized states. What kind of states are these in spin description?

d) Using the Slater determinant formalism construct from the part (a) product states all the
symmetrized states in which two distinct single-particle spatial states occur. Remember to
normalize the symmetrized states. What kind of states are these in spin description?

e) Two of the states constructed in the part (d) answer are neither triplet nor singlet states. But you
can construct by linear combination a triplet state and singlet state from these two. Do so. Then
you have full triplet-singlet set of symmetrized states comprising the two unused states from the
part (d) answer and the two newly constructed states.

f) Discuss when you would expect the four symmetrizied states of the part (d) answer to be stationary
states and when the you would expect the triplet-singlet set of symmetrized states to the stationary
states.

15. The set of individual eigen states for a 1-dimensional, infinite square well confined to [0, a] can be written
|n〉 where n = 1, 2, 3, . . . The energies of the states are given by

E(n) =
h−2

2m

(π

a

)2

n2

(e.g., Gr-26). For convenience Ered(n) = n2 can be called the reduced energy of state n.

a) Say we have two non-interacting particles a and b in the well. Write write down the Hamiltonian
for this case. The particles have the same mass m, but are not necessarily identical.

b) The reduced energy of a 2-particle state that satisfy the Schrödinger equation of part (a) can be
written

Ered(n1, n2) = n2
1 + n2

2 .

Write a small computer code to exhaustively calculate the possible reduced energy levels up to
and including Ered = 50 and the n1 and n2 combinations that yield these energies. The code
should also calculate the degeneracy of each energy for the cases of non-identical particles, bosons,
and fermions. I’ll left you off easily, accidental degeneracies can be idendified by eye. (Note: An
accidental degeneracy is when a distinct pair of n values (i.e., a pair not counting order) gives the
same reduced energy.)

c) Write down the normalized vector expressions for all the 2-particle states up to the 4th allowed
energy level for the cases of non-identical particles, identical bosons, and identical fermions. Just
to get you started the non-identical particle ground state is

|a1, b1〉 = |a1〉|b1〉 with Ered = 2 .

16. Say we have orthonormal single-particle states |a〉 and |b〉. If we have distinct particles 1 and 2 in,
respectively, |a〉 and |b〉, the net state is

|a1, b2〉 = |a1〉|b2〉 .

Of course, each of particles 1 and 2 could be in linear combinations of the two states if the states
physically allowed the distinct particles to be in either one. In that case the linear combined state
would be a four term state. But we have no interest in pursuing that digression at the moment.

Now two identical particles in states |a〉 and |b〉 have no choice, but to be in a symmetrized state
by the symmetry postulate:

|1, 2〉 =
1

√

2(1 + δab)
(|a1, b2〉 ± |a2, b1〉) ,
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where the upper case is for identical bosons and the lower case for identical fermions. If the two states
are actually the same state |a〉, then the state for bosons reduces to

|1, 2〉 = |a1, a2〉

and for fermions the state reduces to the null state |0〉 which is not a physical state, and thus the Pauli
exclusion principle is incorporated in the state expression.

Note products of kets are actually tensor products (CT-154). In taking scalar products, the bras
with index i (e.g., 1 or 2 above) act on the kets of index i. For example, for the state |1a, 2b〉 = |a1〉|a2〉
the norm squared is

〈a1, b2|a1, b2〉 = 〈a1|a1〉〈a2|a2〉 .

The fact that identical particles must be in symmetrized states means that their wave functions
will be more or less clumped depending on whether they are bosons or fermions than if they could be
fitted into simple product states like distinct particles. We are not bothering with the complication of
spin for this problem. We will assume that all the particles are in the same spin state: e.g., they are all
in the spin up state.

The clumping/declumping effect is called the EXCHANGE FORCE. Obviously, it is not really
a force, but rather a result of the symmetrization principle requirements on physical states for identical
particles. Still for some practical purposes one can certainly consider it as force. In this problem, we
investigate the effect of the EXCHANGE FORCE.

a) Expand 〈∆x2〉 = 〈(x1 − x2)
2〉 into three terms that can be evaluated individually.

b) For the given two-particle state for DISTINCT PARTICLES |a1, b2〉 = |a1〉|b2〉, formally show that

〈∆x2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ,

where the particle labels can be dropped from the single-particle state expectation values, but these
values must be identified by the single-particle state that they are for: i.e., for states |a〉 and |b〉. What
happens in the case that |a〉 = |b〉? HINT: Remember that variance is defined by

σ2 = 〈x2〉 − 〈x〉2 .

c) There is an identity that is needed for part (d) and is useful in many other contexts. Say |α〉 and |β〉
are general states (e.g., they could be one-particle or two-particle states). Say that

|Ψ〉 = cα|α〉 + cβ |β〉

and we have general observable Q. We have the identity

〈Ψ|Ψ〉 = |cα|2〈α|α〉 + |cβ |2〈β|β〉 + 2Re(c∗αcβ〈α|Q|β〉) .

Prove the identity.

d) For the given two-particle state for IDENTICAL PARTICLES

|1, 2〉 =
1

√

2(1 + δab)
(|a1, b2〉 ± |a2, b1〉) ,

determine 〈∆x2〉 for identical bosons and fermions. What happens in the case that |a〉 = |b〉? HINT:
Recall that

〈a|b〉 = δab ,

since the states are orthonormal.

17. Imagine two non-interacting particles in an infinite square in the range [0, a]. Recall the eigen-functions
for this case are

ψn =

√

2

a
sin
(nπ

a
x
)

for n = 1, 2, 3, . . .. Recall also the results of the Gr-182 and Gr-29:2.5 questions.
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a) Say the particles are distinguishable and are in states n and m. What is 〈∆x2〉 = 〈(x1 − x2)
2〉 for

this case? What is it if n = m?

b) Say the particles are identical bosons/fermions and are in the only allowed combination of states n
and m. What is 〈∆x2〉 = 〈(x1 − x2)

2〉 for this case? What is it if n = m?

18. There are two particles subject to separate simple harmonic oscillator (SHO) potentials. They are also
coupled by a SHO interaction. The full Hamiltonian is:

H =
p2
1

2m1
+

p2
2

2m2
+

1

2
m1ω

2x2
1 +

1

2
m2ω

2x2
2 +

1

2
k(x1 − x2)

2 ,

where k > 0 which in this context means the interaction is attractive. The problem is 1-dimensional: it
is in the x dimension only.

a) Write down the formulae for the center-of-mass (CM) and relative (REL) coordinate and their
inverses (i.e., CM coordinate X and relative x expressed in terms of x1 and x2).

b) Transform the Hamiltonian to the center-of-mass-relative (CM-REL) coordinates (showing all the
steps).

c) Now show that the time-independent Schrödinger equation for the Hamiltonian separates into CM
and REL time-independent Schrödinger equations. Define

ω̃ =

√

ω2 +
k

µ
= ω

√

1 +
k

µω2

in order to simplify the REL equation. Does the overall time-independent Schrödinger equation
have an exact solution?

d) Write down the general expression for the eigen-energies of the total stationary states in terms of
the SHO quantum numbers nCM and nREL for the respective CM and REL parts.

e) Next write the expression for the eigen-energies in the case that k = 0. Define a new quantum
number n that alone gives the eigen-energy and the degeneracy of the eigen-energy. What is the
degeneracy of an eigen-energy of quantum number n?

f) Now assume that k > 0, but that k/(µω2) << 1. Write down a first order correct expression for
the energy in terms of n and nREL. Give a schematic energy-level diagram.

g) Now assume that k/(µω2) >> 1. Give a schematic energy-level diagram in this case.

h) Now assume that the two particles are identical spin-0 bosons. Note that identical means they now
have the same mass. Given the symmetry requirement for boson states, which solutions (specified
by the nCM and nREL quantum numbers) are not physically allowed?

i) Now assume that the two particles are identical spin-1/2 fermions. Note again that identical
means they now have the same mass. But also note they arn’t electrons. Their interactions
are determined by the given Hamiltonian only. Because the particles are spin-1/2 fermions, the
stationary state wave functions for system must be multiplied by appropriate eigen-spinors to specify
the full stationary state. Given the antisymmetry requirement for fermion states, what restrictions
are put on the wave function and spinor quantum numbers of an eigenstate?

19. Say that you solve a Schrödinger equation for N identical particles to get the normalized wave function
ψ(~r1, ~r2, ~r3, . . . , ~r N ). How would you symmetrize the wave function for bosons? Then how would
you symmetrize for fermions all in the spin-up state so that you don’t have spinors to complicate the
question? How would you normalize the wave function?

20. Say you put two electrons into the n = 2 principle quantum number shell of a neutral helium atom
and immediately one electron is ejected and the other decays to the ground of the He+ ion. What
approximately is the kinetic energy of the ejected electron. NOTE: Without a detailed specification
of the doubly-excited helium atom we cannot know exactly what the energies of the excited electrons
are. There are two simple approximate choices for their energies: 1) assume that the energy levels of
the singly-excited helium atom apply (see, e.g., Gr-189); 2) assume that the Z = 2 hydrogenic energy
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levels apply. The first choice is probably most in error because it assumes too much electron-electron
interaction: the electrons may further apart in the actual doubly-excited state; but, in fact, where they
are depends on exactly what doubly excited state they are in. The 2nd choice is certainly wrong by
assuming zero electron-electron interaction.

21. Describe qualitatively how the helium atom energy level diagram would plausibly change under the
following conditions.

a) Say the electrons were spin zero bosons.

b) Say the electrons were spin 1/2 bosons—a contradiction in postulates, but for the sake of argument
have it so.

c) Say the electrons were spin 1/2 fermions, but were quantum mechanically distinguishable particles.
HINT: In this case the answer is going to be pretty much indefinite.

22. In statistical mechanics, the symmetrization requirement on identical bosons enters in the way that
probabilities are assigned to the global states they can form. We will investigate how symmetrization
manifests itself in this case.

a) Say you had g single-particle states and n distinct particles. How many distinct global states can
you form? What is the probability of each global state assuming that each has equal probability?

b) Now a trickier case. Say you had g single-particle states and n identical particles. The probability
pi that a particle goes into single-particle state i is INDEPENDENT of what the other particles
do: note

∑g
i=1 pi = 1, of course. You can construct all possible global states by inserting one

particle at a time into the system—can you imagine a global state that cannot be so constructed?
Say you do insert the n particles one at a time to the system. The probability of an n-particle
global state formed by the insertion sequence ijk . . . ℓ is pipjpk . . . pℓ which has n factors, of course.
But because the particles are identical, each (distinct) global state can be constructed in general by
multiple insertion sequences. How many distinct insertion sequences for n particles correspond to a
single global state with occupation number set {ni}? If all the pi are equal, what is the probability
of a global state with occupation number set {ni} formed by random insertion of particles?

The sum of the probabilities for all insertion sequences is 1. Why must this be so on general
grounds? Now prove more explicitly that the sum of all inserttion sequence probabilities is 1.
HINT: Consider

1 =

(

g
∑

i=1

pi

)n

and a proof by induction.

c) Now in the part (b) answer, we didn’t find out how many distinct global states there were. To find
this out you need a different counting procedure. Let’s consider finding all possible global states
given the following conditions. Imagine that all n particles were distinct and that the order in
which you choose the single-particle states to slot them into also matters. To start with you must
select a state: you can’t put a particle in a non-state. Then proceed selecting a particle for the
current state or a new state until you are out of particles and states. Now did the order of the
states matter or the order of the choice of particles?

d) Now for classical, non-interacting particles randomly slotted into single-particle states, the
probability of each global state is as determined in part (b). Quantum mechanical non-interacting
bosons do not act like classical particles. Because of the symmetrization principle—in a way
the instructor has never found out—each distinct global state has equal probability. What is
this probability for n bosons in g single-particle states? Say that we have all n bosons in one
single-particle state. What is the classical probability of this global state? Which is larger the
classical probability or the boson probability? What does the last result suggest about the random
distributions of bosons relative to classical random distributions?

e) Consider two identical coins—say quarters. How many distinct global physical states can be made
given that the single-coin states are head and tail? Now toss them up together in a completely
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randomizing way 36 times. Count the number of distinct global states of each kind that you get?
Do the probabilities of each distinct global state appear to be classically random or boson random?

23. An atom is a stable bound system of electrons and:

a) a single nucleus. b) two nuclei. c) three nuclei. d) a single quark. e) two quarks.

24. “Let’s play Jeopardy! For $100, the answer is: A favored approximation in the simpler solutions for the
electronic structure of atoms in quantum mechanics.”

What is the , Alex?

a) central potential approximation b) non-central potential approximation
c) grand central approximation d) atom-approximated-as-molecule method
e) electrons-as-bosons approximation

25. Write down the ground state electronic configurations of the atoms from hydrogen to calcium.



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore it neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉
13
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4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ
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H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity
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En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉
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eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)
∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =
m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =
∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx
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Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n
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N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−


