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Introduction

Quantum Mechanics Problems (QMP) is a source book for instructors of introductory quantum
mechanics. The book is available in electronic form to instructors by request to the author. It is free
courseware and can be freely used and distributed, but not used for commercial purposes. The aim
of QMP is to provide digestable problems for quizzes, assignments, and tests for modern students.
There is a bit of spoon-finding—nourishing spoon-feeding I hope.

The problems are grouped by topics in chapters: see Contents below. The chapter ordering
follows roughly the traditional chapter/topic ordering in quantum mechanics textbooks. For each
chapter there are two classes of problems: in order of appearance in a chapter they are: (1) multiple-
choice problems and (2) full-answer problems. Almost all the problems have complete suggested
answers. The answers may be the greatest benefit of QMP. The questions and answers can be
posted on the web in pdf format.

The problems have been suggested by many sources, but have all been written by me. Given
that the ideas for problems are the common coin of the realm, I prefer to call my versions of the
problems redactions. Instructors, however, might well wish to find solutions to particular problems
from well known texts. Therefore, I give the suggesting source (when there is one and I recall what
it was) by a reference code on the extra keyword line: e.g., (Gr-10:1.1) stands for Griffiths, p. 10,
problem 1.1. Caveat: my redaction and the suggesting source problem will not in general correspond
perfectly or even closely in some cases. The references for the source texts and other references follow
the contents. A general citation is usually, e.g., Ar-400 for Arfken, p. 400.

At the end of the book are three appendices. The first is set of review problems anent matrices
and determinants. The second is an equation sheet suitable to give to students as a test aid and a
review sheet. The third is a set of answer tables for multiple choice questions.

Quantum Mechanics Problems is a book in progress. There are gaps in the coverage and the
ordering of the problems by chapters is not yet final. User instructors can, of course, add and modify
as they list.

Everything is written in plain TEX in my own idiosyncratic style. The questions are all have
codes and keywords for easy selection electronically or by hand. A fortran program for selecting
the problems and outputting them in quiz, assignment, and test formats is also available. Note the
quiz, etc. creation procedure is a bit klutzy, but it works. User instructors could easily construct
their own programs for problem selection.

I would like to thank the Department of Physics & Astronomy of the University of Nevada, Las
Vegas for its support for this work. Thanks also to the students who helped flight-test the problems
at UNLV and other universities.
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Chapt. 1 Classical Physics in Trouble

Multiple-Choice Problems

001 qmult 00100 1 1 3 easy memory: quantum mechanics

1. The physical theory that deals mainly with microscopic phenomena is:

a) quartz mechanics.

b) quarks mechanics.

c) quantum mechanics.

d) quantum jump mechanics.

e) quasi-mechanics.

001 qmult 00200 1 1 1 easy memory: photon energy

2. The photon, the quantum of electromagnetic radiation, has ENERGY:

a) hf = h−ω.

b) h/λ.

c) h−k.
d) h2f .

e) hf2.

001 qmult 00300 1 1 4 easy memory: photoelectric effect

3. A key piece of evidence for the wave-particle duality of light is:

a) the photograph effect.

b) the Maxwell’s electrodynamics as summarized in the four Maxwell’s equations.

c) the frequency of red light.

d) the photoelectric effect.

e) the photomagnetic effect.

001 qmult 00400 1 1 1 easy memory: Compton effect

4. Einstein predicted and Compton proved that photons:

a) have linear momentum.

b) do not have linear momentum.

c) sometimes have linear momentum.

d) both have and do not have linear momentum at the same time.

e) neither have nor have not linear momentum.

001 qmult 00500 1 4 3 easy deducto-memory: Bohr atom

5. “Let’s play Jeopardy! For $100, the answer is: This model of an atom is of historical and
pedagogical interest, but it is of little use in modern practical calculations and from the modern
standpoint is probably misleading rather than insight-giving.”

What is , Alex?

1



2 Chapt. 1 Classical Physics in Trouble

a) Schrödinger’s model of the hydrogen atom
b) the Thomas-Fermi model of a many electron atom
c) Bohr’s model of the hydrogen atom d) the liquid drop model of the atom
e) the model hydrogen atom of Leucippos and Democritos

001 qmult 00550 1 1 4 easy memory: hydrogenic energy formula
6. The formula

En = −1

2
mec

2α2Z
2

n2

gives the main energy levels of:

a) positronium.
b) magnesium deboride.
c) the hydrogen molecule.
d) the hydrogenic atom.
e) the infinite square well.

001 qmult 00600 1 1 5 easy memory: Greek atomists
7. The atomic theory was first proposed by the ancient Greeks Leucippos (5th century BCE) and

Democritos (5th to 4th century BCE: he reputedly lived to be 100). The term atomos means
uncut: e.g., the grass is atomos. The atomists started from a philosophical position that there
had to be something to give stability to nature: obviously the macroscopic world was full of
change: therefore what was imperishable or uncutable—atoms—must be below perception. The
modern quantum theory does indeed bear out some of their thinking. Microscopic particles can
be created and destroyed, of course, but the members of a class are much more identical than
macroscopic objects can ever be: fundamental particles like electrons and quarks are thought
to be absolutely identical. Thus the forms particles can take are apparently eternal: a hydrogen
atom today is the same in theory as one at any time in universal history.

The atomists tried to work out an atomic understanding of existence in general. For
instance they constructed a cosmology using atoms that bears some resemblance to modern
eternal inflationary cosmology in which there are infinitely many universes that are born out
of primordial space-time foam and perhaps return to that—foam to foam. Unfortunately, the
atomists got off on the wrong foot on the shape of the Earth: they were still flat Earthers when
the round Earth theory was being established. Quite obviously to us, the atomists were badly
non-experimental. Much of their thinking can be called rational myth. To a degree they were
lucky in happening to be attracted to an essentially right idea.

The atomists were eventually stigmatized as atheists: they did not deny that gods exist, but
didn’t leave anything for the gods to do. This may have been their downfall. The more orthodox
and popular philosophies of Plato, Aristotle, and the Stoics rejected atomism probably, among
other things, for its seeming atheism. Christianity followed suit in this regard. The writings of
the atomists only exist in fragments—and Democritos seems to have been as famous as Plato
in his day. The Epicurean philosophers adopted atomism, but also suffered the stigmatization
as atheists—and also hedonists who are, of course, the worst. But the atom idea lingered on
through the centuries: Leucippos and Democritos, Epicurus, Lucretius (his surviving poem De

Rerum Natura [On Nature] expounds atomism), Gassendi (17th century), Newton, Dalton: the
chain is unbroken: it is not true that modern atomism has no historical or essential connection
to ancient atomism.

A good account of ancient atomism can be found in David Furley’s The Greek Cosmologists.

Now, without recurring to the top of this preamble, atomism was invented in:

a) the early 19th century. b) the 17th century by Gassendi.
c) the 10th century CE. d) the 5th century CE. e) the 5th century BCE.
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001 qmult 00800 1 1 1 easy memory: causality, relativity
8. Einstein ruled out faster than light signaling because:

a) it would cause irresolvable causality paradoxes.
b) it would not cause irresolvable causality paradoxes.
c) it led to irresolvable paradoxes in quantum mechanics.
d) it would destroy the universe.
e) it had been experimentally verified.

001 qmult 00900 1 1 3 easy memory: EPR paradox
9. The Einstein-Podolsky-Rosen (EPR) paradox was proposed to show that ordinary quantum

mechanics implied superluminal signaling and therefore was:

a) more or less correct.
b) absolutely correct.
c) defective.
d) wrong in all its predictions.
e) never wrong in its predictions.

001 qmult 01000 1 4 3 easy deducto-memory: Bell’s theorem
10. “Let’s play Jeopardy! For $100, the answer is: This theorem (if it is indeed inescapably correct)

and the subsequent experiments on the effect the theorem dealt with show that quantum
mechanical signaling exceeds the speed of light.”

a) What is Dark’s theorem, Alex?
b) What is Midnight’s theorem, Alex?
c) What is Bell’s theorem, Alex?
d) What is Book’s theorem, Alex?
e) What is Candle’s theorem, Alex?

Full-Answer Problems

001 qfull 00500 3 5 0 tough thinking: Rutherford’s nucleus
Extra keywords: (HRW-977:62P)

1. Rutherford discovered the nucleus in 1911 by bombarding metal foils with alpha particles now
known to be helium nuclei (atomic mass 4.0026). An alpha particle has positive charge 2e. He
expected the alpha particles to pass right through the foils with only small deviations. Most did,
but some scattered off a very large angles. Using a classical particle picture of the alpha particles
and the entities they were scattering off of he came to the conclusion that atoms contained most
of their mass and positive charge inside a region with a size scale of ∼ 10−15 m = 1 fm: this 10−5

times smaller than the atomic size. (Note fm stands officially for femtometer, but physicists
call this unit a fermi.) Rutherford concluded that there must be a dense little core to an atom:
the nucleus.

a) Why did the alpha particles scatter off the nucleus, but not off the electrons? HINTS:
Think dense core and diffuse cloud. What is the force causing the scattering?

b) If the alpha particles have kinetic energy 7.5 Mev, what is their de Broglie wavelength?

c) The closest approach of the alpha particles to the nucleus was of order 30 fm. Would the
wave nature of the alpha particles have had any effect? Note the wave-particle duality was
not even suspected for massive particles in 1911.
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001 qfull 01000 3 5 0 tough thinking: black-body radiation, Wien law
Extra keywords: (Le-62) gives a sketch of the derivations

2. Black-body radiation posed a considerable challenge to classical physics which it was partially
able to meet. Let’s see how far we can get from a classical, or at least semi-classical,
thermodynamic equilibrium analysis.

a) Let Uλ be the radiation energy density per wavelength of a thermodynamic equilibrium
radiation field trapped in some kind of cavity. The adjective thermodynamic equilibrium
implies that the field is homogenous and isotropic. I think Hohlraum was the traditional
name for such a cavity. Let’s call the field a photon gas and be done with it—anachronism
be darned. Since the radiation field is isotropic, the specific intensity is then given by

B(λ, T ) =
cUλ

4π
, (Pr.1)

where c is of course the speed of light. Specific intensity is radiation flux per wavelength
per solid angle. From special relativity (although there may be some legitimately classical
way of getting it), the momentum flux associated with a specific intensity is just B(λ, T )/c.
Recall the rest plus kinetic energy of a particle is given by

E =
√

p2c2 +m2
0c

4 , (Pr.2)

where p is momentum and m0 is rest mass. From an integral find the expression for the
radiation pressure on a specularly reflecting surface:

p =
1

3
U , (Pr.3)

where p is now pressure and U is the wavelength-integrated radiation density. Argue that
the same pressure applies even if the surface is only partially reflecting or pure blackbody
provided the the radiation field and the surface are in thermodynamic equilibrium. HINT:
Remember to account for angle of incidence and reflection.

b) Now we can utilize a few classical thermodynamic results to show that

U = aT 4 , (Pr.4)

where a is a radiation constant related to the Stefan-Boltzmann constant σ = 5.67051 ×
105 ergs/(cm2 K4) and T is Kelvin temperature, of course. The relation between a and σ
follows from the find the flux leaking out a small hole in the Hohlraum:

F = 2π

∫ 1

0

cU

4π
µ dµ =

ca

4
T 4 , (Pr.5)

where µ is the cosine of the angle to the normal of the surface where the hole is. One sees
that σ = ca/4. Classically a cannot be calculated theoretically; in quantum mechanical
statistical mechanics a can be derived. The proportionality U ∝ T 4 can, however, be
derived classically. Recall the 1st law of thermodynamics:

dE = T dS − p dV , (Pr.6)

where E is internal energy, S is entropy, and V is volume. Note that

(

∂E

∂S

)

V

= T and

(

∂E

∂V

)

S

= −p , (Pr.7)
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where the subscripts indicate the variables held constant. It follows from calculus (assuming
well-behaved functions) that

(

∂p

∂S

)

V

= −
(

∂T

∂V

)

S

, (Pr.8)

The last relation is one of Maxwell’s four thermodynamic relations—Newton did things in
threes; Maxwell in fours. Note that E = UV for a radiation field. Now go to it: show
U ∝ T 4.

c) As a by-product of the part (b) answer, you should have found that

T ∝ V −1/3 (Pr.9)

for a quasistatic adiabatic process with the photon gas. (Find it now if somehow you missed
it in the part (b) answer.) Assume you have a perfectly reflecting Hohlraum that you expand
homologously by a scaling factor f(t), where t is time. Thus at any time t any length ℓ between
physical points on the walls in the system is given by

ℓ = f(t)ℓ0 , (Pr.10)

where ℓ0 was the physical length at t0 when f(t0) = 1. Find out how T , U , U dV , and E scale
with f(t). What happens to the lost internal energy? HINT: This is easy.

d) Consider the process described in the part (c) and show that

λ = λ0f(t) (Pr.11)

for each specific intensity beam. Note you can use the non-relativistic Doppler effect since the
velocity shift between scatterings off the walls is vanishingly small in the quasistatic limit.

e) For the same system as in part (c) show that

B(λ, T ) dλ dV = f(t)−1B(λ0, T0) dλ0 dV0 . (Pr.12)

Then show that equation (Pr.12) leads naturally (if not absolutely necessarily so far as I can
see) to the prescription for black-body specific intensity

B(λ, T ) = λ−5g(x) =

(

T

x

)5

g(x) , (Pr.13)

where
x ≡ λT (Pr.14)

and g(x) is a universal function that cannot be determined from classical theory.
Equation (Pr.13) is sometimes called Wien’s displacement law. However the name Wien’s
displacement law is more usually (I think) reserved for the immediate result that for fixed T
the the maximum of the black-body specific intensity (i.e., the maximum of x−5g(x)) occurs at
a wavelength given by

λ =
xmax

T
, (Pr.15)

where xmax is the global universal location of maximum for the universal function g(x). It was
empirically known that black-body radiation had only one maximum with wavelength, and so
this corresponds to xmax. I think classically xmax has to be determined empirically.

Wien’s radiation law was I believe a fit to the observations of Wien’s displacement law.
This law is

B(λ, T ) = k1

(

T

x

)5

exp

(

−k2

x

)

, (Pr.16)
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where k1 and k2 had to be determined from the fit. Wien’s law works well for short wavelengths
(x <∼xmax), but gives a poorish fit to the long wavelengths (x >∼xmax) (Pa-190, but note the x
there is the inverse of the x here aside from a constant). The Rayleigh-Jeans law derived from
a rather different classical starting picture gave a good fit to long wavelengths (x >> xmax),
but failed badly at shorter wavelengths (Pa-190, but note the x there is the inverse of the x
here aside from a constant). In fact the Rayleigh-Jeans law goes to inifinity as x goes to zero
and the total energy in a Rayleigh-Jeans radiation field is infinite (Le-64): this is sometimes
called the ultraviolet catastrophe (BFG-106). The correct black-body specific intensity law was
derived from a primitive quantum theory by Max Planck in 1900 (BFG-106). Planck obtained
an empirically excellent fit to the black-body specific intensity and then was able to derive it
from his quantum hypothesis. The Rayleigh-Jeans and Planck laws are the subject for another
question.

001 qfull 01100 2 5 0 moderate thinking: Bohr atom
3. In 1913, Niels Bohr presented his model of the hydrogen atom which was quickly generalized

to the hydrogenic atom (i.e., the one-electron atom of any nuclear charge Z). This model
correctly gives the main hydrogenic atom energy levels and consists of a mixture of quantum
mechanical and classical ideas. It is historically important for showing that quantization is
somehow important in atomic structure and pedagogically it is of interest since it shows how
simple theorizing can be done. But the model is, in fact, incorrect and from the modern
perspective probably even misleading about the quantum mechanical nature of the atom. It is
partially an accident of nature that it exists to be found. Only partially an accident since it
does contain correct ingredients.

And it is no accident that Bohr found it. Bohr knew what he wanted: a model that would
successfully predict the hydrogen atom spectrum which is a line spectrum showing emission
at fixed frequencies. He knew from Einstein’s photoelectric effect theory that electromagnetic
radiation energy was quantized in amounts hν where h = 6.62606896(33) × 10−27 erg s was
Planck’s constant (which was introduced along with the quantization notion to explain black-
body radiation in 1900) and ν was frequency of the quantum of radiation. He recognized that
Planck’s constant had units of angular momentum. He knew from Rutherford’s nuclear model
of the atom that the positive charge of an atom was concentrated in region that was much
smaller than the atom size and that almost all the mass of the atom was in the nucleus. He
knew that there were negative electrons in atoms and they were much less massive than the
nucleus. He knew the structure of atoms was stable somehow. By a judicious mixture of
classical electromagnetism, classical dynamics, and quantum ideas he found his model. A more
sophisticated mixture of these concepts would lead to modern quantum mechanics.

Let’s see if we can follow the steps of the ideal Bohr—not the Bohr of history.
NOTE: This a semi-classical question: Bohr, ideal or otherwise, knew nothing of the
Schrödinger equation in 1913. Also note that this question uses Gaussian CGS units not MKS
units. The most relevant distinction is that electric charge

eCGS =
eMKS√
4πǫ0

which implies the fine structure constant in CGS is

α =
e2

h−c
.

Astronomy is all Gaussian CGS by the way.

a) Bohr thought to build the electron system about the nucleus based on the electrostatic
inverse square law with the electron system supported against collapse onto the nucleus by
angular momentum. The nucleus was known to be much tinnier than the electron system
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which gives the atom its volume. The nucleus could thus be a considered an immobile
point center of force at the origin of the relative nucleus-electron coordinate system frame.
This frame is non-inertial, but classically can be given an inertial-frame treatment if the
electron is given a reduced mass given by

m =
memnucleus

me +mnucleus
≈ me

(

1 − me

mnucleus

)

,

where me the electron mass and mnucleus is the nucleus mass. The approximation is valid
for me/mnucleus << 1 which is true of hydrogen and most hydrogenic systems, but not, for
example, for positronium (a bound electron and positron).
The electron—there is only one in a hydrogenic atom—was taken to be in orbit about the
nucleus. Circular orbits seemed the simplest way to proceed. The electrostatic force law
(in Gaussian cgs units) in scalar form for a circular orbit is

~F = −Ze
2

r2
r̂ ,

where Ze is the nuclear charge, e is the electron charge, and r is the radial distance to the
electron, and r̂ is a unit vector in the radial direction.

What is the potential energy of the electron with the zero of potential energy for the
electron at infinity as usual? HINT: If the result isn’t obvious, you can get it using the
work-potential energy formula:

V = −
∫

~F · d~r + constant .

b) Using the centripetal force law (which is really F = ma for uniform circular motion)

~F = −mv
2

r
r̂ ,

find an expression for the classical kinetic energy T of the electron in terms of Z, e, and r
alone.

c) What is the total energy of the electron in the orbit?

d) Classically an accelerating charge radiates. This seemed well established experimentally in
Bohr’s time. But an orbiting electron is accelerating, and so should lose energy continuously
until it collapses into the nucleus: this catastrophe obviously doesn’t happen. Electrons
do not collapse into the nucleus. Also they radiate only at fixed frequencies which means
fixed quantum energies by Einstein’s photoelectric effect theory. So Bohr postulated that
the electron could only be in certain orbits which he called stationary states and that the
electron in a stationary state did not radiate. Only on transitions between stationary states
(sometimes called quantum jumps or leaps) was there an emission of radiation in a quantum
of radiation or (to use an anachronism) a photon. To get the fixed energies of emission
only certain energies were allowed for the stationary states. But the emitted photons didn’t
come out with equally spaced energies: ergo the orbits couldn’t be equally spaced in energy.
From the fact that Planck’s constant h has units of angular momentum, Bohr hypothesized
the orbits were quantized in equally spaced amounts of angular momentum. But h was not
the spacing that worked. Probably after a bit of fooling around, Bohr found that h/(2π)
or, as we now write it, h− was the spacing that gave the right answer. The allowed angular
momenta were given by

L = nh− ,
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where n is any positive non-zero integer. The n is now called the principal quantum number,
but its meanings in the Bohr model and in modern quantum mechanics are somewhat
different. The principal quantum number n determines the main spacing of the hydrogenic
energy levels.

Rewrite kinetic energy T in terms of nh− and solve for an expression for r in terms
n, h−, Ze2, and m only. HINT: Recall the classical expression for angular momentum of
particle in a circular orbit is L = mrv.

e) Using the formula for r from the part (d) answer write an expression for the energy of a
stationary state in terms of m, c, α, Z, and n only. The c is the speed of light and the α
is the fine structure constant: recall that in Gaussian cgs units

α =
e2

h−c
.

This formula for orbit energy turns out to be correct for the spacing of the main energy
levels. But these energyxhell doesn’t, in fact, have angular momentum nh−: it consists of
has orbitals (as we now call them) with angular momenta in the range [0, n− 1] in units of
h− (e.g., Gr-139).

001 qfull 01300 2 3 0 moderate math: Compton scattering
Extra keywords: (Ha-323:1.1)

4. In 1916, Einstein proposed that photons carry momentum according to the following formula:

p =
h

λ
,

where h is Planck’s constant and λ is the photon wavelength (HRW-959). In 1924, Louis
de Broglie applied the formula in inverse form to give a wavelength for massive particles: i.e.,

λ =
h

p

which is called the de Broglie wavelength formula. In 1923, Arthur Compton carried out
experiments with X-rays scattering off electrons which showed that Einstein’s formula correctly
accounted for the wavelength shift on scattering. The Compton shift formula is

∆λ = λC(1 − cos θ) ,

where λC = h/(mec) = 0.02426 Å is the Compton wavelength (with me being the electron mass)
and θ is the scattering angle (i.e., the angle between incident and scattering directions). This
formula can be derived from Einstein’s formula using a relativistic particle collisional picture.

a) Assuming an electron starts at rest and is hit head-on by a photon “particle and the
collision is elastic,” what conservation law expressions can be used to relate incoming
photon momentum p1, outgoing photon momentum p2, outgoing electron momentum pe,
photon scattering angle θ, and electron scattering angle φ? Can one solve for the four
outgoing quantities given the initial conditions? HINT: Recall that the relativistic kinetic
energy of a particle is given by

T =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2 ,

where p is momentum and m0 is the rest mass.

b) Solve for p2 in terms of p1 and θ only.

c) Now using Einstein wavelength formula, find Compton’s formula.
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d) Sketch the behavior of ∆λ as a function of θ. What is the shift formula in the non-relativistic
limit: i.e., when λ→ ∞.

001 qfull 00150 3 5 0 tough thinking: Einstein, Runyon
Extra keywords: Bosher

5. “God does not play dice”—Einstein. Discuss.



Chapt. 2 QM Postulates, Schrödinger Equation, and the Wave Function

Multiple-Choice Problems

002 qmult 00080 1 1 2 easy memory: wave-particle duality
1. The nebulous (and sometimes disparaged) concept that all microscopic physical entities have

both wave and particle properties is called the wave-particle:

a) singularity. b) duality. c) triality. d) infinality. e) nullility.

002 qmult 00090 1 4 5 easy deducto-memory: Sch eqn
2. “Let’s play Jeopardy! For $100, the answer is: The equation that governs (or equations

that govern) the time evolution of quantum mechanical systems in the non-relativistic
approximation.”

What is/are , Alex?

a) ~Fnet = m~a b) Maxwell’s equations
c) Einstein’s field equations of general relativity d) Dirac’s equation
e) Schrödinger’s equation

002 qmult 00100 1 1 1 easy memory: Sch eqn compact form
3. The full Schrödinger’s equation in compact form is:

a) HΨ = ih−∂Ψ

∂t
. b) HΨ = h−∂Ψ

∂t
. c) HΨ = i

∂Ψ

∂t
. d) HΨ = ih−∂Ψ

∂x
.

e) H−1Ψ = ih−∂Ψ

∂t
.

002 qmult 00110 1 1 3 easy memory: Hamiltonian operator
4. The energy operator in quantum mechanics,

H = − h−2

2m

∂2

∂x2
+ V (x)

(here given for 1 particle in one dimension) is called the:

a) Lagrangian b) Laplacian c) Hamiltonian d) Georgian e) Torontonian

002 qmult 00200 1 4 3 easy deducto-memory: Born postulate
Extra keywords: mathematical physics

5. “Let’s play Jeopardy! For $100, the answer is: The postulate that the wave function Ψ(~r ) is
quantum mechanics is a probability amplitude and |Ψ(~r )|2 is a probability density for localizing
a particle at ~r on a ‘measurement’.”

What is , Alex?

a) Schrödinger’s idea b) Einstein’s notion c) Born’s postulate
d) Dirac’s hypothesis e) Death’s conclusion

002 qmult 00210 1 1 1 easy memory: QM probability density
6. In the probabilistic interpretation of wave function Ψ, the quantity |Ψ|2 is:

10
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a) a probability density. b) a probability amplitude. c) 1. d) 0.
e) a negative probability.

002 qmult 00220 1 1 5 easy memory: probability of finding particle in dx
7. The probability of finding a particle in differential region dx is:

a) Ψ(x, t) dx. b) Ψ(x, t)∗ dx. c) [Ψ(x, t)∗/Ψ(x, t)] dx. d) Ψ(x, t)2 dx.
e) Ψ(x, t)∗Ψ(x, t) dx = |Ψ(x, t)|2 dx.

002 qmult 00300 1 4 5 easy deducto-memory: observable defined
Extra keywords: See Co-137, Gr-104

8. “Let’s play Jeopardy! For $100, the answer is: It is an Hermitian operator that governs (or
represents in some people’s jargon) a dynamical variable in quantum mechanics.”

What is an , Alex?

a) intangible b) intaglio c) obtainable d) oblivion e) observable

002 qmult 00310 1 1 3 easy memory: expectation value defined
9. In quantum mechanics, a dynamical variable is governed by a Hermitian operator called an

observable that has an expectation value that is:

a) the most likely value of the quantity given by the probability density: i.e., the mode of the
probability density.

b) the median value of the quantity given by the probability density.
c) the mean value of the quantity given by the probability density.
d) any value you happen to measure.
e) the time average of the quantity.

002 qmult 00320 1 1 3 easy memory: expectation value notation
10. The expectation value of operator Q for some wave function is often written:

a) Q. b) 〉Q〈. c) 〈Q〉. d) 〈f(Q)〉. e) f(Q).

002 qmult 00400 1 1 1 easy memory: physical requirments
Extra keywords: Gr-11

11. These quantum mechanical entities must be (with some exceptions):

i) Single-valued (and their derivatives too).
ii) finite (and their derivatives too).
iii) continuous (and their derivatives too).
iv) normalizable or square-integrable.

They are:
a) wave functions. b) observables. c) expectation values. d) wavelengths.
e) wavenumbers.

002 qmult 00410 1 1 4 easy memory: normalization requirement
12. A physical requirement on wave functions is that they should be:

a) reliable. b) friable. c) certifiable. d) normalizable. e) retriable.

002 qmult 00500 1 1 2 easy memory: the momentum operator defined
13. The momentum operator in one-dimension is:

a) h− ∂

∂x
. b)

h−
i

∂

∂x
. c)

i

h−
∂

∂x
. d)

i

h−
∂

∂t
. e) h− ∂

∂t
.

002 qmult 00510 1 1 4 easy memory: constant of the motion
14. If an observable has no explicit time dependence and it commutes with the Hamiltonian, then

it is a quantum mechanical:
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a) fudge factor. b) dynamical variable. c) universal constant.
d) constant of the motion. e) constant of the stagnation.

002 qmult 00520 1 4 5 easy deducto-memory: Ehrenfest’s theorem
15. Ehrenfest’s theorem partially shows the connection between quantum mechanics and:

a) photonics. b) electronics. c) special relativity. d) general relativity.
e) classical mechanics.

002 qmult 00600 1 4 5 easy deducto-memory: uncertainty principle 1
16. “Let’s play Jeopardy! For $100, the answer is: It describes a fundamental limitation on the

accuracy with which we can know position and momentum simultaneously.”

What is , Alex?

a) Tarkovsky’s doubtful thesis b) Rublev’s ambiguous postulate
c) Kelvin’s nebulous zeroth law d) Schrödinger’s wild hypothesis
e) Heisenberg’s uncertainty principle

002 qmult 00610 1 4 5 easy deducto-memory: uncertainty principle 2
17. “Let’s play Jeopardy! For $100, the answer is: ∆x∆p ≥ h−/2 or σxσp ≥ h−/2.

What is , Alex?

a) an equality b) a standard deviation
c) the Heisenberg CERTAINTY principle d) the Cosmological principle
e) the Heisenberg UNCERTAINTY principle

002 qmult 00700 1 1 4 easy memory: Schr. eqn. separation of variables
18. The time-independent Schrödinger equation is obtained from the full Schrödinger equation by:

a) colloquialism. b) solution for eigenfunctions.
c) separation of the x and y variables. d) separation of the space and time variables.
e) expansion.

002 qmult 00720 1 1 1 easy memory: stationary state
19. A system in a stationary state will:

a) not evolve in time. b) evolve in time. c) both evolve and not evolve in time.
d) occasionally evolve in time. e) violate the Heisenberg uncertainty principle.

002 qmult 00800 1 4 2 easy deducto-memory: orthogonality property
20. For a Hermitian operator eigenproblem, one can always find (subject to some qualitifications

perhaps—but which are just mathemtical hemming and hawwing) a complete set (or basis) of
eigenfunctions that are:

a) independent of the x-coordinate. b) orthonormal. c) collinear.
d) pathological. e) righteous.

002 qmult 00810 1 4 2 easy deducto-memory: basis expansion
Extra keywords: mathematical physics

21. “Let’s play Jeopardy! For $100, the answer is: If it shares the same same range as a basis set
of functions and is at least piecewise continuous, then it can be expanded in the basis with a
vanishing limit of the mean square error between it and the expansion.”

What is a/an , Alex?

a) equation b) function c) triangle d) deduction e) tax deduction

002 qmult 00820 1 4 5 easy deducto-memory: general Born postulate
Extra keywords: mathematical physics
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22. “Let’s play Jeopardy! For $100, the answer is: The postulate that expansion coefficients of
a wave function in the eigenstates of an observable are the probability amplitudes for wave
function collapse to eigenstates of that observable.”

What is , Alex?

a) the special Born postulate b) the very special Born postulate
c) normalizability d) the mass-energy equivalence e) the general Born postulate

002 qmult 00830 1 1 4 easy memory: basis expansion physics
23. The expansion of a wave function in an observable’s basis (or complete set of eigenstates) is

a) just a mathematical decomposition. b) useless in quantum mechanics.
c) irrelevant in quantum mechanics. d) not just a mathematical decomposition since
the expansion coefficients are probability amplitudes. e) just.

020 qmult 00840 1 4 5 easy deducto-memory: wave function collapse
Extra keywords: mathematical physics

24. “Let’s play Jeopardy! For $100, the answer is: It is a process in quantum mechanics that some
decline to mention, some believe to be unspeakable, some believe does not exist (though they
have got some explaining to do about how one ever measures anything), some believe should
not exist, and that some call the fundamental perturbation (but just once per textbook).”

What is , Alex?

a) the Holy b) the Unholy c) the Unnameable
d) the 4th secret of the inner circle e) wave function collapse

002 qmult 00900 1 4 1 easy deducto-memory: macro object in stationary state
25. “Let’s play Jeopardy! For $100, the answer is: A state that no macroscopic system can be

in except arguably for states of Bose-Einstein condensates, superconductors, superfluids and
maybe others sort of.”

What is a/an , Alex?

a) stationary state b) accelerating state c) state of the Union d) state of being
e) state of mind

002 qmult 01000 1 1 5 easy memory: stationary state is radical
26. A stationary state is:

a) just a special kind of classical state. b) more or less a kind of classical state.
c) voluntarily a classical state.
d) was originally not a classical state, but grew into one.
e) radically unlike a classical state.

002 qmult 01100 1 1 4 easy memory: macro system in a stationary state
27. Except arguably for certain special cases (superconductors, superfluids, and Bose-Einstein

condensates), no macroscopic system can be in a:

a) mixed state. b) vastly mixed state. c) classical state. d) stationary state.
e) state of the union.

002 qmult 01200 1 1 2 easy memory: transitions
28. Transitions between atomic or molecular stationary states (sometimes, but actually rarely, called

quantum jumps) are:

a) only collisional.
b) both collisional and radiative.
c) only radiative.
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d) neither collisional nor radiative.
e) only collisional to higher energy stationary states and only radiative to lower energy

stationary states.

002 qmult 01300 1 4 3 easy deducto-memory: lasers, stimulated emission
29. “Let’s play Jeopardy! For $100, the answer is: It is the basis for lasers and masers.”

What is , Alex?

a) spontaneous radiative emission b) desultory radiative emission
c) stimulated radiative emission d) the laser force e) the laser potential

002 qmult 01400 1 4 4 easy deducto-memory: operators and Sch. eqn.
30. “Let’s play Jeopardy! For $100, the answer is: An equation that must hold in order for the non-

relativistic Hamiltonian operator and the operator ih−∂/∂t to both yield an energy expectation
value for a wave function Ψ(x, t).”

What is , Alex?

a) the continuity equation b) the Laplace equation c) Newton’s 2nd law
d) Schrödinger’s equation e) Hamiton’s equation

002 qmult 02000 2 1 4 moderate memory: does gravity quantize
Extra keywords: reference: Nesvizhevsky et al. 2002, Nature, 413, 297

31. Can the gravitational potential cause quantization of energy states?

a) No. b) It is completely uncertain. c) Theoretically yes, but experimentally no.
d) Experimental evidence to date (post-2001) suggests it can.
e) In principle there is no way of telling.

Full-Answer Problems

002 qfull 00090 1 5 0 easy thinking: what is a wave function?
1. What is a wave function? (Representative general symbol Ψ(~r, t)).

002 qfull 00100 1 3 0 easy math: probability and age distribution
Extra keywords: (Gr-10:1.1)

2. Given the following age distribution, compute its the normalization (i.e., the factor that
normalizes the distribution), mean, variance, and standard deviation. Also give the mode
(i.e., the age with highest frequency) and median. HINT: Doing the calculation with a small
computer code would be the efficient way to answer the problem.

Table: Age Distribution

Age Frequency
(years)

14 2
15 1
16 6
22 2
24 2
25 5
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002 qfull 00200 2 3 0 moderate math: probability needle 1
Extra keywords: (Gr-10:1.3) probability and continuous variables

3. An indicator needle on a semi-circular scale (e.g., like a needle on car speedometer) bounces
around and comes to rest with equal probability at any angle θ in the interval [0, π].

a) Give the probability density ρ(θ) and sketch a plot of it.

b) Compute the 1st and 2nd moments of the distribution (i.e., 〈θ〉 and
〈

θ2
〉

) and the variance
and standard deviation.

c) Compute 〈sin θ〉, 〈cos θ〉, 〈sin2 θ〉, and 〈cos2 θ〉.

002 qfull 00210 3 5 0 tough thinking: 2-variable probability density
Extra keywords: (Gr-11:1.5) dropping a needle on lines needle 2

4. Nun für eine kleine teufelische problem. Say you drop at random with equal likelihood of landing
in any orientation and location a needle of length ℓ onto a sheet of paper with parallel lines a
distance ℓ apart. What is the probability of the needle crossing (or at least touching) a line?
Let’s be nice this time and break it down.

a) Mentally mark one end of needle red. Then note that really we only need to consider one
band on the paper between two parallel lines and the case where the red end lies between
them as a given. Why is this so?

b) So now we consider that the red end lands in one band at a point x between −ℓ/2 and ℓ/2.
Note we put the origin at the center since almost always one ought to exploit symmetry.
What is the probability density for the red end to land anywhere in the band? What is
the probability density for the needle for the orientation of the needle in θ measured from
the x-axis? Why do you only need to consider θ ∈ [0, π]?

c) Now we don’t care about the orientation itself really: we just care about it’s projection
on the x-axis. Call that projection x′. What is the probability density for x′? What is
the range of x′ allowed? HINT: The probability of landing in dθ and a corresponding dx′

must be equal.

d) The joint probability density for x and x′ is

ρ(x)ρ(x′) .

You now have to integrate up all the probability for x′ + x ≥ ℓ/2 and for x′ + x ≤ −ℓ/2
and sum those two probabilities. The sum is the solution probability of course.

002 qfull 00220 1 3 0 easy math: Gaussian probability density
Extra keywords: (Gr-11:1.6)

5. Consider the Gaussian probability density

ρ(x) = Ae−λ(x−a)2 ,

where A, a, and λ are constants.

a) Determine the normalization constant A.

b) The nth moment of a probability density is defined by

〈xn〉 =

∫ ∞

−∞

xnρ(x) dx .

Determine the 0th, 1st, and 2nd moments of the Gaussian probability density.
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c) For the Gaussian probability density determine the mean, mode, mediam, variance σ2, and
standard deviation (or dispersion) σ.

d) Sketch the Gaussian probability density.

002 qfull 00300 2 3 0 moderate math: analyzing a triangular hat wave function
Extra keywords: (Gr-13:1.7)

6. At some time a triangular hat wave function is given by

Ψ(x, t) =























A
x

a
, x ∈ [0, a];

A

(

b− x

b− a

)

, x ∈ [a, b];

0 otherwise,

where A, a, and b are constants.

a) Sketch Ψ and locate most probable location for a particle (i.e., the mode of the |Ψ|2
probability distribution).

b) Determine the normalization constant A in terms of a and b. Recall the difference between
wave function and probability distribution here and in the later parts of this question.

c) What are the probabilities of being found left and right of a, respectively?

d) What is 〈x〉?

002 qfull 00310 2 5 0 moderate thinking: probability conservation
Extra keywords: (Gr-13:1.9) probability current

7. The expression for the probability that a particle is in the region [−∞, x] (i.e., the cumulative
probability distribution function) is

P (x, t) =

∫ x

−∞

|Ψ(x′, t)|2 dx′ .

a) Find an explicit, non-integral formula for ∂P (x, t)/∂t given that the wave function is
normalizable at time t. Simplify the formula as much as reasonably possible. HINT:
Make use of the physics: i.e., the Schrödinger equation itself. This is a common trick in
quantum mechanics and, mutatis mutandis, throughout physics. It probably helps to let
the dummy variable in the integral be x and the endpoint a while doing the math.

b) Recall momentum observable is

pop =
h−
i

∂

∂x
.

Substitute pop into the formula derived in part (a) and simplify as much as possible. In
the simplification, make use of the real-part function Re which has the property that

Re(z)

is the real part of complex variable z. For example, if z = x+ iy, then

Re(z) = Re(x+ iy) = x .

HINT: Note that
−popΨ∗ = (popΨ)∗ .
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c) If the wave function is normalizable at time t, show that P (∞, t) is a constant with respect
to time: i.e., total probability is conserved.

d) The probability current is defined

J(x, t) = −∂P (x, t)

∂t
.

Argue that this is a sensible definition. Then using the part (b) answer write an explicit
formula for J(x, t) in terms of the wave function. Discuss how this formula corresponds to
a classical current density: e.g.,

~vρ

where ~v is velocity and ρ is a density of something.

e) Given
Ψ(x, t) = ψ(x)e−iωt ,

what can one say about the probability density |Ψ|2, the cumulative probability function
P (x, t), and the probability current J(x, t)?

002 qfull 00320 3 5 0 tough thinking: general time evolution equation
8. It follows from the general Born postulate that the expectation value of an observable Q is given

by

〈Q〉 =

∫ ∞

−∞

Ψ∗QΨ dx .

It’s weird to call an operator an observable, but that is the convention (Co-137).

a) Write down the explicit expression for

d〈Q〉
dt

.

Recall Q in general can depend on time too.

b) Now use the Schrödinger equation

HΨ = ih−∂Ψ

∂t

to eliminate partial time derivatives where possible in the expression for d〈Q〉/dt.
Remember how complex values behave when complex conjugated. You should use the
angle bracket form for expectation values to simplify the expression where possible.

c) The commutator of two operators A and B is defined by

[A,B] = AB −BA ,

where it is always understood that the commutator and operators are acting on an implicit
general function to the right. If you have trouble initially remembering the understood
condition, you can write

[A,B]f = (AB −BA)f ,

where f is an explicit general function. Operators don’t in general commute: i.e.,
[A,B] = AB −BA 6= 0 in general. Prove





∑

i

Ai,
∑

j

Bj



 =
∑

i,j

[Ai, Bj ] .
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d) Now show that d〈Q〉/dt can be written in terms of 〈i[H,Q]〉. The resulting important
expression oddly enough doesn’t seem to have a common name. I just call it the general
time evolution formula. HINTS: First, V and Ψ∗ do commute. Second, the other part of
the Hamiltonian operator

T = − h−2

2m

∂2

∂x2

can be put in the right place using integration by parts and the normalization condition
on the wave function. Note T turns out to be the kinetic energy operator.

e) If d〈Q〉/dt = 0, then Q is a quantum mechanical constant of the motion. It’s weird to call
an observable (which is a operator) a constant of the motion, but that is the convention
(Co-247). Show that the operator Q = 1 (i.e., the unit operator) is a constant of the
motion. What is 〈1〉?

f) Find the expression for d〈x〉/dt in terms of what we are led to postulate as the momentum
operator

p =
h−
i

∂

∂x
.

The position operator x should be eliminated from the expression. HINTS: Note V and
x commute, but T and x do not. Leibniz’s formula (Ar-558) might be of use in evaluating
the commutator [T, x]. The formula is

dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k
.

002 qfull 00330 3 5 0 tough thinking: Ehrenfest’s theorem
Extra keywords: (Gr-17:1.12) Ehrenfest formulae

9. In one dimension, Ehrenfest’s theorem in quantum mechanics is usually taken to consist of two
formulae:

d〈x〉
dt

=
1

m
〈p〉

and
d〈p〉
dt

= −
〈

∂V

∂x

〉

,

where the angle brackets indicate expectation values as usual.
NOTE: There are parts a,b,c,d. The parts can all be done independently. So don’t stop

if you can’t do a part.

a) From the general time evolution formula prove the 1st Ehrenfest formula. HINTS: Recall the
general time evolution formula in non-relativistic quantum mechanics is

d〈Q〉
dt

=

〈

∂Q

∂t

〉

+
1

h−
〈i[H,Q]〉 ,

where Q is any observable and H is the Hamiltonian:

H = T + V (x) .

Also recall that quantum mechanical momentum operator and kinetic energy operator are given
by

p =
h−
i

∂

∂x
and T = − h−2

2m

∂2

∂x2
,
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respectively. Leibniz’s formula (Ar3-667) might be of use in evaluating some of the commutators:

dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k
.

b) From the general time evolution formula prove the 2nd Ehrenfest formula.

c) In the macroscopic limit, the expectation values become the classical dynamical variables by
the correspondence principle (which is an auxiliary principle of quantum mechanics enunciated
by Bohr in 1920 (Wikipedia: Correspondance principle)): i.e., 〈x〉 becomes x, etc. (Note we are
allowing a common ambiguity in notation: x and p are both coordinates and, in the classical
formalism, the dynamical variables describing the particle. Everybody does this: who are we to
disagree.) Find the macroscopic limits of the Ehrenfest formulae and identify the macroscopic
limits in the terminology of classical physics.

d) If you ARE writing a TEST, omit this part.
If one combines the two Ehrenfest formulae, one gets

m
d2〈x〉
dt2

= −
〈

∂V

∂x

〉

which looks very like Newton’s 2nd law in its F = ma form for a force given by a potential. Using
the correspondence priniciple, it does become the 2nd law in the macroscopic limit. However, an
interesting question arises—well maybe not all that interesting—does the 〈x〉 (which we could
call the center of the wave packet) actually obey the 2nd law-like expression

m
d2〈x〉
dt2

= −∂V (〈x〉)
∂〈x〉 ?

To disprove a general statement, all you need to do is find one counterexample. Consider a
potential of the form V (x) = Axλ, and show that in general the 〈x〉 doesn’t obey 2nd law-like
expression given above. Then show that it does in three special cases of λ.

002 qfull 00400 2 3 0 moderate math: orthonormality leads to mean energy
Extra keywords: (Gr-30:2.10)

10. You are given a complete set of orthonormal stationary states (i.e., energy eigenfunctions)
{ψn} and a general wave equation Ψ(x, t) that is for the same system as {ψn}: i.e., Ψ(x, t) is
detemined by the same Hamiltonian as {ψn}. The set of eigen-energies of {ψn} are {En}. The
system is bounded in space by x = −∞ and x = ∞.

a) Give the formal expansion expression of Ψ(x, 0) (i.e., Ψ(x, t) at time zero) in terms of {ψn}.
Also give the formal expression for the coefficients of expansion cn.

b) Now give the formal expansion for Ψ(x, t) remembering that ωn = En/h−. Justify that this
is the solution of the Schrödinger equation for the initial conditions Ψ(x, 0).

c) Find the general expression, simplified as far as possible, for expectation value 〈Hℓ〉 in
terms of the expansion coefficients, where ℓ is any positive (or zero) integer. Are these
values time dependent?

d) Give the special cases for ℓ = 0, 1, and 2, and the expression for the standard deviation for
energy σE . HINTS: This should be a very short answer: 3 or 4 lines.

002 qfull 00500 3 5 0 tough thinking: real eigen-energies
Extra keywords: (Gr-24:2.1) and all real complete sets

11. There are a few simple theorems one can prove about stationary states and their eigen-energies.



20 Chapt. 2 QM Postulates, Schrödinger Equation, and the Wave Function

a) Prove that eigen-energies must be real. HINT: Prove 〈H〉 is real for any state Ψ using
integration by parts. Note one has to use the full time dependent wave function for a general
state since the time dependence doesn’t cancel out of the expectation value integral.

b) The complete set of time-independent stationary states you get from a direct solution of
the Schrödinger equation may not be all pure real pure. But one can always construct from
this complete set another complete set that is all pure real and it is supposedly convenient
to do so sometimes—or at least it can be done as a mathematician would say. Show how
it can be done. HINTS: First note that complete sets are almost always assumed to
be minimum complete sets: i.e., each member of the set is independent of all the other
members, and thus cannot be constructed from any linear combination of the others. In
our discussions we always assume minimum complete sets.

Consider a non-trivially complex solution ψij of the eigenproblem

Hψij = Eiψij ,

where the first subscript denotes energy level and the second the particular solution of that
energy level. (“Non-trivially” just means that ψij isn’t just a real function times a complex
constant. What do you do with a trivially complex ψij by the way?) Take the complex
conjugate of the eigenproblem to find an independent 2nd solution ψ2nd to it with the same
energy. The 2nd solution may or may not be part of your original subset with energy Ei.
If it is, then that is good. But if it isn’t one of the original subset with energy Ei, you
should replace one of those with ψ2nd. Since the original set was complete

ψ2nd =
∑

ℓ

cℓψiℓ ,

where the summation only needs to run over the eigenfunctions with the same energy Ei.
This equation can be rearranged for any ψim (except for ψij itself):

ψim =
∑

ℓ

cℓ 6=mψiℓ + cψ2nd ,

where the coefficients cℓ all had to be changed and c is the coefficient needed for ψ2nd.
Since ψim can be constructed using ψ2nd, it can be replaced by ψ2nd. If the number of
states with energy Ei is infinite, the replacement process becomes hairy, but let’s not worry
about that.

Now construct two pure real solutions from ψij and ψ2nd from which ψij and ψ2nd

can be re-constructed. These two new states then replace ψij and ψ2nd in the subset with
energy Ei. One can go on like that replacing two for two as long as you need to. Remember
the original set will in general be infinite, and one couldn’t have had them all explicitly
anyway.

002 qfull 00600 3 5 0 tough thinking: parity operator
12. The parity operator P (not to be confused with the momentum operator p) has the well defined,

but seemingly arbitrary, property that

Pf(x) = f(−x)

for a 1-dimensional case which is all that we will consider in this problem.

a) Prove the parity operator is Hermitian. HINTS: Recall that the definition of the Hermitian
conjugate of operator Q is

〈φ|Q|ψ〉 = 〈ψ|Q†|φ〉∗ ,
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where |φ〉 and |ψ〉 are arbitrary kets. Note Q is Hermitian if Q† = Q. Since the parity
operator (as defined here) only has meaning in the position representation that is where
the proof must be done: thus one must prove

∫ ∞

−∞

φ(x)∗Pψ(x) dx =

[∫ ∞

−∞

ψ(x)∗Pφ(x) dx

]∗

.

A transformation of the integration variable might help: remember x in the integrals is
just a dummy variable that can be represented by any symbol.

b) The eigenproblem for the parity operator is

Pf(x) = pvalf(x) ,

where pval are the eigenvalues. Solve for the complete set of eigenvalues and identify those
classes of functions which are eigenfunctions of P . HINTS: Note it’s f(x) on the right
hand side not f(−x) since this is an eigenproblem, but Pf(x) = f(−x) too. Recall that
the eigenvalues of a Hermitian operator are pure real. Nothing forbids using the parity
operator twice. The parity operator commutes with constants of course:

P [cf(x)] = cf(−x) = cPf(x) .

c) The set of all eigenfunctions of P is complete. Thus P qualifies as an “observable” in QM
jargon whether it can be observed or not: i.e., it is a Hermitian operator with a complete
set of eigenstates. Show that the set of eigenstates is complete: i.e., that any function
f(x) can be written in an expansion of P eigenfunctions. HINTS: From any f(x) one
can construct another function f(−x) and from f(x) and f(−x) one can construct two
eigenfunctions of P , and from those two eigenfunctions of P one can reconstruct . . .

d) If f ′(x) is the derivative of f(x), then Pf ′(x) = f ′(−x): i.e., the derivative of f(x) evaluated
at −x. But what is

∂

∂x
[Pf(x)] ?

Do P and ∂/∂x commute? Do P and ∂2/∂x2 commute? HINT: You’ve heard of the chain
rule.

e) If the potential is even (i.e., V (x) = V (−x)) do P and the Hamiltonian H commute?
HINTS: Recall PV (x)f(x) must be interpreted in QM (unless otherwise clarified) as P
acting on the function V (x)f(x) not on V (x) alone.

f) Given that P and H commute and ψ(x) is a solution of the time-independent Schrödinger
equation, show that ψ(−x) a solution too with the same eigen-energy as ψ(x): i.e., ψ(x)
and ψ(−x) are degenerate eigenstates.

g) Given that P and H commute, show how one can construct from a given complete set
of energy eigenstates a complete set of energy eigenstates that are also eigenstates of the
parity operator. Assume that the original complete set contains both ψ(x) and ψ(−x):
this is not a requirement for finding a common complete set, but it is a simplification here.
HINT: Recall the part (c) answer.

002 qfull 01000 2 5 0 moderate thinking: energy and normalization
Extra keywords: (Gr-24:2.2) zero-point energy

13. Classically E ≥ Vmin for a particle in a conservative system.

a) Show that this classical result must be so. HINT: This shouldn’t be a from-first-principles
proof: it should be about one line.
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b) The quantum mechanical analog is almost the same: Ē = 〈H〉 > Vmin for any normalizable
state of the system considered. Note the equality Ē = 〈H〉 = Vmin never holds quantum
mechanically. (There is an over-idealized exception, which we consider in part (e).) Prove
the inequality. HINTS: The key point is to show that 〈T 〉 > 0 for all physically allowed
states. Use integration by parts.

c) Now show that result Ē > Vmin implies E > Vmin, where E is any eigen-energy of the
system considered. Note the equality E = Vmin never holds quantum mechanically (except
for the over-idealized system considered in part (e)). In a sense, there is no rest state for
quantum mechanical particle. This lowest energy is called the zero-point energy.

d) The E > Vmin result for an eigen-energy in turn implies a 3rd result: any ideal measurement
always yields an energy greater than Vmin Prove this by reference to a quantum mechanical
postulate.

e) This part is NOT to be done on EXAMS: it’s just too much (for the grader). There
is actually an exception to E > Vmin result for an eigen-energy where E = Vmin occurs.
The exception is for quantum mechanical systems with periodic boundary conditions and a
constant potential. In ordinary 3-dimensional Euclidean space, the periodic boundary
conditions can only occur for rings (1-dimensional systems) and sphere surfaces (2-
dimensional systems) I believe. Since any real system must have a finite size in all 3
spatial dimensions, one cannot have real systems with only periodic boundary conditions.
Thus, the exception to the E > Vmin result is for unrealistic over-idealized systems. Let us
consider the idealized ring system as an example case. The Hamiltonian for a 1-dimensional
ring with a constant potential is

H = − h−2

2mr2
∂2

∂φ2
+ V ,

where r is the ring radius, φ is the azimuthal angle, and V is the constant potential. Find
the eigen-functions and eigen-energies for the Schrödinger equation for the ring system
with periodic boundary conditions imposed. Why must one impose periodic boundary
conditions on the solutions? What solution has eigen-energy E = Vmin?

002 qfull 00110 2 5 0 moderate thinking: beyond the classical turning points
14. The constant energy of a classical particle in a conservative system is given by

E = T + V .

Since classically T ≥ 0 always, a bound particle is confined by surface defined by T = 0 or
E = V (~r ). The points constituting this surface are called the turning points: a name which
makes most sense in one dimension. Except for static cases where the turning point is trivially
the rest point (and maybe some other weird cases), the particle comes to rest only for an
instant at a turning point since the forces are unbalanced there. So it’s a place where a particle
“ponders for an instant before deciding where to go next”. The region with V > E is classically
forbidden. Now for most quantum mechanical potential wells, the wave function extends beyond
the classical turning point surface into the classical forbidden zone and, in fact, usually goes to
zero only at infinity. If the potential becomes infinite somewhere (which is an idealization of
course), the wave function goes to zero: this happens for the infinite square well for instance.

Let’s write the 1-dimensional time-independent Schrödinger equation in the form

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ .

a) Now solve for ψ for the region with V > E with simplifying the assumption that V is
constant in this region.
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b) Can the solutions be normalized?

c) Can the solutions constitute an entire wave function? Can they be part of a wave function?
In which regions?

d) Although we assumed constant V , what crudely is the behavior of the wave function likely
to be like the regions with V > E.

e) For typical potentials considered at our level, qualitatively what is the likelihood of finding
the particle in the classically forbidden region? Why?

002 qfull 01100 3 5 0 tough thinking: 1-d non-degeneracy
15. If there are no internal degrees of freedom (e.g., spin) and they are NORMALIZABLE, then

one-particle, 1-dimensional energy eigenstates are non-degenerate. We (that is to say you) will
prove this.

Actually, we know already that any 2nd order ordinary linear differential equation has only
two linearly independent solutions (Ar-402) which means, in fact, that from the start we know
there is a degeneracy of 2 at most. Degeneracy count is the number of independent solutions.
If there is more than one independent solution, then infinitely many linear combinations of
solutions have the same energy. But in an expansion of wave function, only a set linear
independent solutions is needed and thus the number of such solutions is the physically relevant
degeneracy. Of course, our proof means that one of the linearly independent solutions is not
normalizable.

a) Assume you have two degenerate 1-dimensional energy eigenstates for Hamiltonian H : ψ1

and ψ2. Prove that ψ1ψ
′
2 − ψ2ψ

′
1 equals a constant where the primes indicate derivative

with respect to x the spatial variable. HINT: Write down the eigenproblem for both ψ1

and ψ2 and do some multiplying and subtraction and integration.

b) Prove that the constant in part (a) result must be zero. HINT: To be physically allowable
eigenstates, the eigenstates must be normalizable.

c) Integrate the result of the part (b) answer and show that the two assumed solutions are
not physically distinct. Show for all x that

ψ2(x) = Cψ1(x) ,

where C is a constant. This completes the proof of non-degeneracy since eigenstates that
differ by a multiplicative constant are not physically (i.e., expansion) distinct. HINT:
You have to show that there is no other way than having ψ2(x) = Cψ1(x) to satisfy
the condition found in the part (b) answer. Remember the eigenproblem is a linear,
homogeneous differential equation.

002 qfull 01200 2 3 0 mod math: 3-d exponential wave function, probability
Extra keywords: (Co1-342:6), 3-d wave function, probability, momentum representation

16. Consider the 3-dimensional wave function

Ψ(~r ) = A exp

[

−
∑

i

|xi|/(2ai)

]

,

where the sum runs over the three Cartesian coordinates and the ai’s are real positive length
parameters.

a) Calculate the normalization factor A. HINT: Recall that the integrand is |Ψ(~r )|2 =
Ψ(~r )∗Ψ(~r ). I’m always forgetting this myself when the function is pure real and there is
no imaginary part to remind me of it.
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b) Calculate the probability that a measurement of xi will yield a result between 0 and ai,
where i could be any of the three coordinates. HINT: There are no restrictions on values
of the other coordinates: they could be anything at all. Thus one just integrates over all
of those other coordinate positions remembering normalization of course.

c) Calculate the probability that simultaneous measurements of xj and xk will yield results
in the ranges −aj to aj and −ak to ak, respectively. The j and k could be any pair of the
two coordinates. HINT: Remember the hint for part (b).

d) Calculate the probability that a measurment of momentum will yield a result in the element
dpi dpj dpk centered at the point pi = pj = 0, pk = h−/ak. HINT: You will need to find
the momentum representation of the state.
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Multiple-Choice Problems

003 qmult 00050 1 1 1 easy memory: infinite square well
1. In quantum mechanics, the infinite square well can be regarded as the prototype of:

a) all bound systems. b) all unbound systems.
c) both bound and unbound systems. d) neither bound nor unbound systems.
e) Prometheus unbound.

003 qmult 00100 2 4 2 moderate deducto-memory: infinite square well BCs
2. In the infinite square well problem, the wave function and its first spatial derivative are:

a) both continuous at the boundaries.
b) continuous and discontinuous at the boundaries, respectively.
c) both discontinuous at the boundaries.
d) discontinuous and continuous at the boundaries, respectively.
e) both infinite at the boundaries.

003 qmult 00300 1 1 3 easy memory: boundary conditions
3. Meeting the boundary conditions of bound quantum mechanical systems imposes:

a) Heisenberg’s uncertainty principle. b) Schrödinger’s equation. c) quantization.
d) a vector potential. e) a time-dependent potential.

003 qmult 00400 1 1 5 easy memory: continuum of unbound states
4. At energies higher than the bound stationary states there:

a) are between one and several tens of unbound states.
b) are only two unbound states. c) is a single unbound state. d) are no states.
e) is a continuum of unbound states.

003 qmult 00500 1 4 2 easy deducto-memory: tunneling
5. “Let’s play Jeopardy! For $100, the answer is: This effect occurs because wave functions can

extend (in an exponentially decreasing way albeit) into the classically forbidden region: i.e., the
region where a classical particle would have negative kinetic energy.”

What is , Alex?

a) stimulated radiative emission b) quantum mechanical tunneling c) quantization
d) symmetrization e) normalization

003 qmult 00600 2 1 2 moderate memory: benzene ring model
6. A simple model of the outer electronic structure of a benzene molecule is a 1-dimensional infinite

square well with:

a) vanishing boundary conditions. b) periodic boundary conditions.
c) aperiodic boundary conditions. d) no boundary conditions.
e) incorrect boundary conditions.

25
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Full-Answer Problems

003 qfull 00100 2 3 0 moderate math: infinite square well in 1-d
1. You are given the time-independent Schrödinger equation

Hψ(x) =

[

− h−2

2m

∂2

∂x2
+ V (x)

]

ψ(x) = Eψ(x)

and the infinite square well potential

V (x) =
{

0 , x ∈ [0, a];
∞ otherwise.

NOTE: There are parts a,b,c,d,e,f,g.

a) What must the wave function be outside of the well (i.e., outside of the region [0, a]) in order
to satisfy the Schrödinger equation? Why?

b) What boundary conditions must the wave function satisfy? Why must it satisfy these boundary
conditions?

c) Reduce Schrödinger’s equation inside the well to an equation of the same form as the
CLASSICAL simple harmonic oscillator differential equation with all the constants combined
into a factor of −k2, where k is newly defined constant. What is k’s definition?

d) Solve for the general solution for a SINGLE k value, but don’t impose boundary conditions
or normalization yet. A solution by inspection is adequate. Why can’t we allow solutions with
E ≤ 0? Think carefully: it’s not because k is imaginary when E < 0.

e) Use the boundary conditions to eliminate most of the solutions with E > 0 and to impose
quantization on the allowed set of distinct solutions (i.e., on the allowed k values). Give
the general wave function with the boundary conditions imposed and give the quantization
rule for k in terms of a dimensionless quantum number n. Note that the multiplication of a
wave function by an arbitrary global phase factor eiφ (where φ is arbitrary) does not create a
physically distinct wave function (i.e., does not create a new wave function as recognized by
nature.) (Note the orthogonality relation used in expanding general functions in eigenfunctions
also does not distinguish eigenfunctions that differ by global phase factors either: i.e., it gives
the expansion coefficients only for distinct eigenfunctions. So the idea of distinct eigenfunctions
arises in pure mathematics as well as in physics.)

f) Normalize the solutions.

g) Determine the general formula for the eigenenergies in terms of the quantum number n.

003 qfull 00100 2 3 0 moderate math: Continuity properties of wave function.
2. Herein we consider the continuity properties of the wave function and its 1st derivative at some

length. We will first only consider stationary states. We’ll briefly consider non-stationary states
afterward. The only problem is to decide if there is any sense in the whole farrago.
We recall that the wave function must be normalizable: i.e.,

∫ ∞

−∞

|ψ|2 dx

must be non-infinite. This implies that the wave function (both real and imaginary parts) cannot
be infinite over any finite range (i.e., over any region bigger than a point). If it were infinite over
any finite range, then it would not be normalizable.
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What about the wave function going to infinity at a point. Normalization doesn’t rule that out
completely. There are functions with infinities that integrate to a finite value: e.g., the derivative
of ±√±x (with upper case for x > 0 and lower case for x < 0) has such infinity at x = 0). But
let’s rule those pathological cases that are unlikely to turn up physically or even in useful limiting
cases. There is an exception, of course. We allow Dirac delta wave functions, but only as position
eigenstates that a particle cannot actually be in.

Now what of infinite potentials and infinite eigenenergies? They probably do not exist in any
real sense. But infinite potentials are useful limiting cases of very large real potentials, and so we
will consider them below. There seems no reason to consider states with infinite eigenenergies even
as limiting cases.

Now for the continuity conditions for non-infinite potentials. First note that the time
independent Schrödinger equation

− h−2

2m
ψ′′ + V ψ = Eψ

can be rewritten as

ψ′′ =
2m

h−2 (V − E)ψ .

We allow V to have discontinuities, but no infinities. Maybe some real potentials do have
discontinuities in some sense, but in any case potentials with discontinuities are useful limiting
cases of potentials with very steep regions. At first we cannot rule out discontinuities in ψ. From
the rewritten Schrödinger equation, we see that ψ′′ can have no infinities though it can have
discontinuities at least from those we allow in the potential. This means that ψ′ has no discontinuities
since they would generate infinities in ψ′′. So ψ′ is continuous. But ψ′ is allowed to have kinks.

Here we define kink to be a place where the function is continuous, but the derivative is not.
So kinks in the ψ′ mean discontinuities in ψ′′. There must be genuine math term for “kink”, but I
can’t locate it nohow. It’s not “cusp” anyway.

Now any kinks in ψ would cause discontinuities in ψ′. So ψ can have no kinks.
I think there is no non-pathological way that ψ can have a kinkless discontinuity without leading

to infinity in ψ′′. So ψ has to be continuous. And I think there is no non-pathological way that ψ′

can have continuous infinity without leading to an infinity in ψ′′. So I think ψ′ can have no infinities.
The upshot is that without pathological cases, ψ and ψ′ should be continuous and non-infinite

everywhere where the potential is non-infinite. And ψ′′ can have discontinuities, but no infinities.
If one encounters pathological cases, one probably must deal with them on a case by case basis.
As aforementioned, as idealized limit we do invoke infinite potentials both over finite regions

(as in the infinite square well case) and at points. What the continuity conditions in these cases?
First what happens to ψ if V goes to infinity over a finite range? Consider the time-independent

Schrödinger equation

− h−2

2m
ψ′′ + V ψ = Eψ .

Say V becomes infinite over the finite range. The only way for Schrödinger equation to be satisfied
with ψ and ψ′′ not allowed to be infinite over the finite range and E staying non-infinite is to make
ψ (and therefore ψ′′) zero over the range. Note that it would require a very pathological ψ to non-
infinite over the range, but have ψ′′ infinite over the range. In fact, we don’t need to consider such
pathological ψ’s for any reason I think.

So we take it that if V is infinite over a finite range, ψ is zero in that range.
Inside a finite range of infinite V , ψ and ψ′ must be zero and therefore are continouts. Outside

of the range V is finite and we have our earlier result that ψ and ψ′ are continuous. What about
at the position where V goes from being finite to infinite? Let’s call the position the potential wall.
To analyze the continuity conditions are the potential wall let’s say the wall is at x = 0 (without
loss of generality) and start by saying that the potential for x < 0 is a finite V− and the potential
for x > 0 is a finite V . There is a discontinuity in potential at the potential wall and we will let V−
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go to infinity and become our infinite potential. On both sides of the wall, there are small regions
where the potential can be approximated as constant.

Let’s find the general solution for time-independent Schrödinger equation for a small enough
region that V can be approximated as constant in it. We can rewrite the time-independent
Schrödinger equation to the form

ψ′′ = κ2ψ ,

where we define

κ =

√

2m

h−2 (V − E) .

Note that if E > V , then

κ = ik ,

where

k =

√

2m

h−2 (E − V ) .

Over the sufficiently small region where V can be approximated as a constant, the general solution
of Schrödinger equation is

ψ = Aeκx +Be−κx ,

where A and B are set by the full solution for the system (including the boundary conditions) and
the normalization condition. If E = V exactly (which must be a so rare as to be negligible case
usually),

ψ = A+Bx .

Now as long as V− is finite, the wave function is non-zero for x < 0. From the above solution,
mutatis mutandis, the solution for the small region just below x = 0 is

ψ− = Ceκ−x +De−κ−x ,

where

κ− =

√

2m

h−2 (V− − E) .

For the small region just above x = 0, we have

ψ+ = Aeκx +Be−κx .

We are assuming E 6= V− and E 6= V . The former is always OK since we will let V− go to infinity.
The latter is certainly almost always OK, but we will consider the case of E = V exactly below.

Now as long as V− is finite our original continuity conditions apply and we demand the potential
wall conditions

C +D = A+B and κ−(C −D) = κ(A+B) .

Note these potential wall conditions just give us two relations between the coefficients A, B, C,
and D. We would have to incorporate information from the whole system (including boundary
conditions) and impose normalization to determine the coefficients.

Now we let V− go to infinity. By our earlier considerations, ψ(x < 0) must go to zero. This
implies that C goes to zero. Our potential wall conditions are now

D = A+B and lim
V−→∞

κ−(−D) = κ(A+B) .
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Now A, B and κ must be non-infinite and κ− goes to infinity as V− go to infinity. Therefore D
actually has to go to zero as V− go to infinity, but in such a way that κ−(−D) is finite and equal to
ψ′

+(0). So our potential wall conditions become

0 = A+B and ψ′
+(0) = κ(A−B) .

So we find that B = −A and thus that

ψ+ = A(eκx − e−κx) , ψ+(0) = 0 , ψ′
+(0) = 2κA .

So the wave function must be continuous as the boundary, but in general the 1st derivative is not.
Note for V− = ∞, we only have a relationship relating A and B. To determine them we would

have to incorporate information from the whole system (including boundary conditions) and impose
normalization. The determination would also give us ψ′

+(0), of course. It is certainly possible that
ψ′

+(0) could turn out to be zero making the 1st derivative zero at x = 0, but nothing demands it.
In fact, we know from the infinite square well case that ψ′

+(0) does not turn out to be zero in that
case at the points where the potential becomes infinite. Actually, it seems that cases where ψ′

+(0)
is zero are probably pretty rare. The system would have to be rather fine-tuned to get ψ′

+(0) = 0.
There is a kind of conservation of information we note. For V− non-infinite, we have two

relations for wave function and its derivative at the potential wall, but no exact determination of
either value. For V− infinite, we have only one relationship for derivative at the potential wall, but
know exactly what the wave function is at the boudnary: it is zero.

Now what of that pesky case of E = V exactly. Well here

ψ+ = A+Bx .

The potential wall conditions before sending V− to infinity are

C +D = A and κ−(C −D) = B .

When we send V− to infinity, C and D go to zero again, D in such a way that κ−(−D) is finite and
equal to ψ′

+(0). So we get that A = 0, and thus

ψ+ = Bx , ψ+(0) = 0 , ψ′
+(0) = B .

So the wave function is continuous at the wall boundary and is zero there and the 1st derivative is
not continuous and its value must be determined from the whole solution. The situation is essentially
the same as for E 6= V which is not surprising since the E = V case is the limit for the E < V and
E > V cases which are both the same as seen by the joint treatment above.

Now for the case that V is infinite at a point.
Well maybe in the 2020s, I’ll get to that case. enough is enough right now.

003 qfull 00400 2 3 0 moderate math: moments of infinite square well
Extra keywords: (Gr-29:2.4)

3. Calculate 〈x〉, 〈x2〉, 〈p〉, 〈p2〉, σx, and σp for the 1-dimensional infinite square well with range
[0, a]. Recall the general solution is

ψ =

√

2

a
sin(kx) =

√

2

a
sin
(nπ

a
x
)

,

where n = 1, 2, 3, . . . . Also check that the Heisenberg uncertainty principle is satisfied.

003 qfull 00450 2 3 0 moderate math: infinite square well features
4. The one-dimensional infinite square well with a symmetric potential and width a is

V =

{

0 for |x| ≤ a/2;
∞ for |x| > a/2.
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The eigenstates for infinite square well are given by

ψn(x) =

√

2

a
×
{

cos(kx) for n = 1, 3, 5 . . .;
sin(kx) for n = 2, 4, 6 . . .,

where
ka

2
=
nπ

2
and k =

nπ

a
.

The n is the quantum number for eigenstates. The eigenstates have been normalized and are
guaranteed orthogonal by the mathematics of Hermitian operators of the which the Hamiltonian
is one. A quantum number is a dimensionless index (usually integer or half-integer) that specifies
the eigenstates and eigenvalues somehow. The eigen-energies are given by

En =
h−2
k2

2m
=

h−2

2m

(π

a

)2

n2 .

a) Verify the normalization of eigenstates.

b) Determine 〈x〉 for the eigenstates.

c) Determine 〈pop〉 for the eigenstates. HINT: Recall

pop =
h−
i

∂

∂x
.

d) Determine 〈p2
op〉 and the momentum standard deviation σp for the eigenstates.

e) Determine 〈x2〉 and the position standard deviation σx in the large n limit. HINT: Assume
x2 can be approximated constant over one complete cycle of the probability density ψ∗

nψn

f) Now for the boring part. Determine 〈x2〉 and the position standard deviation σx exactly
now. HINT: There probably are several different ways of doing this, but there seem to be
no quick tricks to the answer. The indefinite integral

∫

x2 cos(bx) dx =
x2

b
sin(bx) +

2

b2
x cos(bx) − 2

b3
sin(bx)

might be helpful.

g) Verify that the Heisenberg uncertainty principle

∆x∆p = σxσp ≥ h−
2

is satisfied for the infinite square well case.

003 qfull 00500 3 5 0 tough thinking: mixed states of infinite square well
Extra keywords: (Gr-29:2.6)

5. A particle is in a mixed state in a 1-dimensional infinite square well where the well spans [0, a]
and the solutions are in the standard form of Gr-26. At time zero the state is

Ψ(x, 0) = A [ψ1(x) + ψ2(x)] ,

where ψ1(x) and ψ2(x) are the time-independent 1st and 2nd stationary states of the infinite
square well.
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a) Determine the normalization constant A. Remember the stationary states are orthonormal.
Also is the normalization a constant with time? Prove this from the general time evolution
equation

d〈Q〉
dt

=

〈

∂Q

∂t

〉

+
1

h−
〈i[H,Q]〉 .

b) Now write down Ψ(x, t). Give the argument for why it is the solution. As a simplfication
in the solution use

ω1 =
E1

h−
=

h−
2m

(π

a

)2

,

where E1 is the ground state energy of the infinite square well.

c) Write out |Ψ(x, t)|2 and simplify it so that it is clear that it is pure real. Make use Euler’s
formula: eix = cosx + i sinx. What’s different about our mixed state from a stationary
state?

d) Determine 〈x〉 for the mixed state. Note that the solution is oscillatory. What is the
angular frequency wq and amplitude of the oscillation. Why would you be wrong if your
amplitude was greater than a/2.

e) Determine 〈p〉 for the mixed state. As Peter Lorre (playing Dr. Einstein—Herman Einstein,
Heidelberg 1919) said in Arsenic and Old Lace “the quick way, Chonny.”

f) Determine 〈H〉 for the mixed state. How does it compare to E1 and E2?

g) Say a classical particle had kinetic energy equal to the energy 〈H〉 found in the part (f)
answer. The particle is bounces back and forth between the walls of the infinite square
well. What would its angular frequency be in terms of ωq and the angular frequency found
in the part (d) answer.

003 qfull 00600 2 5 0 moderate thinking: revival time
Extra keywords: Gr-85 The hints make it possible as new test problem.

6. The revival time is the minimum time period for a wave function to repeat (i.e., to cycle back
to its original form), or slightly less restrictively, for the probability density to repeat.

a) Say we had a system with eigen-energies given by the formula

En = E1f(n) + E0 ,

where E0 is a zero-point energy, n is a quantum number that runs 1, 2, 3, . . . or
0, 1, 2, 3, . . . , f(n) is a strictly increasing function that always has an integer value, and
f(1) = 1. What is the revival time (in the probability density sense) for general wave
function Ψ(x, t) for this system? HINT: The zero-point energy gives a time-dependent
global phase factor for any expansion in the stationary states, and thus cancels out of the
probability density. Assume orthonormal energy-eigen states and recall

Ψ(x, t) =
∑

n

cne
−iωntψn(x) ,

where ωn = En/h− are the angular frequencies and ψn(x) are the energy-eigenstates. The
period for ωn is 2π/ωn.

b) The eigen-energies for the infinite square well and the simple harmonic oscillator are,
respectively,

En =
h−2

2m

(π

a

)2

n2 and En =

(

n+
1

2

)

h−ωcl ,
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where n = 1, 2, 3, . . . for the infintie square well and 0, 1, 2, 3, . . . for the simple harmonic
oscillator, m is the particle mass, a is the well width, and ωcl simple harmonic oscillator
frequency which enters the quantum mechanical description as parameter in the simple
harmonic oscillator potential. What are the revival times for general wave functions for
these two systems?

c) What are the classical revival times for a particle in a infinite square well system and in a
simple harmonic oscillator system in terms of, respectively, energy and ωcl? The classical
times are just the oscillation periods for the particles. The particle in the infinite square
well is assumed to be just bouncing between the walls without loss of kinetic energy.

d) For what classical energy E in units of E1 (i.e., E/E1) are the quantum mechanical and
classical revival times equal for the infinite square well? What is the relationship between
the quantum mechanical and classical revival times for the simple harmonic oscillator?

003 qfull 01000 3 5 0 tough thinking: 3-d infinite cubical well
Extra keywords: (Gr-124:4.2), separation of Schrödinger equation

7. Consider an infinite cubical well or particle-in-a-box system. The potential is

V (x, y, x) =

{

0, for x, y, and z in the range 0 to a;
∞, otherwise.

The wave functions must be zero at the boundaries for an infinite well recall.

a) Solve for the stationary states from the 3-dimensional Schrödinger equation and find their
energies in terms of quantum numbers nx, ny, and nz. HINTS: Separate the Schrödinger
equation into x, y, and z components. Identify the sum of the separation constants as energy
or, if you prefer, energy times a constant. Solve separately matching the boundary conditions
and then assemble the normalized TOTAL SOLUTION. Of course, all three dimensions
behave the same so only one of them really needs to be done—which is NOT to say that each
one is a total solution all by itself.

b) Is there energy degeneracy? Why?

c) Determine the 6 lowest energies and their degeneracy? HINTS: A systematic approach would
be fix an nmax = max(nx, ny, nz) and count all energies and their degeneracies governed by that
nmax. One works one’s way up from nmax = 1 to as high as one needs to go to encompass the 6
lowest energies. Each nmax governs the energies between n2

max + 2 and 3n2
max (where we have

written the in dimensionless form). Note, e.g., that states described by (nx = 4, ny = 1, nz = 1),
(nx = 1, ny = 4, nz = 1), and (nx = 1, ny = 1, nz = 4) are all distinct and degenerate.

003 qfull 01100 1 3 0 easy math: pi-states of a benzene ring
Extra keywords: (Ha-323:2.1)

8. Imagine that we have 6 free electrons in 1-d circular system of radius r = 1.53 Å. This system is
a simple model of a benzene ring molecule (C6H6) of 6 carbon atoms each bonded to a hydrogen
(Ke-153). The carbons are bonded by bonded by a single-double bond superposition. The free
electron system on the benzene constitute the benzene pi-states.

a) Obtain expressions for the eigenstates, wavenumbers, and eigen-energies of the free
electrons. Re-express the wavenumbers and energies in terms of Angstroms and

electronvolts. Note h−2
/(2m) = 3.81 eV-Å2 for electrons. Sketch the energy level diagram.

b) One electron per carbon lies in the circular state for a benzene ring: these are the π
electrons. Assuming that two electrons can be found in any state, what is the total energy
of the ground state configurations? NOTE: Two electrons can be found in any state
because there are two spin states they can be found in. Thus the Pauli exclusion principle
is maintained: i.e., only one electron can be found in any single-particle state (e.g., Gr-180).
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c) What is the energy difference in eV between the lowest empty level and highest occupied
level for the ground state configuration? This is the radiation absorption threshold. What is
the threshold line wavelength in microns? In what wavelength regime is this line? NOTE:
The constant hc = 1.23984 eV-µm.

d) Now imagine we broke the benzene ring, but magically kept the length constant. Obtain
expressions for the eigenstates, wavenumbers, and eigen-energies of the free electrons. Re-
express the wavenumbers and energies in terms of Angstroms and electronvolts. Sketch the
energy levels on the previous energy level diagram.

e) What is the ground state energy for the broken ring. What is the change in ground state
energy from the unbroken ring. This change is a contribution to the energy required to
break the ring or the energy of a resonant π bond.

f) I know we said that somewhere that quantum mechanical bound states always had to have
E > Vmin. But in the ring case we had Vmin = 0, and we have a state with E = 0. So why
do we have this paradox? Is the paradox possible in 2 dimensions or 3 dimensions?
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Multiple-Choice Problems

004 qmult 00100 2 4 1 moderate deducto-memory: SHO eigen-energies
1. “Let’s play Jeopardy! For $100, the answer is: h−ω.

a) What is the energy difference between adjacent simple harmonic ocsillator energy levels,
Alex?

b) What is the energy difference between adjacent infinite square well energy levels, Alex?
c) What is the energy difference between most adjacent infinite square well energy levels,

Alex?
d) What is the energy difference between the first two simple harmonic ocsillator energy levels

ONLY, Alex?
e) What is the bar where physicists hang out in Las Vegas, Alex?

Full-Answer Problems

004 qfull 00100 2 3 0 moderate math: SHO ground state analyzed
Extra keywords: (Gr-19:1.14)

1. The simple harmonic oscillator (SHO) ground state is

Ψ0(x, t) = Ae−β2x2/2−iE0t/h− ,

where

E0 =
h−ω
2

and β =

√

mω

h−
.

a) Verify that the wave function satisfies the full Schrödinger equation for the SHO. Recall
that the SHO potential is V (x) = (1/2)mω2x2.

b) Determine the normalization constant A.

c) Calculate the expectation values of x, x2, p, and p2.

d) Calculate σx and σp, and show that they satisfy the Heisenberg uncertainty principle.

004 qfull 00200 2 3 0 moderate thinking: SHO classically forbidden
Extra keywords: (Gr-43:2.15) classical turning points

2. What is the probability is of finding a particle in the ground state of a simple harmonic oscillator
potential outside of the classically allowed region: i.e., beyond the classical turning points?
HINT: You will have to use a table of the integrated Gaussian function.

004 qfull 00300 2 5 0 moderate thinking: mixed SHO stationary states
Extra keywords: (Gr-43:2.17)

34
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3. A particle in a simple harmonic oscillator (SHO) potential has initial wave function

Ψ(x, 0) = A [ψ0 + ψ1] ,

where A is the normalization constant and the ψi are the standard form 0th and 1st SHO
eigenstates. Recall the potential is

V (x) =
1

2
mω2x2 .

Note ω is just an angular frequency parameter of the potential and not NECESSARILY
the frequency of anything in particular. In the classical oscillator case ω is the frequency of
oscillation, of course.

a) Determine A assuming it is pure real as we are always free to do.

b) Write down Ψ(x, t). There is no need to express the ψi explicitly. Why must this Ψ(x, t)
be the solution?

c) Determine |Ψ(x, t)|2 in simplified form. There should be a sinusoidal function of time in
your simplified form.

d) Determine 〈x〉. Note that 〈x〉 oscillates in time. What is its angular frequency and
amplitude.

e) Determine 〈p〉 the quick way using the 1st formula of Ehrenfest’s theorem. Check that the
2nd formula of Ehrenfest’s theorem holds.

004 qfull 01000 3 5 0 tough thinking: infinite square well/SHO hybrid
Extra keywords: (Mo-424:9.4)

4. Say you have the potential

V (x) =

{∞ , x < 0;
1

2
mω2x2 x ≥ 0.

a) By reflecting on the nature of the potential AND on the boundary conditions, identify
the set of Schrödinger equation eigenfunctions satisfy this potential. Justify your answer.
HINTS: Don’t try solving the Schrödinger equation directly, just use an already known
set of eigenfunctions to identify the new set. This shouldn’t take long.

b) What is the expression for the eigen-energies of your eigenfunctions?

c) What factor must multiply the already-known (and already normalized) eigenfunctions
you used to construct the new set you found in part (a) in order to normalize the new
eigenfunctions? HINT: Use the evenness or oddness (i.e., definite parity) of the already-
known set.

d) Show that your new eigenfunctions are orthogonal. HINT: Use orthogonality and the
definite parity of the already-known set.

e) Show that your eigenfunctions form a complete set given that the already-known set
was complete. HINTS: Remember completeness only requires that you can expand any
suitably well-behaved function (which means I think it has to be piecewise continuous
(Ar-435) and square-integrable (CT-99) satisfying the same boundary conditions as the set
used in the expansion. You don’t have to be able to expand any function. Also, use the
completeness of the already-known set.

004 qfull 01100 3 5 0 tough thinking: Hermite polynomials 1
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5. The generating function method is a powerful method for obtaining the eigenfunctions of Sturm-
Liouville Hermitian operators and some of their general properties. One can possibly obtain
with only moderately arduous labor some special values, the norm value, a general series formula
for the eigenfunctions, and recurrence relations for iteratively constructing the complete set of
eigenfunctions. The only problem is who the devil thought up the generating function?

In the case of Hermite polynomials, the generating function—which may or may not have
been thought up by French mathematician Charles Hermite (1822–1901)—is

g(x, t) = e−t2+2tx =

∞
∑

n=0

Hn
tn

n!

(Ar-609ff; WA-644). The Hn are the Hermite polynomials: they are functions of x and n is
their order.

Actually, the HERMITE EQUATION needs a weight function e−x2

to be put in Sturm-
Liouville self-adjoint form (Ar-426, WA-486). Alternatively, the Hermite polynomials times

e−x2/2 satisfy a Sturm-Liouville Hermitian operator equation which happens to be the time-
independent Schrödinger equation for the 1-dimensional quantum mechanical simple harmonic
oscillator (Ar-612, WA-638). The 1-dimensional quantum mechanical simple harmonic oscillator
is one of those few quantum mechanical systems with an analytic solution.

NOTE: The parts of this question are independent: i.e., you should be able to do any of
the parts without having done the other parts.

a) Find the 1st recurrence relation

Hn+1 = 2xHn − 2nHn−1

by differentiating both the generating function and its and series expansion with respect to
t. This recurrence relation provides a means of finding any order of Hermite polynomial.
HINT: You will need to re-index summations and make use of the uniqueness theorem of
power series.

b) Find the 2nd recurrence relation
H ′

n = 2nHn−1

by differentiating both the generating function and its and series expansion with respect to
x. HINT: You will need to re-index summations and make use of the uniqueness theorem
of power series.

c) Use the 1st recurrence relation to work out and tabulate the polynomials up to 3rd order:
i.e., find H0, H1, H2, and H3. You can find the first two polynomials (i.e., the 0th and
1st order polynomials) needed to start the recurrence process by a simple Taylor’s series
expansion of generating function.

d) Use the 1st recurrence relation to prove that the order of a Hermite polynomial agrees with
its polynomial degree (which is the degree of its highest degree term) and that even order
Hermite polynomials are even functions and the odd order ones are odd functions. The
last result means that the Hermite polynomials have definite parity (i.e., are either even or
odd functions). HINT: Use proof by induction and refer to collectively to the results to
be proven as “the results to be proven”. If you didn’t get H0 and H1 explicitly in part (c),
you can assume H0 has degree 0 and H1 has degree 1.

004 qfull 01110 3 5 0 tough thinking: Hermite polynomials 2
6. Now for some more Hermite polynomial results. Recall the Hermite polynomial generating

function is

g(x, t) = e−t2+2tx =

∞
∑

n=0

Hn
tn

n!
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(Ar-609ff; WA-644). The Hn are the Hermite polynomials: they are functions of x and n is
their order. Also recall the two recurrence relations

Hn+1 = 2xHn − 2nHn−1 and H ′
n = 2nHn−1

and the first few Hermite polynomials which are given in the table below.

Table: Hermite Polynomials

Order Polynomial

0 H0 = 1
1 H1 = 2x
2 H2 = 4x2 − 2
3 H3 = 8x3 − 12x
4 H4 = 16x4 − 48x2 + 12
5 H5 = 32x5 − 160x3 + 120x
6 H6 = 64x6 − 480x4 + 720x2 − 120

NOTE: The parts of this question are largely independent: i.e., you should be able to do
most parts without having done others.

a) Now for something challenging. Show that

g(x, t) = e−t2+2tx =

∞
∑

ℓ=0

(−t2 + 2tx)ℓ

ℓ!
=

∞
∑

n=0

tn

n!

[n/2]
∑

k=0

n!

(n− 2k)!k!
(−1)k(2x)n−2k

which implies that

Hn =

[n/2]
∑

k=0

n!

(n− 2k)!k!
(−1)k(2x)n−2k .

Note

[n/2] =

{

n/2 for n even;
(n− 1)/2 for n odd.

HINTS: You will have to expand (−t2 + 2tx)n in a binomial series and then re-order the
summation. A schematic table of the terms ordered in row by ℓ and in column by k makes
the re-ordering of the summation clearer. One should add up diagonals rather than rows.

b) Prove the following special results from the generating function:

H2n(0) = (−1)n (2n)!

n!
, H2n+1(0) = 0 , Hn(x) = (−1)nHn(−x) .

The last results shows that the Hermite polynomials have definite parity: even for n even;
odd for n odd.

c) What is called the Rodrigues’s formula for the Hermite polynomials can also be derived
from the generating function:

Hn = (−1)nex2 ∂n

∂xn
(e−x2

) .

Derive this formula. HINTS: Write

g(x, t) = e−t2+2tx = ex2

e−(t−x)2
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and note that
∂f(t− x)

∂t
= −∂f(t− x)

∂x
.

d) Now show that Hermite’s differential equation

H ′′
n − 2xH ′

n + 2nHn = 0

follows from the two recurrence relations. This result shows that the Hermite polynomials
satisfy Hermite’s differential equation.

e) Now consider the Hermite differential equation

h′′ − 2xh′ + 2νh = 0 ,

where ν is not necessarily an integer ≥ 0. Try a power series solution

h =

∞
∑

ℓ=0

aℓx
ℓ ,

and show for sufficiently large ℓ and x that the series solutions approximate growing
exponentials of the form ex2

and xex2

—unless ν is a positive or zero integer in which
case one gets what kind of solution?

f) Hey this question is just going on and on. The Hermite differential equation cannot be
written in an eigenproblem form with a Hermitian operator since the operator

∂2

∂x2
− 2x

∂

∂x

is not, in fact, Hermitian. I won’t ask you to prove this since I don’t what to do that myself
tonight. But if you substitute for Hn(x) (with n a positive or zero integer) the function

ψn(x)ex2/2

in the Hermite differential equation, you do an eigenproblem with a Hermitian operator.
Find this eigenproblem equation. What are the eigenfunctions and eigenvalues? Are
the eigenfunctions square-integrable: i.e., normalizable in a wave function sense? Do the
eigenfunctions have definite parity? Are the eigenvalues degenerate for square-integrable
solutions? Based on a property of eigenfunctions of a Hermitian operator what can you
say about the orthogonality of the eigenfunctions?

g) In order to normalize the eigenfunctions of part (i) in a wave function sense consider the
relation

∞
∑

m,n=0

sm

m!

tn

n!
e−x2

HmHn = e−x2

g(x, s)g(x, t) = e−x2

e−s2+2sxe−t2+2tx .

Integrate both sides over all x and use uniqueness of power series to find the normalization
constants and incidently verify orthogonality.

h) Now here in part infinity we will make the connection to physics. The simple harmonic
oscillator time independent Schrödinger equation is

− h−2

2m

∂2ψ

∂y2
+

1

2
mω2y2ψ = Eψ .
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One can reduce this to the dimensionless eigenproblem of part (i), by changing the variable
with

x = βy .

To find β, let

A =
h−2

2m
and B =

1

2
mω2

and divide equation through by an unknown C, equate what needs to be equated, and solve
for C and β. What are the physical solutions and eigen-energies of the SHO eigenproblem?

i) Check to see if Charles Hermite (1822–1901) did think up the Hermite polynomial
generating function at the St. Andrews MacTutor History of Mathematics Archive:

http://www-groups.dcs.st-and.ac.uk/~history/BiogIndex.html

HINTS: You don’t have to do this in a test mise en scène.
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Multiple-Choice Problems

005 qmult 00100 1 1 2 easy deducto-memory: definition free particle
1. A free particle is:

a) bound. b) unbound. c) both bound and unbound.
d) neither bound nor unbound. e) neither here nor there.

005 qmult 00200 1 4 5 easy deducto-mem: free particle system
2. The free particle system is one with where the potential is:

a) the simple harmonic oscillator potential (SHO). b) a quasi-SHO potential.
c) an infinite square well potential. d) a finite square well potential.
e) zero (or a constant) everywhere.

005 qmult 00300 1 4 4 easy deducto-mem: free particle eigenfunction
3. The general expression for the free particle energy eigenfunction in 1-dimension is:

a) eikx, where k = ±E. b) ekx, where k = ±E. c) ekx, where k = ±
√

2mE/h−2
.

d) eikx, where k = ±
√

2mE/h−2
. e) ekx2

, where k = ±
√

2mE/h−2
.

005 qmult 00400 1 4 1 easy deducto-mem: free particle normalization 1
4. The free particle energy eigenfunctions are not physical states that a particle can actually be

in because they:

a) can’t be normalized (i.e., they arn’t square-integrable).
b) can be normalized (i.e., they are square-integrable).
c) are growing exponentials.
d) don’t exist.
e) do exist.

005 qmult 00500 1 1 3 easy memory: free particle normalization 2
5. The free particle stationary states:

a) can be occupied by a particle. b) can be occupied by two particles.
c) cannot actually be occupied by a particle. d) are unknown.
e) are normalizable.

Full-Answer Problems

005 qfull 00100 2 5 0 easy thinking: momentum representation
Extra keywords: (Gr-49:2.21)

1. The initial wave function of a free particle is

Ψ(x, 0) =

{

A , x ∈ [−a, a];
0 , otherwise,

40
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where a and A are positive real numbers. The particle is in a completely zero potential
environment since it is a free particle.

a) Determine A from normalization.

b) Determine ψ(k) = Ψ(k, 0) the time-zero wavenumber representation of the particle state.
It is the Fourier transform of Ψ(x, 0). What is Ψ(k, t)? Sketch ψ(k). Locate the global
maximum and the zeros of ψ(k). Give the expression for the zeros (i.e., for the location of
the zeros).

c) Determine the wavenumber space probability density |Ψ(k, t)|2 and show then that Ψ(k, t)
is normalized in wavenumber space. (You can use a table integral.) Sketch |Ψ(k, t)|2 and
locate the global maximum and the zeros. Give the expression for the zeros.

d) Crudely estimate and then calculate exactly σx, σk, and σp for time zero. Are the results
consistent with the Heisenberg uncertainty principle?

005 qfull 00200 3 3 0 tough math: k-representation of half exponential
Extra keywords: (Mo-140:4.4)

2. At time zero, a wave function for a free particle in a zero-potential 1-dimensional space is:

Ψ(x, 0) = Ae−|x|/ℓeik0x .

a) Determine the normalization constant A. HINT: Remember it’s Ψ(x, 0)∗Ψ(x, 0) that
appears in the normalization equation.

b) Sketch the x-space probability density |Ψ(x, 0)|2. What is the e-folding distance of the
probability density?

NOTE: The e-folding distance is a newish term that means the distance in which an
exponential function changes by a factor of e. It can be generalized to any function f(x)
using the formula

xe =

∣

∣

∣

∣

f(x)

f(x)′

∣

∣

∣

∣

,

where xe is the generalized e-folding distance. The generalized e-folding distance is only
locally valid to the region near the x where the functions are evaluated. The generalized
e-folding distance is also sometimes called the scale height. If f(x) were an exponential
function, xe would be the e-folding distance in the narrow sense. If f(x) were a linear
function, xe would be the distance to the zero of the function.

c) Show that the wavenumber representation of free particle state is

Ψ(k) =

√

2ℓ

π

1

1 + (k0 − k)2ℓ2
.

This, of course, is the Fourier transform of Ψ(x, 0). Recall the wavenumber representation
is time-independent since the wavenumber eigenstates are the stationary states of the
potential.

d) Confirm that Ψ(k) is normalized in wavenumber space. HINTS: You will probably need an
integral table—unless you’re very, very good. Also remember it’s Ψ(k)∗Ψ(k) that appears in
the normalization integral; always easy to forget this when dealing with pure real functions.

e) Write down the time-dependent solution Ψ(x, t) in Fourier transform form? Don’t try to
evaluate the integral. What is ω in terms of k and energy E?

005 qfull 00300 3 3 0 tough math: Gaussian free wave packet spreading
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Extra keywords: (Gr-50:2.22)
3. A free particle has an initial Gaussian wave function

Ψ(x, 0) = Ae−ax2

,

where a and A are real positive constants.

a) Normalize Ψ(x, 0). HINT: Recall that the integrand is |Ψ(x, t)|2 = Ψ(x, t)∗Ψ(x, t). I’m
always forgetting this myself when the function is pure real and there is no imaginary part
to remind me of it.

b) Determine the wavenumber representation Ψ(k) (which is time-independent). This involves
a Gaussian integral where you have to complete the square in an exponential exponent.
Note

exp[−(ax2 + bx)] = exp

[

−a
(

x2 +
b

a
x+

b2

4a2

)]

exp

(

b2

4a2

)

= exp

[

−a
(

x+
b

2a

)2
]

exp

(

b2

4a

)

.

The exponetial factor exp
(

b2/4a
)

comes out of the integral and the integral over the whole
x-axis is just a simple Gaussian integral.

c) Determine Ψ(x, t). You have to again do a Gaussian integral where you have to complete
the square in an exponential exponent. It’s not that hard to do, but it is tedious and small
errors can mess things up.

d) Find the probability density |Ψ(x, t)|2. This should be a Gaussian if all goes well. Sketch
the function and identify the standard deviation σ. What happens to the probability
density with time. HINT: Note the identities

[

exp

(

a+ ib

c+ id

)]∗

=

{

exp

[

ac+ i(bc− ad) + bd

c2 + d2

]}∗

=

{

exp

[

ac− i(bc− ad) + bd

c2 + d2

]}

=

[

exp

(

a− ib

c− id

)]

and
(√

a+ ib
)∗

=
(√

reiφ
)∗

=
(√

reiφ/2
)∗

=
√
re−iφ/2 ,

where a+ ib magnitude and phase are r =
√
a2 + b2 and φ = tan−1(b/a), respectively.

e) Find 〈x〉, 〈x2〉, σx, 〈p〉, 〈p2〉, and σp. HINT: These results follow immediately from the
Gaussian nature of the functions in parts (d) and (b).

f) Check that the Heisenberg uncertainty principle is satisfied. Does the equality ever hold?
What’s true about the wave function at the time when the equality holds that is not true
at other times?

005 qfull 00400 3 5 0 tough thinking: general free wave packet spreading
Extra keywords: (CT-342:4)

4. Consider a free particle in one dimension.

a) Show using Ehrenfest’s theorem that 〈x〉 is linear in time and that 〈p〉 is constant.
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b) Write the equation of motion (time evolution equation) for 〈p2〉, then 〈[x, p]+〉 (the subscript
+ indicates anticommutator), and then 〈x2〉: i.e., obtain expressions for the time derivatives
of these quantities. Simplify the expressions for the derivatives as much as possible, but
without loss of generality. You should get nice compact formal results. Integrate these
derivatives with respect to time and remember constants of integration.

c) Using the results obtained in parts (a) and (b) and for suitable choice of one of the constants
of integration, show that

(

∆x2
)

(t) =
1

m2

(

∆p2
)

0
t2 +

(

∆x2
)

0

where
(

∆x2
)

0
and

(

∆p2
)

0
are the initial standard deviations.

005 qfull 00500 2 5 0 moderate thinking: x-op and k-op in x and k representation
5. For a free particle in one dimension, the position and wavenumber representations of the state

expanded in eigenfunctions of the other representation, are, respectively:

Ψ(x, t) =

∫ ∞

−∞

φ(k, t)
eikx

√
2π

dk =

∫ ∞

−∞

φ(k)
ei(kx−ωt)

√
2π

dk

and

Φ(k, t) = φ(k)e−iωt =

[∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dx

]

e−iωt ,

where

ω =
h−k2

2m
.

a) The expectation value for a general observable in Q the position representation is

〈Q〉 =

∫ ∞

−∞

Ψ(x, t)∗QΨ(x, t) dx ,

where Q can depend on x and differentiations with respect to x, but not on k nor
differentiations with respect to k. Substitute for Ψ(x, t) using the wavenumber expansion
and find an expression that is a triple integral.

b) The wavenumber observable in the position representation is

kop =
1

h−
pop =

1

i

∂

∂x
,

where pop is the momentum observable in the position representation. Using the result of
the part (a) answer, identify the wavenumber observable in the wavenumber representation.

c) The position observable xop in the position representation is just the coordinate x. Using
the result of the part (a) answer, identify the position observable in the wavenumber
representation.

005 qfull 00510 3 5 0 tough thinking: x-op and p-op in x and p representation
Extra keywords: (Gr-117:3.51) a very general solution is given

6. In the position representation, the position operator xop is just x, a multiplicative variable. The
momentum operator pop in the position representation is

pdif =
h−
i

∂

∂x
.
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where we use the subsript “dif” here to indicate explicitly that this is a differentiating operator.

a) Find the momentum operator pop in the momentum representation. HINTS: Operate
with pdif on the Fourier transform expansion of a general wave function

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

√
2πh−

dp

and work the components of the integral around (using whatever tricks you need) until you
have

pdifΨ(x, t) =

∫ ∞

−∞

f(p, t)
eipx/h−

√
2πh−

dp .

The function f(p, t) is the Fourier transform of pdifΨ(x, t) and operator acting on Ψ(p, t)
to give you f(p, t) is the momentum operator in the momentum representation.

b) Find the position operator xop in the momentum representation. HINTS: The same as
for part (a), mutatis mutandis: find the Fourier transform of wave function xΨ(x, t), etc.

c) What are the momentum representation versions of xk and pℓ
dif?

d) What is the momentum representation versions of xkpℓ
dif and pℓ

difx
k. By the by, you should

remember how to interpret xkpℓ
dif and pℓ

difx
k: they are two successive operators acting on

understood function to the right. Explicitly for a general function f(x), one could write

xkpℓ
diff(x) = xk

[

pℓ
diff(x)

]

and

pℓ
difx

kf(x) = pℓ
dif

[

xkf(x)
]

,

Unfortunately, there is sometimes ambiguity in writing formulae with operators: try to be
clear.

e) What is the momentum representation version of Q(x, pdif) where Q is any linear
combination of powers of x and pdif including mixed powers. HINTS: Consider the general
term

. . . xkpℓ
difx

mpn
dif

and figure out what commutes with what.

f) Show that the expectation value of Q is the same in both representations. HINT:
Remember the Dirac delta function

δ(k − k′) =

∫ ∞

−∞

ei(k−k′)x

2π
dx .
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Multiple-Choice Problems

006 qmult 00100 1 1 2 easy memory: Newton’s 2nd law
1. Classical mechanics can be very briefly summarized by:

a) Newton’s Principia.
b) Newton’s 2nd law.
c) Lagrange’s Traité de mécanique analytique.
d) Euler’s 80 volumes of mathematical works.
e) Goldstein 3rd edition.

006 qmult 00200 1 4 1 easy deducto-memory: Lagrangian formulation
Extra keywords: see GPS-12, 17, and 48

2. “Let’s play Jeopardy! For $100, the answer is: A formulation of classical mechanics that is
usually restricted to systems with holonomic or semi-holonomic virtual-displacement workless
constraints without dissipation and uses the function L = T − V .”

a) What is the Lagrangian formulation, Alex?
b) What is the Hamiltonian formulation, Alex?
c) What is the Leibundgutian formulation, Alex?
d) What is the Harrisonian formulation, Alex?
e) What is the Sergeant Schultzian formulation, Alex?

006 qmult 00300 1 1 5 easy memory: Hamilton’s principle
3. A fruitful starting point for the derivation of Lagrange’s equations is:

a) Lagrange’s lemma.
b) Newton’s scholium.
c) Euler’s conjecture.
d) Laplace’s hypothesis
e) Hamilton’s principle.

Full-Answer Problems

006 qfull 01000 2 5 0 moderate thinking: Lorentz force
1. The Lorentz force

~F = q

(

~E +
~v

c
× ~B

)

(here expressed in Gaussian units: Ja-238) can be obtained from Lagrange’s equations using a
Lagrangian containing a generalized potential

U = q

(

φ− ~v

c
· ~A
)

,

45
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where φ is the electric potential and ~A is the vector potential of electromagnetism. The
Lagrangian is L = T − U , where T is the kinetic energy. Lagrange’s equations are

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0 ,

where qi is a generalized coordinate (not charge) and q̇i is the total time derivative of q: (i.e.,
the rate of change of qi which describes an actual particle.

Work from the Lorentz force expression for component i to

Fi = − ∂U

∂xi
+
d

dt

(

∂U

∂ẋi

)

,

where the xi are the Cartesian coordinates of a particle (ẋi are the particle velocity components).
Then verify that

mẍi = Fi

follows from the Lagrange equations.

You may need some hints. Recall that

~E = −∇φ− 1

c

∂ ~A

∂t
and B = ∇× ~A

(Ja-219). The Levi-Civita symbol εijk will be useful since

(∇×A)i = εijk
∂

∂xj
Ak .

where Einstein summation has been used. Recall

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

The identity (with Einstein summation)

εijkεiℓm = δjℓδkm − δjmδkℓ

is also useful. I’ve never found an elegant derivation of this last identity: the only proof seems
to be by exhaustion. Note also that the total time derivative is interpreted as the rate of change
of a quantity as the particle moves. Thus

dAi

dt
=
∂Ai

∂t
+
∂Ai

∂xj

dxj

dt
=
∂Ai

∂t
+
∂Ai

∂xj
ẋj =

∂Ai

∂t
+
∂Ai

∂xj
vj ,

where we again use Einstein summation.
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Multiple-Choice Problems

007 qmult 00100 1 1 5 easy memory: vector addition
1. The sum of two vectors belonging to a vector space is:

a) a scalar.
b) another vector, but in a different vector space.
c) a generalized cosine.
d) the Schwarz inequality.
e) another vector in the same vector space.

007 qmult 00200 1 4 4 easy deducto-memory: Schwarz inequality
2. “Let’s play Jeopardy! For $100, the answer is: |〈α|β〉|2 ≤ 〈α|α〉〈β|β〉.”

What is , Alex?

a) the triangle inequality b) the Heisenberg uncertainty principle
c) Fermat’s last theorem d) the Schwarz inequality
e) Schubert’s unfinished last symphony

007 qmult 00300 1 4 5 easy deducto-memory: Gram-Schmidt procedure
3. Any set of linearly independent vectors can be orthonormalized by the:

a) Pound-Smith procedure. b) Li Po tao. c) Sobolev method.
d) Sobolev-P method. e) Gram-Schmidt procedure.

007 qmult 00400 1 4 4 moderate memory: definition unitary matrix
4. A unitary matrix is defined by the expression:

a) U = UT , where superscript T means transpose. b) U = U †. c) U = U∗.
d) U−1 = U †. e) U−1 = U∗.

007 qmult 00500 2 3 4 moderate math: trivial eigenvalue problem
5. What are the eigenvalues of

(

1 −i
i 1

)

?

a) Both are 0. b) 0 and 1. c) 0 and −1. d) 0 and 2. e) −i and 1.

007 qmult 00600 1 4 5 moderate memory: riddle Hermitian matrix
6. Holy peccant poets Batman, it’s the Riddler.

I charge to the right and hit on a ket,
and if it’s not eigen, it’s still in the set,
I charge to left and with a quick draw
make a new bra from out of a bra.

Not fish nor fowl nor quadratic,
not uncanny tho oft Q-mechanic,

47
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and transposed I’m just the right me
if also complexicated as you can see.

My arrows down drawn from quivered,
the same when sped to the world delivered
aside from a steady factor, rock of reality,
mayhap of a quantum and that’s energy.

a) A unitary operator.
b) A ket—no, no, a bra vector.
c) An eigenvalue.
d) Hamlet.
e) A Hermitian matrix.

Full-Answer Problems

007 qfull 00090 1 5 0 easy thinking: ordinary vector space
Extra keywords: (Gr-77:3.1)

1. Consider ordinary 3-dimensional vectors with complex components specified by a 3-tuple:
(x, y, z). They constitute a 3-dimensional vector space. Are the following subsets of this vector
space vector spaces? If so, what is their dimension? HINT: See Gr-435 for all the properties
a vector space must have.

a) The subset of all vectors (x, y, 0).

b) The subset of all vectors (x, y, 1).

c) The subset of all vectors of the form (a, a, a), where a is any complex number.

007 qfull 00100 2 5 0 moderate thinking: vector space, polynomial
Extra keywords: (Gr-78:3.2)

2. A vector space is constituted by a set of vectors {|α〉, |β〉, |γ〉, . . .} and a set of scalars {a, b, c, . . .}
(ordinary complex numbers is all that quantum mechanics requires) subject to two operations
vector addition and scalar multiplication obeying the certain rules. Note it is the relations
between vectors that make them constitute a vector space. What they “are” we leave general.
The rules are:

i) A sum of vectors is a vector:
|α〉 + |β〉 = |γ〉 ,

where |α〉 and |β〉 are any vectors in the space and |γ〉 also in the space. Note we have
not defined what vector addition consists of. That definition goes beyond the general
requirements.

ii) Vector addition is commutative:

|α〉 + |β〉 = |β〉 + |α〉 .

iii) Vector addition is associative:

(|α〉 + |β〉) + |γ〉 = |α〉 + (|β〉 + |γ〉) .

iv) There is a zero or null vector |0〉 such that

|α〉 + |0〉 = |α〉 ,
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v) For every vector |α〉 there is an inverse vector | − α〉 such that

|α〉 + | − α〉 = |0〉 .

vi) Scalar multiplication of a vector gives a vector:

a|α〉 = |β〉 .

vii) Scalar multiplication is distributive on vector addition:

a(|α〉 + |β〉) = a|α〉 + a(|β〉) .

viii) Scalar multiplication is distributive on scalar addition:

(a+ b)|α〉 = a|α〉 + b|α〉 .

ix) Scalar multiplication is associative with respect to scalar multiplication:

(ab)|α〉 = a(b|α〉) .

x) One has
0|α〉 = |0〉 .

xi) Finally, one has
1|α〉 = |α〉 .

NOTE: Note that

|0〉 = 0|α〉 = [1 + (−1)]|α〉 = |α〉 + (−1)|α〉 ,

and thus we find that
| − α〉 = −|α〉 .

So the subtraction of a vector is just the addition of its inverse. This is consistent with all
ordinary math.

If any vector in the space can be written as linear combination of a set of linearly
independent vectors, that set is called a basis and is said to span the set. The number of
vectors in the basis is the dimension of the space. In general there will be infinitely many bases
for a space.

Finally the question. Consider the set of polynomials {P (x)} (with complex coefficients)
and degree less than n. For each of the subsets of this set (specified below) answer the following
questions: 1) Is the subset a vector space? Inspection usually suffices to answer this question.
2) If not, what property does it lack? 3) If yes, what is the most obvious basis and what is the
dimension of the space?

a) The subset that is the whole set.

b) The subset of even polynomials.

c) The subset where the highest term has coefficient a (i.e., the leading coefficient is a) and a
is a general complex number, except a 6= 0.

d) The subset where P (x = g) = 0 where g is a general real number. (To be really clear, I
mean the subset of polynomials that are equal to zero at the point x = g.)
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e) The subset where P (x = g) = h where g is a general real number and h is a general complex
number, except h 6= 0.

007 qfull 00110 2 5 0 moderate thinking: unique expansion in basis
Extra keywords: (Gr-78:3.3)

3. Prove that the expansion of a vector in terms of some basis is unique: i.e., the set of expansion
coefficients for the vector is unique.

007 qfull 00200 3 5 0 tough thinking: Gram-Schmidt orthonormalization
Extra keywords: (Gr-79:3.4)

4. Say {|αi〉} is a basis (i.e., a set of linearly independent vectors that span a vector space), but
it is not orthonormal. The first step of the Gram-Schmidt orthogonalization procedure is to
normalize the (nominally) first vector to create a new first vector for a new orthonormal basis:

|α′
1〉 =

|α1〉
||α1||

,

where recall that the norm of a vector |α〉 is given by

||α|| = || |α1〉 || =
√

〈α|α〉 .

The second step is create a new second vector that is orthogonal to the new first vector using
the old second vector and the new first vector:

|α′
2〉 =

|α2〉 − |α′
1〉〈α′

1|α2〉
|| |α2〉 − |α′

1〉〈α′
1|α2〉 ||

.

Note we have subtracted the projection of |α2〉 on |α′
1〉 from |α2〉 and normalized.

a) Write down the general step of the Gram-Schmidt procedure.

b) Why must an orthonormal set of non-null vectors be a linearly independent.

c) Is the result of a Gram-Schmidt procedure independent of the order the original vectors
are used? HINT: Say you first use vector |αa〉 of the old set in the procedure. The first
new vector is just |αa〉 normalized: i.e., |α′

a〉=|αa〉/||αa||. All the other new vectors will be
orthogonal to |α′

a〉. But what if you started with |αb〉 which in general is not orthogonal
to |αa〉?

d) How many orthonormalized bases can an n dimensional space have in general? (Ignore
the strange n = 1 case.) HINT: Can’t the Gram-Schmidt procedure be started with any
vector at all in the vector space?

e) What happens in the procedure if the original vector set {|αi〉} does not, in fact, consist
of all linearly independent vectors? To understand this case analyze another apparently
different case. In this other case you start the Gram-Schmidt procedure with n original
vectors. Along the way the procedure yields null vectors for the new basis. Nothing can
be done with the null vectors: they can’t be part of a basis or normalized. So you just
put those null vectors and the vectors they were meant to replace aside and continue with
the procedure. Say you got m null vectors in the procedure and so ended up with n −m
non-null orthonormalized vectors. Are these n −m new vectors independent? How many
of the old vectors were used in constructing the new n−m non-null vectors and which old
vectors were they? Can all the old vectors be recontructed from the the new n−m non-null
vectors? Now answer the original question.

f) If the original set did consist of n linearly independent vectors, why must the new
orthonormal set consist of n linearly independent vectors? HINT: Should be just a
corollary of the part (e) answer.
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g) Orthonormalize the 3-space basis consisting of

|α1〉 =





1 + i
1
i



 , |α2〉 =





i
3
1



 , and |α3〉 =





0
32
0



 .

Input the vectors into the procedure in the reverse of their nominal order: why might a
marker insist on this? Note setting kets equal to columns is a lousy notation, but you-all
know what I mean. The bras, of course, should be “equated” to the row vectors. HINT:
Make sure you use the normalized new vectors in the construction procedure.

007 qfull 00300 2 3 0 moderate math: prove the Schwarz inequality
Extra keywords: (Gr-80:3.5)

5. As Andy Rooney says (or used to say if this problem has reached the stage where only old fogies
remember that king of the old fogies) don’t you just hate magic proofs where you start from
some unmotivated expression and do a number of unmotivated steps to arrive at a result that
you could never have been guessed from the way you were going about getting it. Well sans too
many absurd steps, let us see if we can prove the Schwarz inequality

|〈α|β〉|2 ≤ 〈α|α〉〈β|β〉

for general vectors |α〉 and |β〉. Note the equality only holds in two cases. First when |β〉 = a|α〉,
where a is some complex constant. Second, when either or both of |α〉 and |β〉 are null vectors:
in this case, one has zero equals zero.

NOTE: A few facts to remember about general vectors and inner products. Say |α〉 and |β〉
are general vectors. By the definition of the inner product, we have that 〈α|β〉 = 〈β|α〉∗.
This implies that 〈α|α〉 is pure real. If c is a general complex number, then the inner product
of |α〉 and c|β〉 is 〈α|c|β〉 = c〈α|β〉. Next we note that that another inner-product property
is that 〈α|α〉 ≥ 0 and the equality only holds if |α〉 is the null vector. The norm of |α〉 is
||α|| =

√

〈α|α〉 and |α〉 can be normalized if it is not null: i.e., for |α〉 not null, the normalized
version is |α̂〉 = |α〉/||α||.
a) In doing the proof of the Schwarz inequality, it is convenient to have the result that the bra

corresponding to c|β〉 (where |β〉 is a general vector and c is a general complex number)
is 〈β|c∗. Prove this correspondance. HINT: Consider general vector |α〉 and the inner
product

〈α|c|β〉
and work your way by valid steps to

〈β|c∗|α〉∗

and that completes the proof since

〈α|γ〉 = 〈γ|α〉∗

for general vectors |α〉 and |γ〉.
b) The next thing to do is to figure out what the Schwarz inequality is saying about vectors

including those 3-dimensional things we have always called vectors. Let us a restrict the
generality of |α〉 by demanding it not be a null vector for which the Schwarz inequality
is already proven. Since |α〉 is not null, it can be normalized. Let |α̂〉 = |α〉/||α|| be the
normalized version of |α〉. Divide the Schwarz inequality by ||α||2. Now note that the
component of |β〉 along the |α̂〉 direction is

|β‖〉 = |α̂〉〈α̂|β〉 .
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Evaluate 〈β‖|β‖〉. Now what is the Schwarz inequality telling us.

c) The vector component of |β〉 that is orthogonal to |α̂〉 (and therefore |β‖〉) is

|β⊥〉 = |β〉 − |β‖〉 .

Prove this and then prove the Schwarz inquality itself (for |α〉 not null) by evaluating 〈β|β〉
expanded in components. What if |α〉 is a null vector?

007 qfull 00310 1 3 0 easy math: find a generalized angle
Extra keywords: (Gr-80:3.6)

6. The general inner-product vector space definition of generalized angle according to Gr-440 is

cos θgen =
|〈α|β〉|

√

〈α|α〉〈β|β〉
,

where |α〉 and |β〉 are general non-zero vectors.

a) Is this definition completely consistent with the ordinary definition of an angle from the
ordinary vector dot product? Why or why not?

b) Find the generalized angle between vectors

|α〉 =





1 + i
1
i



 and |β〉 =





4 − i
0

2 − 2i



 .

007 qfull 00400 1 3 0 easy math: prove triangle inequality
Extra keywords: (Gr-80:3.7)

7. Prove the triangle inequality:

||(|α〉 + |β〉)|| ≤ ||α|| + ||β|| .

HINT: Start with ||(|α〉 + |β〉)||2, expand, and use reality and the Schwarz inequality

|〈α|β〉|2 ≤ 〈α|α〉〈β|β〉 = ||α||2 × ||β||2 .

007 qfull 00500 3 3 0 tough math: simple matrix identities
Extra keywords: (Gr-87:3.12)

8. Prove the following matrix identities:

a) (AB)T = BTAT, where superscript “T” means transpose.

b) (AB)† = B†A†, where superscript † means Hermitian conjugate.

c) (AB)−1 = B−1A−1.

d) (UV )−1 = (UV )† (i.e., UV is unitary) given that U and V are unitary. In other words,
prove the product of unitary matrices is unitiary.

e) (AB)† = AB (i.e., AB is Hermitian) given that A and B are commuting Hermitian
matrices. Does the converse hold: i.e., does (AB)† = AB imply A and B are commuting
Hermitian matrices? HINTS: Find a trivial counterexample. Try B = A−1.

f) (A+B)† = A+B (i.e., A+B is Hermitian) given that A and B are Hermitian. Does the
converse hold? HINT: Find a trivial counterexample to the converse.
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g) (U + V )† = (U + V )−1 (i.e., U + V is unitary) given that U and V are unitary—that is,
prove this relation if it’s indeed true—if it’s not true, prove that it’s not true. HINT: Find
a simple counterexample: e.g., two 2 × 2 unit matrices.

007 qfull 00510 2 5 0 moderate thinking: commuting operations
Extra keywords: (Gr-84)

9. There are 4 simple operations that can be done to a matrix: inversing, (−1), complex
conjugating (∗), transposing (T ), and Hermitian conjugating (†). Prove that all these operations
mutually commute. Do this systematically: there are

(

4

2

)

=
4!

2!(4 − 2)!
= 6

combinations of the 2 operations. We assume the matrices have inverses for the proofs involving
them.

007 qfull 00600 3 3 0 tough math: basis change results
Extra keywords: (Gr-87:3.14)

10. Do the following.

a) Prove that matrix multiplication is preserved under similarity or linear basis change: i.e.,
if AeBe = Ce in the e-basis, then AfBf = Cf in the f -basis where S is the basis change
matrix from e-basis to the f -basis. Basis change does not in general preserve symmetry,
reality, or Hermiticity. But since I don’t want to find the counterexamples, I won’t ask you
to.

b) If He in the e-basis is a Hermitian matrix and the basis change to the f -basis U is unitary,
prove that Hf is Hermitian: i.e., Hermiticity is is preserved.

c) Prove that basis orthonormality is preserved through a basis change U iff (if and only if)
U is unitary.

007 qfull 00700 2 5 0 moderate thinking: square-integrable, inner product
Extra keywords: no analog Griffiths’s problem, but discussion Gr-95–6, Gr2005-94–95

11. If f(x) and g(x) are square-integrable complex functions, then the inner product

〈f |g〉 =

∫ ∞

−∞

f∗g dx

exists: i.e., is convergent to a finite value. In other words, that f(x) are g(x) are square-
integrable is sufficient for the inner product’s existence.

a) Prove the statement for the case where f(x) and g(x) are real functions. HINT: In doing
this it helps to define a function

h(x) =

{

f(x) where |f(x)| ≥ |g(x)| (which we call the f region);
g(x) where |f(x)| < |g(x)| (which we call the g region),

and show that it must be square-integrable. Then “squeeze” 〈f |g〉.
b) Now prove the statement for complex f(x) and g(x). HINTS: Rewrite the functions in

terms of their real and imaginary parts: i.e.,

f(x) = fRe(x) + ifIm(x)

and

g(x) = gRe(x) + igIm(x) .
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Now expand

〈f |g〉 =

∫ ∞

−∞

f∗g dx

in the terms of the new real and imaginary parts and reduce the problem to the part (a)
problem.

c) Now for the easy part. Prove the converse of the statement is false. HINT: Find some
trivial counterexample.

d) Now another easy part. Say you have a vector space of functions {fi} with inner product
defined by

∫ ∞

−∞

f∗
j fk dx .

Prove the following two statements are equivalent: 1) the inner product property holds;
2) the functions are square-integrable.

007 qfull 00800 2 3 0 moderate math: Gram-Schmidt, Legendre polynomials
Extra keywords: (Gr-96:3.25)

12. The Gram-Schmidt procedure can be used to construct a set of orthonormal vectors by linear
combination from a set of linearly independent, but non-orthonormal, vectors. It is a sort of
brute force approach to use when more elegant methods of orthonormalization are not available.

The Gram-Schmidt procedure is as follows. Say {|φn〉} are a set of N linearly independent
vectors that are NOT assumed to be orthonormal. One has ordered them in some reasonable
manner indicated by the index n which increases from 1 to N . From this set we construct
the orthonormal set {|ûn〉} of N normalized vectors where the hat symbol indicates their
normalization. The unnormalized nth vector of the new set is given by

|un〉 = |φn〉 −
n−1
∑

ℓ=1

|ûℓ〉〈ûℓ|φn〉 ,

where the sum vanishes for n = 1, and the corresponding normalized vector is given by

|ûn〉 =
|un〉
||un||

,

where ||un|| =
√

〈un|un〉 is the norm of |un〉.
a) Prove the Gram-Schmidt procedure by induction.

b) In general there is an uncountable infinity of orthonormal sets that can be constructed
from a non-orthonormal set. For example, consider ordinary vectors in 3-dimensional
Euclidean space. By rotation of a orthonormal set of unit vectors an uncountable infinity of
orthonormal sets of unit vectors can be created. Different orthonormal sets can be created
using the Gram-Schmidt procedure just by itself. Say that there are N vectors in linearly
independent non-orthonomcal set and each vector is orthogonal with all the others in the
set. Show that you can create at least N different orthogonal sets by the Gram-Schmidt
procedure.

c) Using the Gram-Schmidt procedure on the interval [−1, 1] (with weight function w = 1 in
the integral rule for the inner product) find the first three orthonormalized polynomial
vectors starting from the linearly independent, but non-orthonomal set of polynomial
vectors given by φn = xn for integer n ∈ [0,∞). Show that the orthonormalized set
are the first three normalized Legendre polynomials {P̂n(x)}. The normalized Legendre
polynomials are given by

P̂n(x) =

√

2n+ 1

2
Pn(x) ,
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where Pn(x) is a standard Legendre polynomial (e.g., Ar-547; WA-569). (Note an arbitrary
phase factor eiθ can also be multiplied to a normalized vector.) The reason why the
Legendre polynomials arn’t normalized is that the standard forms are what one gets
straight from the generating function. The generating function approach to the Legendre
polynomials allows you to prove many of their properties quickly (e.g., Ar-534, WA-553).

Table: Legendre Polynomials

Order n Pn

0 P0 = 1

1 P1 = x

2 P2 = (1/2)(3x2 − 1)

3 P3 = (1/2)(5x3 − 3x)

4 P4 = (1/8)(35x4 − 30x2 + 3)

5 P5 = (1/8)(63x5 − 70x3 + 15x)

Note—The polynomials are from Ar-541 and WA-554. The degree of a Legendre polynomial
is given by its order number n (WA-557).

d) The normalized Legendre polynomials form a complete orthonormal basis for piecewise
continuous, normalizable functions in the interval [−1, 1] (Ar-443). For a general polynomial of
degree n, show that the expansion

Qn(x) =

∞
∑

ℓ=0

P̂ℓ(x)〈P̂ℓ|Qn〉

actually truncates at ℓ = n. HINT: Consider xn and how could construct it from Legendre
polynomials starting with Pn(x).

e) The part (c) result suggests that if the Gram-Schmidt procedure is continued beyond the first
3 vectors of the set {φn}, one will continue getting the normalized Legendre polynomials in
order. Prove this is so by comparing the Gram-Schmidt procedure result for 〈P̂k|un〉 and the
expansion for |un〉 in the set {|P̂n〉}. In evaluating 〈P̂k|un〉, assume that the |ûℓ〉 for ℓ < n are
|P̂ℓ〉. HINT: The part (d) result is also needed for the proof.

007 qfull 00900 1 3 0 easy math: verifying a sinusoidal basis
Extra keywords: (Gr-96:3.26)

13. Consider the set of trigonometric functions defined by

f(x) =

N
∑

n=0

[an sin(nx) + bn cos(nx)]

on the interval [−π, π]. Show that the functions defined by

φk(x) =
1√
2π
eikx , where k = 0,±1,±2, . . . ,±N

are an orthonormal basis for the trigonometric set. What is the dimension of the space spanned
by the basis?

007 qfull 01000 2 3 0 moderate math: reduced SHO operator, Hermiticity
Extra keywords: (Gr-99:3.28), dimensionless simple harmonic oscillator Hamiltonian
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14. Consider the operator

Q = − d2

dx2
+ x2 .

a) Show that f(x) = e−x2/2 is an eigenfunction of Q and determine its eigenvalue.

b) Under what conditions, if any, is Q a Hermitian operator? HINTS: Recall

〈g|Q†|f〉∗ = 〈f |Q|g〉

is the defining relation for the Hermitian conjugate Q† of operator Q. You will have to
write the matrix element 〈f |Q|g〉 in the position representation and use integration by parts
to find the conditions.

007 qfull 01100 2 5 0 moderate thinking: Hilbert space problems
Extra keywords: (Gr-103:3.33)

15. Do the following.

a) Show explicitly that any linear combination of two functions in the Hilbert space L2(a, b)
is also in L2(a, b). (By explicitly, I mean don’t just refer to the definition of a vector space
which, of course requires the sum of any two vectors to be a vector.)

b) For what values of real number s is f(x) = |x|s in L2(−a, a)
c) Show that f(x) = e−|x| is in L2 = L2(−∞,∞). Find the wavenumber space representation

of f(x): recall the wavenumber “orthonormal” basis states in the position representation
are

〈x|k〉 =
eikx

√
2π

.

007 qfull 01200 2 5 0 moderate thinking: Hermitian conjugate of AB
16. Some general operator and vector identities should be proven. Recall the definition of the

Hermitian conjugate of general operator Q is giveny by

〈α|Q|β〉 = 〈β|Q†|α〉∗ ,

where |α〉 and |β〉 are general vectors.

a) Prove that the bra corresponding to ket vector Q|β〉 is 〈β|Q† for general Q and |β〉. HINT:
Consider general vector |α〉 and the inner product

〈α|Q|β〉

and work your way by valid steps to

〈β|Q†|α〉∗

and that completes the proof since

〈α|γ〉 = 〈γ|α〉∗

for general vectors |α〉 and |γ〉.
b) Show that the Hermitian conjugate of a scalar c is just its complex conjugate.

c) Prove for operators, not matrices, that

(AB)† = B†A† .
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The result is, of course, consistent with matrix representations of these operators. But
there are representations in which the operators are not matrices: e.g., the momentum
operator in the position representation is differentiating operator

p =
h−
i

∂

∂x
.

Our proof holds for such operators too since we’ve done the proof in the general operator-
vector formalism.

d) Generalize the proof in part (c) for an operator product of any number.

e) Prove that (A+B)† = A† +B†.

f) Prove that c[A,B] is a Hermitian operator for Hermitian A and B only when c is pure
imaginary constant.

007 qfull 01300 3 5 0 tough thinking: operators and matrices isomorphism

17. Expressions involving vector linear transformations or operators often (always?) isomorphic
to the corresponding matrix expressions when the operators are represented by matrices in
particular orthonormal bases. We would like to demonstrate this statement for a few important
simple cases. For clarity express operators with hats (e.g., Â) and leave the corresponding
matrices unadorned (e.g., A). Consider a general orthonormal basis {|i〉} where i serves as a
labeling index. Recall that the unit operator using this basis is

I = |i〉〈i| ,

where we use the Einstein summation rule, and so there is a sum on i. Recall that the ijth
matrix element of A is defined by

Aij = 〈i|Â|j〉 .

This definition means that the scalar product 〈a|Â|b〉, where |a〉 and |b〉 are general vectors, can
be reexpressed by matrix expression:

〈a|Â|b〉 = 〈a|i〉〈i|Â|j〉〈j|b〉 = a∗iAijbj = ~a†A~b ,

where ~a and ~b are column vector n-tuples and where we have used the Einstein rule.

Prove that the following operator expressions are isomorphic to their corresponding matrix
expressions.

a) Sum of operators Â+ B̂.

b) Product of operators ÂB̂.

c) Hermitian conjugation Â†.

d) The identity (ÂB̂)† = B̂†Â†.

007 qfull 01400 2 5 0 moderate thinking: bra ket projector completeness

Extra keywords: (Gr-118:3.57) See also CT-115, 138

18. For an inner product vector space there is some rule for calculating the inner product of two
general vectors: an inner product being a complex scalar. If |α〉 and |β〉 are general vectors,
then their inner product is denoted by

〈α|β〉 ,



58 Chapt. 7 Linear Algebra

where in general the order is significant. Obviously different rules can be imagined for a vector
space which would lead to different values for the inner products. But the rule must have three
basic properties:

〈β|α〉 = 〈α|β〉∗ ,(1)

〈α|α〉 ≥ 0 , where 〈α|α〉 = 0 if and only if |α〉 = |0〉,(2)

and

〈α|
(

b|β〉 + c|γ〉
)

= b〈α|β〉 + c〈α|γ〉 ,(3)

where |α〉, |β〉, and |γ〉 are general vectors of the vector space and b and c are general complex
scalars.

There are some immediate corollaries of the properties. First, if 〈α|β〉 is pure real, then

〈β|α〉 = 〈α|β〉 .

Second, if 〈α|β〉 is pure imaginary, then

〈β|α〉 = −〈α|β〉 .

Third, if
|δ〉 = b|β〉 + c|γ〉 ,

then
〈δ|α〉∗ = 〈α|δ〉 = b〈α|β〉 + c〈α|γ〉

which implies
〈δ|α〉 = b∗〈β|α〉 + c∗〈γ|α〉 .

This last result makes
(

〈β|b∗ + 〈γ|c∗
)

|α〉 = b∗〈β|α〉 + c∗〈γ|α〉

a meaningful expression. The 3rd rule for a vector product inner space and last corollary
together mean that the distribution of inner product multiplication over addition happens in
the normal way one is used to.

Dirac had the happy idea of defining dual space vectors with the notation 〈α| for the dual
vector of |α〉: 〈α| being called the bra vector or bra corresponding to |α〉, the ket vector or ket:
“bra” and “ket” coming from “bracket.” Mathematically, the bra 〈α| is a linear function of the
vectors. It has the property of acting on a general vector |β〉 and yielding a complex scalar: the
scalar being exactly the inner product 〈α|β〉.

One immediate consequence of the bra definition can be drawn. Let |α〉, |β〉, and a be
general and let

|α′〉 = a|α〉 .
Then

〈α′|β〉 = 〈β|α′〉∗ = a∗〈β|α〉∗ = a∗〈α|β〉
implies that the bra corresponding to |α′〉 is given by

〈α′| = a∗〈α| = 〈α|a∗ .

The use of bra vectors is perhaps unnecessary, but they do allow some operations and
properties of inner product vector spaces to be written compactly and intelligibly. Let’s consider
a few nice uses.
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a) The projection operator or projector on to unit vector |e〉 is defined by

Pop = |e〉〈e| .

This operator has the property of changing a vector into a new vector that is |e〉 times
a scalar. It is perfectly reasonable to call this new vector the component of the original
vector in the direction of |e〉: this definition of component agrees with our 3-dimensional
Euclidean definition of a vector component, and so is a sensible generalization of that
the 3-dimensional Euclidean definition. This generalized component would also be the
contribution of a basis of which |e〉 is a member to the expansion of the original vector:
again the usage of the word component is entirely reasonable. In symbols

Pop|α〉 = |e〉〈e|α〉 = a|e〉 ,

where a = 〈e|α〉.
Show that P 2

op = Pop, and then that Pn
op = Pop, where n is any integer greater than or

equal to 1. HINTS: Write out the operators explicitly and remember |e〉 is a unit vector.

b) Say we have
Pop|α〉 = a|α〉 ,

where Pop = |e〉〈e| is the projection operator on unit vector |e〉 and |α〉 is unknown non-null
vector. Solve for the TWO solutions for a. Then solve for the |α〉 vectors corresponding
to these solutions. HINTS: Act on both sides of the equation with 〈e| to find an equation
for one a value. This equation won’t yield the 2nd a value—and that’s the hint for finding
the 2nd a value. Substitute the a values back into the original equation to determine the
corresponding |α〉 vectors. Note one a value has a vast degeneracy in general: i.e., many
vectors satisfy the original equation with that a value.

c) The Hermitian conjugate of an operator Q is written Q†. The definition of Q† is given by
the expression

〈β|Q†|α〉 = 〈α|Q|β〉∗ ,
where |α〉 and |β〉 are general vectors. Prove that the bra corresponding to ket Q|β〉 must
〈β|Q† for general |α〉. HINTS: Let |β′〉 = Q|β〉 and substitute this for Q|β〉 in the defining
equation of the Hermitian conjugate operator. Note operators are not matrices (although
they can be represented as matrices in particular bases), and so you are not free to use
purely matrix concepts: in particular the concepts of tranpose and complex conjugation of
operators are not generally meaningful.

d) Say we define a particular operator Q by

Q = |φ〉〈ψ| ,

where |φ〉 and |ψ〉 are general vectors. Solve for Q†. Under what condition is

Q† = Q ?

When an operator equals its Hermitian conjugate, the operator is called Hermitian just as
in the case of matrices.

e) Say {|ei〉} is an orthonormal basis. Show that

|ei〉〈ei| = 1 ,

where we have used Einstein summation and 1 is the unit operator. HINT: Expand a
general vector |α〉 in the basis.
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Multiple-Choice Problems

008 qmult 00090 1 4 5 easy deducto-memory: example Hilbert space
1. “Let’s play Jeopardy! For $100, the answer is: A space of all square-integrable functions on the
x interval (a, b).”

What is a , Alex?

a) non-inner product vector space b) non-vector space c) Dilbert space
d) Dogbert space e) Hilbert space

008 qmult 00100 1 1 3 easy memory: complex conjugate of scalar product
2. The scalar product 〈f |g〉∗ in general equals:

a) 〈f |g〉. b) i〈f |g〉. c) 〈g|f〉. d) 〈f |i|g〉. e) 〈f |(−i)|g〉.

008 qmult 00200 1 4 3 easy deducto-memory: what operators do
3. “Let’s play Jeopardy! For $100, the answer is: It changes a vector into another vector.”

What is a/an , Alex?

a) wave function b) scalar product c) operator d) bra
e) telephone operator

008 qmult 00300 2 1 5 moderate memory: Hermitian conjugate of product
4. Given general operators A and B, (AB)† equals:

a) AB. b) A†B†. c) A. d) B. e) B†A†.

008 qmult 00400 2 5 5 moderate thinking: general Hermitian conjugation
5. The Hermitian conjugate of the operator λ|φ〉〈χ|ψ〉〈ℓ|A (with λ a scalar and A an operator) is:

a) λ|φ〉〈χ|ψ〉〈ℓ|A. b) λ|φ〉〈χ|ψ〉〈ℓ|A†. c) A|ℓ〉〈ψ|χ〉〈φ|λ∗ . d) A|ℓ〉〈ψ|χ〉〈φ|λ.
e) A†|ℓ〉〈ψ|χ〉〈φ|λ∗.

008 qmult 00500 1 1 5 easy memory: compatible observables
6. Compatible observables:

a) anticommute. b) are warm and cuddly with each other. c) have no hair.
d) have no complete simultaneous orthonormal basis. e) commute.

008 qmult 00600 1 1 3 easy memory: parity operator
7. The parity operator Π acting on f(x) gives:

df/dx. b) 1/f(x). c) f(−x). d) 0. e) a spherical harmonic.

008 qmult 00700 1 4 3 easy deducto-memory: braket expectation value
8. Given the position representation for an expectation value

〈Q〉 =

∫ ∞

−∞

Ψ(x)∗QΨ(x) dx ,

60
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what is the braket representation?

a) 〈Q|Ψ∗|Q〉. b) 〈Ψ∗|Q|Ψ〉. c) 〈Ψ|Q|Ψ〉. d) 〈Ψ|Q†|Ψ〉. e) 〈Q|Ψ|Q〉.

008 qmult 00800 1 4 3 easy deducto-memory: Hermitian eigenproblem
9. What are the three main properties of the solutions to a Hermitian operator eigenproblem?

a) (i) The eigenvalues are pure IMAGINARY. (ii) The eigenvectors are guaranteed
orthogonal, except for those governed by degenerate eigenvalues and these can always be
orthogonalized. (iii) The eigenvectors DO NOT span all space.

b) (i) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except
for those governed by degenerate eigenvalues and these can always be orthogonalized.
(iii) The eigenvectors span all space in ALL cases.

c) (i) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except
for those governed by degenerate eigenvalues and these can always be orthogonalized.
(iii) The eigenvectors span all space for ALL FINITE-DIMENSIONAL spaces. In
infinite dimensional cases they may or may not span all space. It is quantum mechanics
postulate that the eigenvectors of an observable (which is a Hermitian operator) span all
space.

d) (i) The eigenvalues are pure IMAGINARY. (ii) The eigenvectors are guaranteed
orthogonal, except for those governed by degenerate eigenvalues and these can always be
orthogonalized. (iii) The eigenvectors span all space in ALL FINITE-DIMENSIONAL
spaces. In infinite dimensional cases they may or may not span all space.

e) (i) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except
for those governed by degenerate eigenvalues and these can always be orthogonalized.

008 qmult 00900 1 4 5 easy deducto-memory: definition observable
10. “Let’s play Jeopardy! For $100, the answer is: A physically significant Hermitian operator

possessing a complete set of eigenvectors.”

What is a/an , Alex?

a) conjugate b) bra c) ket d) inobservable e) observable

008 qmult 01000 1 4 4 easy deducto-memory: time-energy inequality
11. In the precisely-formulated time-energy inequality, the ∆t is:

a) the standard deviation of time.
b) the standard deviation of energy.
c) a Hermitian operator.
d) the characteristic time for an observable’s value to change by one standard deviation.
e) the characteristic time for the system to do nothing.

008 qmult 02000 1 1 5 easy memory: common eigensets
Extra keywords: See CT-140ff

12. The statements “two observables commute” and “a common eigenset can be constructed for
two observables” are

in flat contradiction. b) unrelated. c) in non-intersecting Venn diagrams.
d) irrelevant in relation to each other. e) are equivalent in the sense that one implies
the other.

Full-Answer Problems

008 qfull 00010 1 1 0 easy memory: what is a ket?
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1. What is a ket (representative general symbol |Ψ〉)?
008 qfull 00015 1 1 0 easy memory: what is a bra?

2. What is a bra? (Representative general symbol 〈Ψ|.)
008 qfull 00020 1 1 0 easy memory: why the braket formalism?

3. Why is quantum mechanics at the advanced level formulated in the braket formalism?

008 qfull 00030 2 5 0 moderate thinking: Hermiticity and expectation values
Extra keywords: (Gr-94:3.21)

4. Recall the definition of Hermitian conjugate for a general operator Q is

〈α|Q|β〉 = 〈β|Q†|α〉∗ ,

where |α〉 and |β〉 are general vectors. If Q is Hermitian,

Q† = Q :

i.e., Q is its own Hermitian conjugate.

a) If Q is Hermitian, prove that the expectation value of a general vector |γ〉,

〈γ|Q|γ〉 ,

is pure real.

b) If the expectation value
〈γ|Q|γ〉

is always pure real for general |γ〉, prove that Q is Hermitian. The statement to be proven is
the converse of the statement in part (a). HINT: First show that

〈γ|Q|γ〉 = 〈γ|Q†|γ〉 .

Then let |α〉 and |β〉 be general vectors and construct a vector |ξ〉 = |α〉 + c|β〉, where c is a
general complex scalar. Note that the bra corresponding to c|β〉 is c∗〈β|. Expand both sides of

〈ξ|Q|ξ〉 = 〈ξ|Q†|ξ〉 ,

and then keep simplifying both sides making use of the first thing proven and the definition of
a Hermitian conjugate. It may be useful to note that

(A†)† = A and (A+B)† = A† +B† ,

where A and B are general operators and You should be able to construct an expression where
choosing c = 1 and then c = i requires Q = Q†.

c) What simple statement follows from the proofs in parts (a) and (b)?

008 qfull 00032 2 5 0 moderate thinking: energy operator
5. We usually think of the Hamiltonian as being the “energy” operator, but term energy operator

is also used for the operator

Eop = ih− ∂

∂t

(Mo-184).

a) Find general expressions for the eigenvalues and normalizable eigenstates of Eop.
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b) Show that Eop is not, in fact, a Hermitian operator in the space of physical wave functions.
HINT: Recall the Hermitian conjugate of an operator Q is defined by

〈α|Q†|β〉 = 〈β|Q|α〉∗

(Gr-92), where Q† is the Hermitian conjugate and |α〉 and |β〉 are general vectors.

c) Is Eop formally a quantum mechanical observable? Does the projection postulate (Gr-105)
on the measurement of energy apply to Eop? HINT: The last question is trickier than it
seems.

008 qfull 00040 2 3 0 moderate math: solving an eigenproblem
Extra keywords: (Gr-94:3.22) also diagonalizing a matrix.

6. Consider

Q =

(

1 1 − i
1 + i 0

)

.

In this problem, we will diagonalize this matrix: i.e., solve for its eigenvalues and eigenvectors.
We also actually explictly find the diagonal form—which is not usually necessary.

a) Is Q Hermitian?

b) Solve for the eigenvalues. Are they real?

c) Determine the normalized eigenvectors â. Since eigenvectors are not unique to within
a phase factor, the marker insists that you arrange your eigenvectors so that the first
component of each is 1. Are the eigenvectors orthogonal? HINT: The matrix equation for
the eigenvectors is a homogeneous matrix equation with non-trivial solutions (i.e., solutions
that are not just zeros) for the eigenvalues since the determinant ofQ−λI vanishes for those
eigenvalues. However, 1 equation obtained from a N × N homogeneous matrix problem
is always not independent: there are only N − 1 independent equations and one can only
solve for N − 1 components of the eigenvectors. So if you set the first component of the
solution vector to be 1, the N − 1 equations allow you to solve for the other components.
This solution vector is a valid solution vector, but its overall scale is arbitrary. There is
no determined scale for the eigenvectors of a homogeneous matrix problem: e.g., k times
solution vector ~a is also a solution. But, in quantum mechanics, physical vectors should
be normalized and the normalization constraint provides an Nth independent equation,
and thus allows a complete solution of the eigenvectors to within a global phase factor.
Normalization doesn’t set that global phase factor since it cancels out in the normalization
equation. The global phase factor can be chosen arbitrarily for convenience. The global
phase factor of a state no effect on the physics of the state.

d) Obtaining the eigenvalues and eigenvectors is usually all that is meant by diagonalization,
but one can actually transform the eigenvalue matrix equation into a matrix equation where
the matrix is diagonal and the eigenvectors can be solved for by inspection. One component
of an eigenvector is 1 and the other components are zero. How does one transform to
diagonal form? Consider our matrix equation

Qâ = λâ .

Multipy both sides by the transformation matrix U to obtain

UQâ = λUâ

which is obviously the same as

UQU−1Uâ = λUâ .
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If we define

â′ = Uâ and Q′ = UQU−1 ,

then the transformed matrix equation is just

Q′â′ = λâ′ .

Prove that the transformation matrix U that gives the diagonalized matrix Q′ just consists
of rows that are the Hermitian conjugates of the eigenvectors. Then find the diagonalized
matrix itself and its eigenvalue.

e) Compare the determinant det|Q|, trace Tr(Q), and eigenvalues of Q to those of Q′.

f) The matrix U that we considered in part (d) is actually unitary. This means that

U † = U−1 .

Satisfy yourself that this is true. Unitary transformations have the useful property that
inner products are invariant under them. If the inner product has a physical meaning and
in particular the magnitude of vector has a physical meaning, unitary transformations can
be physically relevant. In quantum mechanics, the inner product of a normalized state
vector with itself 1 and this should be maintained by all physical transformations, and so
such transformations must be unitary. Prove that

〈a′|b′〉 = 〈a|b〉

where

|a′〉 = U |a〉|b′〉 = U |b〉

and U is unitary.

008 qfull 00500 2 5 0 moderate thinking: x-op in general formalism
Extra keywords: and k-op and p-op in general formalism too

7. The general formalism of quantum mechanics requires states to be vectors in Hilbert spaces and
dynamical variables to be governed or determined (choose your verb) by observables (Hermitian
operators with complete sets of eigenstates: i.e., sets that form a basis for the Hilbert space).
These requirements are a Procrustian bed for the position, wavenumber (or momentum), and
kinetic energy operators. These operators have complete sets of eigenvectors in a sense, but
those eigenvectors arn’t in any Hilbert space, because they can’t be normalized. Nevertheless
everything works out consistently if some identifications are made. The momentum and kinetic
energy eigenstates are the same as the wavenumber eigenstates, and so we won’t worry about
them. The momentum and kinetic energy eigenvalues are different, of course.

NOTE: Procrustes (he who stretches) was a robber (or cannibal) with a remarkable bed that
fit all guests—by racking or hacking according to whether small or tall. Theseus fit Procrustes
to his own bed—and this was before that unfortunate incident with the Minotaur.

a) Consider the xop eigenproblem in the general form

xop|x〉 = x|x〉 ,

where x is the eigenvalue and |x〉 is the eigenvector. The eigenvalues x and eigenvectors
|x〉’s form continuous, not discrete, sets. The unity operator for the xop basis is therefore

1 =

∫

dx |x〉〈x| ,
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where it is implied that the integral is over all space. An ideal measurement of position
yields x and, by quantum mechanical postulate, puts the system is in state |x〉. But the
system can’t be really be in an unnormalizable state which is what the |x〉’s turn out to
be. The system can be in an integral linear combination of such states.

Expand a general state |Ψ〉 in the xop basis and identify what |Ψ〉 is in the position
representation. Then identify what the inner product of two xop eigenvectors 〈x′|x〉 must
be. Why can’t the |x〉 be in the Hilbert space? What is the position representation of |x〉?
Prove that xop in the position operator is just x itself.

b) Repeat part (a), mutatis mutandis, for kop.

c) What must 〈x|k〉 be? This is just an identification, not a proof—there are no proofs.
HINT: Expand |Ψ〉 in the wavenumber representation and then operate on |Ψ〉 with 〈x|.

d) What is 〈k|k′〉 if we insert the position representation unit operator given the answer to
part (c).

e) In order to have consistency with past work what must the matrix elements 〈x|kop|x〉,
〈x|Hop|x〉, and 〈k|xop|k〉 be. Note these are just identifications, not proofs—there are
no proofs. We omit 〈k|Hop|k〉—you’re not ready for 〈k|Hop|k〉 as Jack Nicholson would
snarl—if he were teaching intro quantum.

008 qfull 00100 2 5 0 moderate thinking: expectation values two ways
Extra keywords: (Gr-108:3.35)

8. Consider the observable Q and the general NORMALIZED vector |Ψ〉. By quantum
mechanics postulate, the expectation of Qn, where n ≥ 0 is some integer, for |Ψ〉 is

〈Qn〉 = 〈Ψ|Qn|Ψ〉 .

a) Assume Q has a discrete spectrum of eigenvalues qi and orthonormal eigenvectors |qi〉. It
follows from the general probabilistic interpretation postulate of quantum mechanics, that
expectation value of Qn for |Ψ〉 is given by

〈Qn〉 =
∑

i

qn
i |〈qi|Ψ〉|2 .

Show that this expression for 〈Qn〉 also follows from the one in the preamble. What is
∑

i |〈qi|Ψ〉|2 equal to?

b) Assume Q has a continuous spectrum of eigenvalues q and Dirac-orthonormal eigenvectors
|q〉. (Dirac-orthonormal means that 〈q′|q〉 = δ(q′ − q), where δ(q′ − q) is the Dirac delta
function. The term Dirac-orthonormal is all my own invention: it needed to be.) It
follows from the general probabilistic interpretation postulate of quantum mechanics, that
expectation value of Qn for |Ψ〉 is given by

〈Qn〉 =

∫

dq qn|〈q|Ψ〉|2 .

Show that this expression for 〈Qn〉 also follows from the one in the preamble. What is
∫

dq |〈q|Ψ〉|2 equal to?

008 qfull 00200 2 5 0 moderate thinking: simple commutator identities
9. Prove the following commutator identities.

a) [A,B] = −[B,A].
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b)





∑

i

aiAi,
∑

j

bjBj



 =
∑

ij

aibj [Ai, Bj ], where the ai’s and bj ’s are just complex numbers.

c) [A,BC] = [A,B]C +B[A,C].

d) [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. This has always seemed to me to be perfectly
useless however true.

e) (c[A,B])† = c∗[B†, A†], where c is a complex number.

f) The special case of the part (e) identity when A and B are Hermitian and c is pure
imaginary. Is the operator in this special case Hermitian or anti-Hermitian?

008 qfull 00300 3 5 0 tough thinking: nontrivial commutator identities
Extra keywords: (Gr-111:3.41) but considerably extended.

10. Prove the following somewhat more difficult commutator identities.

a) Given
[B, [A,B]] = 0 , prove [A,F (B)] = [A,B]F ′(B) ,

where A and B are general operators aside from the given condition and F (B) is a general
operator function of B. HINTS: Proof by induction is probably best. Recall that any function
of an operator is (or is that should be) expandable in a power series of the operator: i.e.,

F (B) =

∞
∑

n=0

fnB
n ,

where fn are constants.

b) [x, p] = ih−.

c) [x, pn] = ih−npn−1. HINT: Recall the part (a) answer.

d) [p, xn] = −ih−nxn−1. HINT: Recall the part (a) answer.

008 qfull 01300 2 5 0 moderate thinking: general uncertainty principle
Extra keywords: Gr-108’s proof

11. In quantum mechanics we believe that states are described by vectors in an abstract Hilbert
space. The Hilbert space is an inner product vector space among other things.

An inner product vector space (as physicists view it anyway) has vectors written |α〉 (the
kets) and dual space vectors written 〈α| (the bras). We require that there is some rule such
that the inner product operation

〈α|β〉

yields a complex number for general vectors |α〉 and |β〉. The other properties required are:

〈β|α〉 = 〈α|β〉∗ ,

〈α|α〉 ≥ 0 ,

where the equality holds if and only if |α〉 = 0 (i.e., |α〉 is the null vector), and

〈α|(b|β〉 + c|γ〉) = b〈α|β〉 + c〈αγ〉 .

The norm of a vector |α〉 is defined by

||α|| =
√

〈α|α〉 .
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The vectors are transformed into new vectors by operators: e.g.,

|α′〉 = Q|α〉 ,

where Q is some operator. The Schwarz inequality

〈α|α〉〈β|β〉 ≥ |〈α|β〉|2

is a feature of inner product vector spaces. A concrete interpretation of the Schwarz inequality
is that a vector must have a magnitude larger than or equal to any component of the vector
along any axis. This can be seen by dividing the Schwarz inequality equality by

〈α|α〉

assuming that |α〉 is not null and interpreting

〈α̂|β〉

as the component of |β〉 in the |α̂〉 direction where

|α̂〉 =
|α〉
||α|| .

In quantum mechanics, the inner product operation in the 1-dimensional position
representation, for example, is defined by

〈α|β〉 =

∫ ∞

−∞

α(x)∗β(x) dx ,

where α(x) and β(x) are square integrable functions. The dynamical variables of quantum
mechanics are governed by physically relevant Hermitian operators with complete sets of
eigenvectors. These operators, not too cogently, are called observables. The mean value or
expectation value for an ensemble of identical states |α〉 of a dynamical variable governed by
an observable Q is given by

〈α|Q|α〉 .

The expectation value can be viewed as the overlap integral between the states |α〉 and Q|α〉.
The Hermitian conjugate Q† of an operator Q is defined by

〈α|Q|β〉 = 〈β|Q†|α〉∗ .

If Q† = Q, then Q is a Hermitian operator. Hermitian operators have only real expectation
values. This follows from the general definition of Hermitian conjugation: if Q† = Q, then

〈α|Q|α〉 = 〈α|Q|α〉∗ .

This result implies that the eigenvalues of a Hermitian operator are pure real since they are the
expectation values of the eigenstates. We will not prove it here, but it is true also that non-
degenerate eigenstates of a Hermitian operator are orthogonal and that the set of eigenstates of
a Hermitian operator are a complete set guaranteed if the space is finite dimensional (Gr-93).
But if the space is infinite dimensional completeness is not guaranteed for the set of eigenstates
(Gr-99). The Hermitian operators with complete sets can be quantum mechanical observables.
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Given the foregoing (and anything I’ve left out), the general uncertainty principle is a
necessary consequence. This principle is

σAσB ≥ 1

2
|〈i[A,B]〉| ,

where A and B are observables, [A,B] = AB−BA is the commutator of A and B, and σA and
σB are standard deviations for observables A and B. The standard deviation squared (i.e., the
variance) of A for a state |α〉, for example, is given by

σ2
A = 〈α|(A − 〈A〉)2|α〉 ,

where 〈A〉 = 〈α|A|α〉. Since A is a Hermitian operator, one can write

σ2
A = 〈α|(A − 〈A〉)(A − 〈A〉)|α〉

= 〈α|(A − 〈A〉)|f〉
= 〈f |(A− 〈A〉)|α〉
= 〈f |f〉 ,

where we have used the fact that expectation value of a Hermitian operator is real and have
defined |f〉 = (A− 〈A〉)|α〉.
a) Define |g〉 = (B − 〈B〉)|α〉. Now prove that

σ2
Aσ

2
B ≥ |〈f |g〉2 .

b) Evaluate 〈f |g〉 in terms of expectation values of A and B for state |α〉. For brevity the
state can be left implied where convenient: i.e., 〈A〉 stands for 〈α|A|α〉, etc. Remember A
and B are Hermitian and 〈f |g〉 is in general complex.

c) Show that for any complex number z

|z|2 = [Re(z)]2 + [Im(z)]2 ,

where

Re(z) =
1

2
(z + z∗) and Im(z) =

1

2i
(z − z∗) .

Then evaluate
Re(〈f |g〉) and Im(〈f |g〉) .

d) In the classical analog case, A and B would just be dynamical variables whose statistical
properties can be evaluated for some probability density. What does Re(〈f |g〉) correspond
to classically?

e) Now show that the general uncertainty inequality follows from the inequality you found in
the part (a) answer. Is there a classical analog to the general uncertainty relation? Why
or why not?

f) Given that A and B are Hermitian, show that [A,B] is not Hermitian in general, but that
i[A,B] is.

g) Find the uncertainty relation for operators x and p: i.e., the Heisenberg uncertainty
relation.

h) What relationship between states |f〉 and |g〉 will make the general uncertainty an equality?
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i) Apply the relationship for equality to the case of x and p and obtain a differential equation
for a one-dimensional state for which the Heisenberg uncertainty equality holds. Solve this
differential equation for the minimum uncertainty wave packet. What kind of wave packet
do you have? In what physical cases is the minimum uncertainty wave packet a solution
to the Schrödinger equation.

j) Explain why the Heisenberg uncertainty equality is useful for understanding the ground
states of many systems.

008 qfull 01400 3 5 0 tough thinking: general uncertainty principle
Extra keywords: A dumb proof, and outdated by my current understanding.

12. You have a strange looking operator:

ℓ =
δQ

∆Q
+ i

δR

∆R
.

where Q and R are general Hermitian operators, ∆Q and ∆R are the standard deviations of Q
and R, and

δQ ≡ Q− 〈Q〉 and δR ≡ R− 〈R〉 .
(a) Write down the Hermitian conjugate ℓ†.

(b) Show ℓ†ℓ a Hermitian operator and that it is a positive definite operator: i.e, that
〈ℓ†ℓ〉 ≥ 0 . HINT: If you have to think about these results for more than a few seconds,
then just assume them and go on.

(c) Multiply out ℓ†ℓ and gather the cross terms into a commutator operator. Substitute
for δQ and δR in the commutator using their definitions and simplify it.

(d) Evaluate the expectation value of the multiplied out ℓ†ℓ operator. Simplify it
remembering the definition of standard deviation.

(e) Remembering the positive definite result from part (b), find an inequality satisfied by
∆Q∆R.

(f) Since the whole of the foregoing mysterious procedure could have been done with Q and
R interchanged in the definition of ℓ, what second inequality must be satisfied by ∆Q∆R.

(g) What third ∆Q∆R inequality is implied by two previous ones.

008 qfull 01500 2 3 0 moderate math: x-H uncertainty relation
Extra keywords: (Gr-110:3.39)

13. Answer the following questions.

a) What is the uncertainty relation for operators x and H? Work it out until the expectation
value is for the momentum operator p.

b) What is the time-dependent expression for any observable expectation value 〈Q〉 =
〈Ψ(t)|Q|Ψ(t)〉 when the state |Ψ(t)〉 is expanded in the discrete set of stationary states
(i.e., energy eigenstates) with their time-dependent factors included to allow for the time
dependence of |Ψ(t)〉. Let the set of stationary states with explicit time dependence be

{e−iEjt/h−|φj〉}. Note functions of t commute with observables: observables may depend
on time, but they don’t contain time derivatives.

c) If state |Ψ(t)〉 from part (b) is itself the stationary state e−iEjt/h−|φj〉, what the expectation
value? Is the expectation value time independent?

d) Derive the special form of the uncertainty relation for operators x and H for the case of
a stationary state of H? What, in fact, is σH for a stationary state? HINT: Remember
Ehrenfest’s theorem.
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008 qfull 01600 3 5 0 tough thinking: neutrino oscillation
Extra keywords: (Gr-120:3.58)

14. There are systems that exist apart from 3-dimensional Euclidean space: they are internal degrees
of freedom such intrinsic spin of an electron or the proton-neutron identity of a nucleon (isospin:
see, e.g., En-162 or Ga-429). Consider such an internal system for which we can only detect
two states:

|+〉 =

(

1
0

)

and |−〉 =

(

0
1

)

.

This internal system is 2-dimensional in the abstract vector sense of dimensional: i.e., it can be
described completely by an orthonormal basis of consisting of the 2 vectors we have just given.
When we measure this system we force it into one or other of these states: i.e., we make the
fundamental perturbation. But the system can exist in a general state of course:

|Ψ(t)〉 = c+(t)|+〉 + c−(t)|−〉 =

(

c+(t)
c−(t)

)

.

a) Given that |Ψ(t)〉 is NORMALIZED, what equation must the coefficients c+(t) and c−(t)
satisfy.

b) For reasons only known to Mother Nature, the states we can measure (eigenvectors of
whatever operator they may be) |+〉 and |−〉 are NOT eigenstates of the Hamiltonian that
governs the time evolution of internal system. Let the Hamiltonian’s eigenstates (i.e., the
stationary states) be |+′〉 and |−′〉: i.e.,

H |+′〉 = E+|+′〉 and H |−′〉 = E−|−′〉 ,

where E+ and E− are the eigen-energies. Verify that the general state |Ψ(t)〉 expanded in
these energy eigenstates,

|Ψ(t)〉 = c+e
−iE+t/h−|+′〉 + c−e

−iE−t/h−|−′〉

satisfies the general vector form of the Schrödinger equation:

ih− ∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 .

HINT: This requires a one-line answer.

c) The Hamiltonian for this internal system has no differential operator form since there is no
wave function. The matrix form in the |+〉 and |−〉 representation is

H =

(

f g
g f

)

.

Given that H is Hermitian, prove that f and g must be real.

d) Solve for the eigenvalues (i.e., eigen-energies) of Hamiltonian H and for its normalized
eigenvectors |+′〉 and |−′〉 in column vector form.

e) Given at t = 0 that

|Ψ(0)〉 =

(

a
b

)

show that

|Ψ(t)〉 =
1√
2
(a+ b)e−i(f+g)t/h−|+′〉 +

1√
2
(a− b)e−i(f−g)t/h−|−′〉

and then show that
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|Ψ(t)〉 = e−ift/h−
[

a

(

cos(gt/h−)
−i sin(gt/h−)

)

+ b

(

−i sin(gt/h−)
cos(gt/h−)

)]

.

HINT: Recall the time-zero coefficients of expansion in basis {|φi〉} are given by 〈φi|Ψ(0)〉.
f) For the state found given the part (e) question, what is the probability at any time t of

measuring (i.e., forcing by the fundamental perturbation) the system into state

|+〉 =

(

1
0

)

?

HINT: Note a and b are in general complex.

g) Set a = 1 and b = 0 in the probability expression found in the part (f) answer. What is
the probability of measuring the system in state |+〉? in state |−〉? What is the system
doing between the two states?

NOTE: The weird kind of oscillation between detectable states we have discussed is a simple
model of neutrino oscillation. Just as an example, the detectable states could be the electron
neutrino and muon neutrino and the particle oscillates between them. Really there are three
flavors of neutrinos and a three-way oscillation may occur. There is growing evidence that
neutrino oscillation does happen. (This note may be somewhat outdated due to that growth of
evidence.)

008 qfull 01700 2 5 0 moderate thinking: operator product rule
Extra keywords: Reference Ba-134

15. A function of an operator A can be defined by a power series

f(A, λ) =

∞
∑

k=0

ak(λ)Ak ,

where λ is an example of c-number parameter of the function and convergence is guaranteed by
faith alone. For example, eλA means that

eλA =

∞
∑

k=0

λk

k!
Ak .

a) Show that a sensible definition of the derivative of f(A, λ) with respect to λ is

df

dλ
=

∞
∑

k=0

dak

dλ
Ak .

HINT: Differentiate a general matrix element of f(A, λ).

b) Given the definition of the operator derivative of part (a), find product rule for operator
derivatives. HINT: Differentiate a general matrix element of f(A, λ)g(B, λ), where f and
g are operator functions of general operators A and B.

008 qfull 01800 3 5 0 hard thinking: common eigensets, CSCO
Extra keywords: See CT-139–144

16. One can always construct a common basis (or common eigenset) for commuting observables
(i.e., Hermitian operators that allow complete eigensets). Let us investigate this property.

a) First, an easy problem. Say you are given obserables A and B and they have a common
eigenset {|ui

a,b〉} such that

A|ui
a,b〉 = a|ui

a,b〉 and B|ui
a,b〉 = b|ui

a,b〉 ,
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where a and b are eigenvalues and i labels different states that are degenerate with respect
to both eigenvalues: i.e., have the same a and b eigenvalues. Thus specifying a, b, and i
fully specifies a state. Show that A and B must commute.

b) Now you are given [A,B] = 0 and the eigenset of A {|ui
a〉}, where i labels states that are

degenerate with respect to eigenvalues a. Show that you can construct a common eigenset
for A and B. HINT: Formally diagonalize B in the set {|ui

a〉} making use of commutation
to show that many matrix elements are zero.

c) Say {A,B,C, . . .} constitutes a complete set of commuting operators (i.e., a CSCO). What
can say about the common eigenset of {A,B,C, . . .}?
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Multiple-Choice Problems

009 qmult 00100 1 4 1 moderate deducto-memory: constant of the motion
1. What are the conditions for observable Q to be a constant of the motion.

a) [H,Q] = 0 and ∂Q/∂t = 0.
b) [H,Q] 6= 0 and ∂Q/∂t 6= 0.
c) [H,Q] > 0 and ∂Q/∂t > 0.
d) [H,Q] < 0 and ∂Q/∂t < 0.
e) [H,Q] ≥ 0 and ∂Q/∂t ≥ 0.

Full-Answer Problems

009 qfull 00100 3 5 0 tough thinking: time evolution, virial theorem
Extra keywords: (Gr-117:3.53, Gr2005-126:3.31) No one remembers Dorothy Lamour.

1. Answer the following questions that lead up to the proof of the virial theorem. HINTS: The
answers to the earlier parts help answering the later parts. But you can still answer some later
parts even if you don’t get all the earlier parts.

a) Given that e−iEnt/h−|φn〉, a STATIONARY STATE (i.e., an eigen-energy state) of a
time-independent Hamiltonian with its time-dependence factor explicitly shown, show that
the expectation value for this state of any time-independent operator A is a constant with
respect to time: i.e.,

d〈A〉
dt

= 0 .

HINT: This is easy.

b) Given that |φn〉 is a stationary state of H and A is a general operator (i.e., it doesn’t have
to be an observable or Hermitian), show that

〈φn|[H,A]|φn〉 = 0 .

HINT: This is not so hard. Recall the formal definition of the Hermitian conjugate of
general operator A is

〈α|A|β〉 = 〈β|A†|α〉∗ .

c) Prove that [A,BC] = [A,B]C +B[A,C] for general operators A, B, and C.

d) Prove [x, p] = ih−.

e) Prove that

[H,x] = − ih
−
m
p .

73
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f) Prove that

[H, p] = ih−
(

∂V

∂x

)

.

g) Starting with the general time evolution equation (or general equation of motion) for general
observable A

d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H,A]〉

show that
d〈xp〉
dt

= 2〈T 〉 −
〈

x
∂V

∂x

〉

,

where T = p2/(2m) is the kinetic energy operator.

h) Show that
d〈xp〉
dt

=
d〈px〉
dt

.

Whe quantity xp is the one-particle, one-dimensional virial operator. In classical physics,
it would be a dynamical variable. HINT: This is easy.

i) Now for a STATIONARY STATE prove the 1-d virial theorem:

〈T 〉stationary =
1

2

〈

x
∂V

∂x

〉

stationary

.

HINT: Don’t forget part (a) and what the general equation of motion says.

j) Given potential V (x) ∝ xλ, show that the virial theorem reduces to

〈T 〉stationary =
λ

2
〈V 〉stationary .

009 qfull 01000 2 5 0 moderate thinking: Heis. Rep. evolution
Extra keywords: See Ba-137

2. Say A is an operator in the Schrödinger representation: this is the ordinary representation of
beginning quantum mechanics. The Heisenberg representation of this operator for a system
with Hamiltonian H is

A(t) = eiHt/h−Ae−iHt/h− ,

where exp(−iHt/h−) is operator function of H defined by

e−iHt/h− =
∞
∑

ℓ=0

1

ℓ!

(−iHt
h−

)ℓ

.

Show definitively that
dA(t)

dt
=

1

ih−
[A(t), H ] +

(

∂A

∂t

)

(t) ,

where the last term accounts for any implicit time dependence in A. HINTS: Take the time
derivative of a general matrix element of A(t) with the general states expanded in the eigenkets
of H . Note that in the Heisenberg representation states don’t have any time dependence: all
the time-dependence is in the operators.

009 qfull 01500 3 5 0 tough thinking: translation operator
Extra keywords: (Ba-145:2)
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3. Here are some fun proofs to do that are all in the Schrödinger representation, except for the
last one.

a) Prove
[~r, f(~p · ~u)] = ih−∇~pf(~p · ~u) ,

where ~u is just a c-number vector (i.e., a vector consisting of ordinary scalar constant
components) and the gradient operator is just a specially defined bit of formalism that
means differentiate with respect to components of ~p to form a gradient as if they were
ordinary variables. HINT: Recall

f(~p · ~u) =

∞
∑

ℓ=0

aℓ(~p · ~u)ℓ ,

where the aℓ are some scalar coefficients and convergence is assumed.

b) Using the part (a) result, prove that

ei~p·~u/h−~re−i~p·~u/h− = ~r + ~u .

c) Now prove that

|Ψ′〉 = e−i~p·~u/h−|Ψ〉

is the same state as |Ψ〉 translated by ~u. In the position representation

Ψ(~r )′ = e−i~p·~u/h−Ψ(~r ) = Ψ(~r − ~u) .

d) Given

|Ψ′〉 = e−i~p·~u/h−|Ψ〉 ,

where |Ψ′〉 and |Ψ〉 are in the Heisenberg representation, show that |Ψ′(t)〉 (the state |Ψ′〉
in the Schrödinger representation) evolves according to

|Ψ′(t)〉 = e−i~p(−t)·~u/h−|Ψ(t)〉 ,

where ~p(−t) is the momentum operator in the Heisenberg representation at −t.
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Multiple-Choice Problems

010 qmult 00100 1 1 1 easy memory: fundamental perturbation
1. In an ideal quantum mechanical measurement of an observable A:

a) the measurement always detects an EIGENVALUE of the observable and projects the
system into an EIGENSTATE of the observable corresponding to that eigenvalue.

b) the measurement always detects an EXPECTATION VALUE of the observable and
projects the system into an EIGENSTATE of the observable.

c) the measurement always detects an EXPECTATION VALUE of the observable and
projects the system into an NON-EIGENSTATE of the observable.

d) the measurement always detects an 3 EIGENVALUES of the observable and projects
the system into an NON-EIGENSTATE of the observable.

e) The measurement always detects an EXPECTATION VALUE of the observable and
projects the system into a STATIONARY STATE.

Full-Answer Problems

76



Multiple-Choice Problems

011 qmult 00100 1 4 3 easy deducto-memory: central force
1. A central force is one which always points radially inward or outward from a fixed point which

is the center of the central force. The magnitude of central force depends only on:

a) the angle of the particle.
b) the vector ~r from the center to the particle.
c) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e) the uncertainty principle.

011 qmult 00200 1 1 2 easy memory: separation of variables
2. A usual approach to getting the eigenfunctions of a Hamiltonian in multi-dimensions is:

a) non-separation of variables. b) separation of variables.
c) separation of invariables. d) non-separation of invariables.
e) non-separation of variables/invariables.

011 qmult 00210 1 1 3 easy memory: separation of variables 2
3. Say you have a differential equation of two independent variables x and y and you want to look

for solutions that can be factorized thusly f(x, y) = g(x)h(y). Say then it is possible to reorder
equation into the form

LHS(x) = RHS(y) ,

where LHS stands for left-hand side and RHS for right-hand side. Well LHS is explicitly
independent of y and implicitly independent of x:

∂LHS

∂y
= 0 and

∂LHS

∂x
=
∂RHS

∂x
= 0 .

Thus, LHS is equal to a constant C and necessarily RHS is equal to the same constant C which
is called the constant of separation (e.g., Arf-383). The solutions for g(x) and h(y) can be found
separately and are related to each other through C. The solutions for f(x, y) that cannot be
factorized are not obtained, of course, by the described procedured. However, if one obtains
complete sets of g(x) and h(y) solutions for the x-y region of interest, then any solution f(x, y)
can be constructed at least to within some approximation (Arf-443). Thus, the generalization
of the described procedure is very general and powerful. It is called:

a) separation of the left- and right-hand sides. b) partitioning.
c) separation of the variables. d) solution factorization. e) the King Lear method.

011 qmult 00212 1 1 3 easy memory: separation of variables 3
4. Say you have a partial differential equation with independent variables xi and you want to look

for solutions that can be factorized thusly

f({xi}) =
∏

fi(xi) .

Now you substitute the factored form into the differential equation and find that it is possible
to reorder differential equation into the form

g =
∑

j

gj(xj) = Constant ,

77
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where gj(xj) is some formula depending on xj only out of the set of variables {xi}. The gj(xj)
function also depends in general on fj(xj) and its derivatives. If we differentiate g with respect
to general xi, we find

∂g

∂xi
=
∑

j

∂gj(xj)

∂xi
=
∂gi(xi)

∂xi
= 0 ,

where we have used the fact that the variables are independent. Since xi was general, we
conclude that gi(xi) is actually independent of xi as well as all other independent variables.
So all the gi(xi) expressions, in fact, equal constants. These constants are called constants of
separation. Thus, we have the set of ordinary differential equations

gi(xi) = Ci ,

where Ci is the constant of separation for variable i. The solutions for all fi(xi) can now be
looked for. The solutions f({xi}) that cannot be factorized are not obtained, of course, by
the described procedured. However, if one obtains complete sets of solutions for each of the
ordinary differential equations, then any solution f({xi}) can be constructed at least to within
some approximation (Arf-443). Thus, the described procedure is very general and powerful. It
is called:

a) separation of the g’s. b) partitioning. c) separation of the variables.
d) the solution factorization. e) the King Lear method.

011 qmult 00300 1 4 2 easy deducto-memory: relative/cm reduction
5. “Let’s play Jeopardy! For $100, the answer is: By writing the two-body Schrödinger equation

in relative/center-of-mass coordinates.”

How do you , Alex?

a) reduce a ONE-BODY problem to a TWO-BODY problem
b) reduce a TWO-BODY problem to a ONE-BODY problem
c) solve a one-dimensional infinite square well problem
d) solve for the simple harmonic oscillator eigenvalues
e) reduce a TWO-BODY problem to a TWO-BODY problem

011 qmult 00310 1 4 4 easy deducto-memory: reduced mass
6. The formula for the reduced mass m for two-body system (with bodies labeled 1 and 2) is:

a) m = m1m2 . b) m =
1

m1m2
. c) m =

m1 +m2

m1m2
. d) m =

m1m2

m1 +m2
.

e) m =
1

m1
.

011 qmult 00400 1 4 2 easy deducto memory: spherical harmonics 1
7. The eigensolutions of the angular part of the Hamiltonian for the central force problem are the:

a) linear harmonics. b) spherical harmonics. c) square harmonics.
d) Pythagorean harmonics. e) Galilean harmonics.

011 qmult 00410 1 4 4 easy deducto-memory: spherical harmonics 2
Extra keywords: mathematical physics

8. “Let’s play Jeopardy! For $100, the answer is: They form a basis or complete set for the 2-
dimensional space of the surface a sphere which is usually described by the angular coordinates
of spherical polar coordinates.”

What are the , Alex?

a) Hermite polynomials b) Laguerre polynomials
c) associated Laguerre polynomials d) spherical harmonics
e) Chebyshev polynomials
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011 qmult 00420 1 4 3 easy deducto memory: spherical harmonic Y00
9. Just about the only spherical harmonic that people remember—and they really should remember

it too—is Y00 =:

a) eimφ. b) r2. c)
1√
4π

. d) θ2. e) 2a−3/2e−r/a.

011 qmult 00500 1 4 2 easy deducto-memory: spdf designations
10. Conventionally, the spherical harmonic eigenstates for angular momentum quantum numbers

ℓ = 0, 1, 2, 3, 4, ...

are designated by:

a) a, b, c, d, e, etc.
b) s, p, d, f , and then alphabetically following f : i.e., g, h, etc.
c) x, y, z, xx, yy, zz, xxx, etc.
d) A, C, B, D, E, etc.
e) $@%&*!!

011 qmult 00510 1 4 3 easy deducto-memory: s electrons
11. “Let’s play Jeopardy! For $100, the answer is: What the ℓ = 0 electrons (or zero orbital angular

momentum electrons) are called in spectroscopic notation.”

What are , Alex?

a) the Hermitian conjugates b) Herman’s Hermits c) s electrons d) p electrons
e) h electrons

Full-Answer Problems

011 qfull 00100 2 5 0 moderate thinking: 2-body reduced to 1-body problem
Extra keywords: (Gr-178:5.1)

1. The 2-body time-independent Schrödinger equation is

− h−2

2m1
∇2

1ψ − h−2

2m2
∇2

2ψ + Vtotψ = Etotalψ .

If the potential Vtot = V (~r ) + Vcm(~R ) (where ~r = ~r2 − ~r1 is the relative vector and ~R (the
center of mass vector), then the problem can be separated into two problems: a relative problem
1-body equivalent problem and a center-of-mass 1-body equivalent problem. The center of mass
vector is

~R =
m1~r1 +m2~r2

M
,

where M = m1 +m2.

a) Determine the expressions for ~r1 and ~r2 in terms of ~R and ~r. Show how you do this.

b) Determine the expressions for ∇2
1 and ∇2

2 in terms of ∇2
cm (the center-of-mass Laplacian

operator) and ∇2 (the relative Laplacian operator). Show how you do this. Then re-express
the kinetic operator

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2



80 Chapt. 11 The Central Force Problem and Orbital Angular Momentum

in terms of ∇2
cm and ∇2. HINTS: The x, y, and z direction components of vectors can

all be treated separately and identically since x components of ~R and ~r) (i.e., X and x)
depend only on x1 and x2, etc. You can introduce a reduced mass to make the transformed
kinetic energy operator simpler.

c) Now separate the 2-body Schrödinger equation assuming Vtot = V (~r ) + Vcm(~R ). Show
explicitly how the separation of variables is done. What are the solutions of the center-
of-mass problem if Vcm(~R) = 0? How would you interpret the solutions of the relative
problem? HINT: I’m only looking for a short answer to the interpretation question.

011 qfull 00200 2 3 0 moderate math: central-force azimuthal component solution
Extra keywords: solving the azimuthal component of the central force problem

2. In the central force problem, the separated azimuthal part of the Schrödinger equation is:

d2Φ

dφ2
= κ2Φ ,

where κ2 is the constant of separation for the azimuthal part. The constant has been
parameterized in terms of κ2 because clairvoyance tells this is the good way.

a) Since the differential equation is second order, there should should be two independent
solutions for each value of κ2: i.e., the eigenvalue problem has degeneracy of 2 for the
eigenvalue. Solve for the general solution Φ for each κ2: i.e., the solution that is a linear
combination of the two independent solutions with undetermined coefficients. Note that
writing the separation constant as κ2 is so far just a parameterization and nothing yet
demands that κ2 be greater than zero: it could be zero or less than zero. HINT: Use an
exponential trial function. But do not forget the special case of κ2 = 0.

b) Quantum mechanics that wave functions and their derivatives be continuous, except that
discontinuities in derivatives are allowed when a potential goes to infinity which is just
unreachable ideal limit. For our system, we are not allowing any infinite potentials. Our
solutions and all order of derivatives are, in fact, continuous.

The space for azimuthal part is, in fact, finite, but unbounded. The coordinate φ = 0
runs from 0 to 2π, but when you move 2π you are back where you started. So in a sense there
are no boundary conditions. But quantum mechanics also demands that wave functions
be single-valued. Since we have no interpretation for multi-valuedness, we micropostulate
that it doesn’t happen. The single-valuedness condition replaces the boundary conditions
for the azimuthal part. Impose the single-valuedness condition on the general solution
obtained in the part (a) answer and its derivative, and so that this leads to κ (not κ2 note)
must be an integer times the imaginary unit i. Remember to consider the special case
where κ2 = 0?

c) Writing im for κ where m is any integer, write down a general formula solution of the
azimuthal part for a single m value. The solutions for m and −|m| are the degenerate
solutions for κ2. By convention, no normalization constant is applied to the azimuthal
part solutionsd: i.e., the coefficient of the special function that is the solution is left as
just 1. The normalization is applied to the entire angular solutions which are the spherical
harmonics. HINT: This is easy.

d) The orbital angular momentum z-component observable

Lz =
h−
i

∂

∂φ
.

To be Hermitian this operator, the only allowed solutions must satisfy certain boundary
conditions which for the interval [0, 2π]. The single-valuedness condition tells us these
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boundary conditions must be periodic boundary conditions. What are the eigen states for
this observable that satisfy the periodic boundary conditions? Are the eigenvalues pure
real as they should be? What is the relationship between these eigen states and thos of the
azimuthal angle part we found in the part (c) answer?

e) Normalize the allowed eigensolutions of Lz Note these solutions are, in fact, conventionally
left unnormalized: i.e., the coefficient of the special function that is the solution is left as
just 1. Normalization is conventionally imposed on the total orbital angular momentum
solutions, spherical harmonics.

011 qfull 01000 3 5 0 tough thinking: the nearly rigid rotator
3. You have a 3-dimensional system consisting of two distinct particles of masses m1 and m2. The

two particles form a nearly rigid rotator. The relative time-independent Schrödinger equation
for the system is:

[

− h−2

2µ

1

r2
∂

∂r

(

r2
∂

∂r

)

+
L2

2µr2
+ V (r)

]

Ψ(r, θ, φ) = EΨ(r, θ, φ) ,

where r, θ, and φ are the relative coordinates, µ = m1m2/(m1 +m2) is the reduced mass, and
the potential is

V (r) =

{

0 , for r ∈ [a− ∆a/2, a+ ∆a/2];
∞ , otherwise.

a) Assume that ∆a is so much smaller than a that L2/(2µr2) ≈ L2/(2µa2). Now separate
the equation into radial and angular parts using Erad and Erot as the respective separation
constants: Erad +Erot = E. Let the radial solutions be R(r). You know what the angular
solutions should be. Write down the separated equations.

b) For the radial equation assume that r varies so much more slowly than R over the region
of non-infinite potential that

1

r2
∂

∂r

(

r2
∂R

∂r

)

≈ ∂2R

∂r2

in that region. Change the coordinate variable to x = r−(a−∆a/2) for simplicity: the non-
infinite region of the potential then is then the x range [0,∆a]. With this approximation
solve for the radial eigenstates and eigen-energies. Normalize the eigenstates. HINTS:
Holy déjà vue all over again Batman, it’s the 1-dimensional infinite square well problem.
Don’t mix up a and ∆a.

c) Write down the eigenstates (just their general symbol, not expressions) and eigen-energy
expression for the rotational equation. What is the degeneracy of each eigen-energy?
HINTS: You shouldn’t being trying to solve the equation. You should know what the
eigenstates are.

d) Write the general expression for the total wave function. How many quantum numbers
does it depend on?

e) Write down the general expression for the total energy. Which causes a greater change in
energy: a change of 1 in the quantum number controling the radial energy or a change
of 1 in the quantum number controling the rotational energy? Remember ∆a << a by
assumption.

f) Sketch the energy level diagram.
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Multiple-Choice Problems

012 qmult 00050 1 1 1 easy memory: hydrogen atom, 2-body
1. The hydrogen atom is the simplest of all neutral atoms because:

a) it is a 2-body system. b) it is a 3-body system. c) it has no electrons.
d) it has many electrons. e) hydrogen is the most abundant element in the universe.

012 qmult 00100 1 1 3 easy memory: radial wave function requirements
2. What basic requirements must the radial part of hydrogenic atom wave function meet in order

to be a physical radial wave function?

a) Satisfy the radial part of the Schrödinger equation and grow exponentially as r → ∞.
b) Not satisfy the radial part of the Schrödinger equation and grow exponentially as r → ∞.
c) Satisfy the radial part of the Schrödinger equation and be normalizable.
d) Not satisfy the radial part of the Schrödinger equation and be normalizable.
e) None at all.

012 qmult 00190 1 1 2 easy memory: hydrogen wave functions
3. The hydrogenic atom eigenstate wave functions contain a factor that causes them to:

a) increase exponentially with radius. b) decrease exponentially with radius.
c) increase logarithmically with radius. d) increase quadratically with radius.
e) increase linearly with wavelength.

012 qmult 00200 1 4 1 easy deducto-memory: associated Laguerre polyn.
4. What special functions are factors in the radial part of the of the hydrogenic atom eigenstate

wave functions?

a) The associated Laguerre polynomials. b) The unassociated Laguerre polynomials.
c) The associated Jaguar polynomials. d) The unassociated jaguar polynomials.
e) The Hermite polynomials.

012 qmult 01000 1 4 1 easy deducto-memory: atomic spectroscopy
5. Almost all would agree that the most important empirical means for learning about atomic

energy eigenstates is:

a) spectroscopy. b) microscopy. c) telescopy. d) pathology. e) astrology.

Full-Answer Problems

012 qfull 00100 1 1 0 easy memory: separation of two body problem
1. The full Schrödinger equation for the hydrogenic atom is a function of two positions, one for

the electron and one for the nucleus. What must one do to turn the problem into a central force
problem for one body?

82
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012 qfull 00200 2 5 0 moderate thinking: how does ¡r¿ vary with n?
2. How does the mean radius (expectation value radius) 〈r〉nℓm for the hydrogenic atom vary with

increasing n (i.e., with increasing energy)?

012 qfull 00300 2 1 0 moderate memory: H atom quantum numbers
3. What are the 3 quantum numbers of the hydrogenic atom derived from the spatial Schrödinger

equation?

012 qfull 00400 2 1 0 moderate memory: s electron polar plot
4. Sketch the polar plot for an s electron (i.e., an ℓ = 0 electron)?

012 qfull 00500 2 5 0 moderate thinking: rotating or standing wave functions
5. Are the hydrogenic wave functions Ψnlm rotating wave or standing wave functions?

012 qfull 00600 2 5 0 moderate thinking: rotating or standing wave functions
6. Can there be hydrogenic atom stationary-state standing wave functions?

012 qfull 00700 2 5 0 moderate thinking: what is the Bohr magneton?
7. What is the Bohr magneton?

012 qfull 00800 2 5 0 moderate thinking: atomic magnetic moments
8. Why should an atom have a magnetic moment?

012 qfull 00900 1 3 0 easy math: first 4 Laguerre polynomials keyword first 4 Laguerre polynomials,
Rodrigues’s formula

9. Using Rodrigues’s formula for Laguerre polynomials (NOT Legendre polynomials) determine
the first 4 Laguerre polynomials.

012 qfull 01000 3 3 0 tough thinking : separation of external potential
Extra keywords: separation of external potential, 1st order expansion

10. Consider the initial hydrogenic-atom Schrödinger equation where the position variables are still
for the nucleus and electron. Say we add perturbation potentials Vn(~r n) for the nucleus and
Ve(~r e) for the electron. We further specify that these perturbation potentials vary only linearly
with position. How would one have to treat these potentials in order to transform to the center-
of-mass/relative coordinate system and separate the Schrödinger equation? HINTS: Have you
heard of the Taylor’s series? You’ll have to express the ~rn and ~r e in terms of relative and center
of mass coordinates.

012 qfull 01200 2 3 0 moderate math: s electron in nucleus
Extra keywords: (Gr-142:4.14)

11. Let us consider the probability that the electron of a hydrogenic atom in the ground state will
be in the nucleus. Recall the wave function for ground state is

Ψ100(~r ) = R10(r)Y00(θ, φ) = 2a−3/2e−r/a × 1√
4π

(Gr2005-154), where a = aBohr[me/(mZN)]: aBohr ≈ 0.529Å is the Bohr radius, ZN is the
nuclear charge, me is the electron mass, and m is the reduced mass of the actual hydrogenic
atom.

a) First assume that the wave function is accurate down to r = 0. It actually can’t be, of
course. The wave function was derived assuming a point nucleus and the nucleus is, in
fact, extended. However, the extension of the nucleus is of order 105 times smaller than
the Bohr radius, and so the effect of a finite nucleus is a small perturbation. Given that
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the nuclear radius is b, calculate the probability of finding the electron in the nucleus. Use
ǫ = b/(a/2) = 2b/a to simplify the formula. HINT: The formula

g(n, x) =

∫ x

0

e−ttn dt = n!

(

1 − e−x
n
∑

ℓ=0

xℓ

ℓ!

)

could be of use.

b) Expand the part (a) answer in ǫ power series and show to lowest non-zero order that

P (r < b, ǫ << 1) =
1

6
ǫ3 =

4

3

(

b

a

)3

.

c) An alternate approach to find the probability of the electron being in the nucleus is assume
Ψ(~r ) can be approximated by Ψ(0) over nucleus. Thus

P (r < b) ≈
(

4π

3

)

b3|Ψ(0)|2 .

Is this result consistent with the part (b) answer?

d) Assume b ≈ 10−15 m and a = 0.5 × 10−10 m. What is the approximate numerical value
for finding the electron in the nucleus? You can’t interpret this result as “the fraction of
the time the electron spends in the nucleus”. Nothing in quantum mechanics tells us that
the electron spends time definitely anywhere. One should simply stop with what quantum
mechanics gives: the result is the probability of finding the electron in nucleus.

012 qfull 01300 3 5 0 tough thinking: derivation of quantum J current
Extra keywords: derivation of quantum ~J current, correspondence principle

12. Let’s see if we can derive the probability current density from the correspondence principle.
Note that the classical current density is given by ~jcl = ~vclρcl. (a) First off we have to figure
out what the quantum mechanical ρ and ~j are classified as in quantum mechanics? Are they
operators or wave functions or expectation values or are they just their own things? Well
they may indeed be just their own things, but one can interpret them as belonging to one
of the three mentioned categories. Which? (b) Well now that part (a) is done we can use
the correspondence principle to find an operator corresponding to classical ~jcl. What are the
the appropriate operators to replace the classical ρcl and ~vcl with (i.e., how are ρcl and ~vcl
quantized)? (c) Have you remembered the quantization symmetrization rule? (d) Now go to it
and derive the quantum mechanical ~j. You might find the 3-d integration-by-parts rule handy:

∫

V

Ψ∇χdV =

∫

A

Ψχd ~A−
∫

V

∇ΨχdV ,

where
∫

V is for integral over all volume V and
∫

A is for integral over all vectorized surface area
of volume V .

012 qfull 02100 1 3 0 easy math: positronium solution
13. Positronium is an exotic atom consisting of an electron and its antiparticle the positron. It was

predicted to exist in 1934 (or even earlier) shortly after the positron was discovered in 1932.
Positronium was experimentally discovered in 1951. Positronium cannot exist long because the
electron and positron will mutually annihilate usually producing two γ-rays although more γ-
rays are possible since there are multiple modes of annihilation. Positronium frequenctly forms
in exited states and decays by radiative transitions to the ground state unless it annihilates
first by some mode. Positronium transition spectra and annihilation γ-ray spectra provide a



Chapt. 12 The Hydrogenic Atom 85

fine test of quantum mechanics and quantum electrodynamics. Neglecting annihilation effects,
spin effects, and relativistic effects, positronium to first order is Schrödinger-solution hydrogenic
atom. We just consider this simplified positronium in this problem.

a) What are the positronium total mass and reduced mass?

b) What is the formula for the energy of the energy levels of positronium?

c) How does the emitted/absorbed photon of a positronium line transition (i.e., transition
between energy levels) compare to the corresponding line transition photon of the
Schrödinger-solution HYDROGEN atom? By “corresponding”, we mean that the
photons result from transitions that have the same initial and final principal quantum
numbers.
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Multiple-Choice Problems

013 qmult 00100 1 1 4 easy memory: ang. mom. commutation relations
1. The fundamental angular momentum commutation relation and a key corollary are, respectively:

a) [Ji, Jj ] = 0 and [J2, Ji] = Ji. b) [Ji, Jj ] = Jk and [J2, Ji] = 0.
c) [Ji, Jj ] = 0 and [J2, Ji] = 0. d) [Ji, Jj ] = ih−εijkJk and [J2, Ji] = 0.
e) [xi, pj ] = ih−δij , [xi, xj ] = 0, and [pi, pj ] = 0.

013 qmult 00910 1 1 3 easy memory: vector model
2. In the vector model for angular momentum of a quantum system with the standard axis for the

eigenstates being the z axis, the particles in the eigenstates are thought of as having definite
z-components of angular momentum mj h− and definite total angular momenta of magnitude
√

j(j + 1)h−, where j can stand for orbital, spin, or total angular momentum quantum number
and mj is the z-component quantum number. Recall j can be only be integer or half-integer
and there are 2j+ 1 possible values of mj given by −j,−j+ 1, . . . , j − 1, j. The x-y component

of the angular momementum has magnitude
√

j(j + 1) −m2
j h
−, but it has no definite direction.

Rather this component can be thought of as pointing all x-y directions in simultaneous: i.e., it
is in a superposition state of all direction states. Diagramatically, the momentum vectors can
be represented by

a) cones with axis aligned with the x-axis. b) cones with axis aligned with the y-axis.
c) cones with axis aligned with the z-axis.
d) cones with axis aligned with the x-y-axis. e) the cones of silence.

013 qmult 01000 1 1 5 easy memory: rigid rotator eigen-energies
3. For a rigid rotator the rotational eigen-energies are proportional to:

a) ℓh−. b) ℓ2h−2
. c) h−2

/[ℓ(ℓ+ 1)]. d) h−2
/ℓ2. e) ℓ(ℓ+ 1)h−2

.

013 qmult 02000 1 1 1 easy memory: added ang. mom. operators
4. Does the fundamental commutation relation for angular momentum operators (i.e., [Ji, Jj ] =
ih−εijkJk) apply to angular momentum operators formed by summation from angular momentum
operators applying to individual particles or to spatial and spin degrees of freedom? The answer
is:

a) Yes. b) No. c) Maybe. d) All of the above. e) None of the above.

013 qmult 02100 1 4 5 easy deducto-memory: Clebsch-Gordan coefficients
5. “Let’s play Jeopardy! For $100, the answer is: The name for the coefficients used in the

expansion of a total angular momentum state for 2 angular momentum degrees of freedom in
terms of products of individual angular momemtum states.”

What are the , Alex?

a) Racah W coefficients b) Wigner 6j symbols c) Buck-Rogers coefficients
d) Flash-Gordon coefficients e) Clebsch-Gordan coefficients

86
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013 qmult 02200 1 4 5 easy deducto-memory: Clebsch-Gordan m rule
6. “Let’s play Jeopardy! For $100, the answer is: In constructing a set of |j1j2jm〉 states from

a set of |j1j2m1m2〉 states using Clebsch-Gordan coefficients, this is a strict constraint on the
non-zero coefficients.”

What is the rule , Alex?

a) of complete overtures b) of incomplete overtures c) m = m2
1 +m2

2

d) m = m1 −m2 e) m = m1 +m2

Full-Answer Problems

013 qfull 00090 2 5 0 moderate math: kroneckar delta, Levi-Civita
1. There are two symbols that are very useful in dealing with quantum mechanical angular

momentum and in many other contexts in physics: the Kronecker delta:

δij =

{

1 , i = j;
0 , i 6= j;

and the Levi-Civita symbol

εijk =







1 , if ijk is a cyclic permutation of 123 (3 cases);
−1 , if ijk is an anticyclic permutation of 123 (3 cases);
0 , if any two indices are the same.

NOTE: Leopold Kronecker (1823–1891) was a German mathematician although born in what
is now Poland. Tullio Levi-Civita (1873–1941) was an Italian mathematician: the “C” in Civita
is pronounced “ch”.

a) Prove δijδik = δjk, where we are using Einstein summation here and below, of course.

b) Now the toughie. Prove
εijkεiℓm = δjℓδkm − δjmδkℓ .

HINTS: I know of no simple one or two line proof. The best I’ve ever thought of was
to consider cases where jkmℓ span 3, 1, and 2 distinct values and to show that the two
expressions are equal in all cases.

c) Now the cinchy one. Prove
εijkεijm = 2δkm .

d) What does εijkεijk equal? Note there is Einstein summation on all indices now.

013 qfull 00100 2 5 0 moderate thinking: angular momentum operator identities
2. Prove the following angular momentum operator identities. HINT: Recall the fundamental

angular momentum commutator identity,

[Ji, Jj ] = ih−εijkJk , and the definition J± ≡ Jx ± iJy .

a) [Ji, J
2] = 0.

b) [J2, J±] = 0.
c) [Jz, J±] = ±h−J±.

d) J†
±J± = J∓J± = J2 − Jz(Jz ± h−).
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e)

Jx =
1

2
(J+ + J−) and Jy =

1

2i
(J+ − J−) .

f) [J+, J−] = 2h−Jz.
g)

J2

{x

y} = ±1

4

(

J2
+ + J2

− ± {J+, J−}
)

,

where the upper case is for J2
x and the lower case for J2

y and where recall that {A,B} =
AB +BA is the anticommutator of A and B.

h)

J2 =
1

2
{J+, J−} + J2

z .

013 qfull 00200 2 3 0 mod math: diagonalization of Jx for 3-d
Extra keywords: diagonalization of the J-x angular momentum matrix for 3-d

3. The x-component angular momentum operator matrix in a three-dimensional angular
momentum space expressed in terms of the z-component orthonormal basis (i.e., the standard
basis with eigenvectors |1〉, |0〉, and | − 1〉) is:

Jx =
h−√
2





0 1 0
1 0 1
0 1 0





(Co-659) and yes the 1/
√

2 factor is correct. Is this matrix Hermitian? Diagonalize this matrix:
i.e., solve for its eigenvalues and normalized eigenvectors (written in terms of the standard basis
ket eigenvectors) or, if you prefer in column vector form. Note the solution is somewhat simpler
if you solve the reduced eigen problem. Just divide both sides of the eigen equation by h−/

√
2

and solve for the reduced eigenvalues. The physical eigenvalues are the reduced ones times
h−/

√
2. Verify that the eigenvectors are orthonormal.
NOTE: Albeit some consider it a sloppy notation since kets and bras are abstract vectors

and columns vectors are from a concrete representation, its concretely useful to equate them at
times. In the present case, the kets equate like so

|1〉 =





1
0
0



 , |0〉 =





0
1
0



 , | − 1〉 =





0
0
1



 ,

and the bras, like so

〈1| = (1, 0, 0)∗ , 〈0| = (0, 1, 0)∗ , 〈−1| = (0, 0, 1)∗ .

013 qfull 00300 2 3 0 mod math: diagonalization of J-y for 3-d
Extra keywords: diagonalization of the J-y angular momentum matrix for 3-d

4. The y-component angular momentum operator matrix in a three-dimensional angular
momentum space expressed in terms of the z-component orthonormal basis (i.e., the standard
basis with eigenvectors |1〉, |0〉, and | − 1〉) is:

Jy =
h−√
2





0 −i 0
i 0 −i
0 i 0
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(Co-659) and yes the 1/
√

2 factor is correct. Is this matrix Hermitian? Diagonalize this matrix:
i.e., solve for its eigenvalues and normalized eigenvectors (written in terms of the standard basis
kets) or, if you prefer in column vector form. Verify that the eigenvectors are orthonormal.

Note the solution is somewhat simpler if you solve the reduced eigen problem. Just divide
both sides of the eigen equation by h−/

√
2 and solve for the reduced eigenvalues. The physical

eigenvalues are the reduced ones times h−/
√

2.

NOTE: Albeit some consider it a sloppy notation since kets and bras are abstract vectors
and columns vectors are from a concrete representation, its concretely useful to equate them at
times. In the present case, the kets equate like so

|1〉 =





1
0
0



 , |0〉 =





0
1
0



 , | − 1〉 =





0
0
1



 ,

and the bras, like so

〈1| = (1, 0, 0)∗ , 〈0| = (0, 1, 0)∗ , 〈−1| = (0, 0, 1)∗ .

013 qfull 00400 2 3 0 mod math: angular momemtum eqn. of motion
Extra keywords: (Gr-150:4.21) torque

5. Let’s consider the angular momentum equation of motion in in the context of quantum
mechanics.

a) Prove that

d〈~L 〉
dt

= 〈~τ 〉 ,

where ~L = ~r × ~p is the angular momentum operator and ~τ = ~r × (−∇V ) is the torque
operator.

b) Then prove that

d〈~L 〉
dt

= 0

for any central potential system: i.e., a system where the potential depends on radius alone.

HINTS: You’ll need to use the general time evolution equation—or equation of motion or
derivative of expectation value: whatever one calls it—people do seem to avoid giving it a name.
Then you will need to work out a commutation relation with a cross product operator. There
are two approaches. First, show what the commutation relation is component by component.
But that’s for pedestrians. The second way is to use the Levi-Civita symbol with the Einstein
summation rule to prove the all commutation relations simultaneously. Part (a) is most easily
done using Cartesian coordinates and part (b) using spherical polar coordinates.

013 qfull 00500 2 3 0 moderate thinking: orbital angular momentum
Extra keywords: expectation values, standard deviations, quantum and classical analogs

6. Consider a spinless particle in an eigenstate |ℓ,m〉 of the L2 and Lz operators: ℓ is the L2

quantum number and m the Lz quantum number. The set of |ℓ,m〉 states are a complete
orthonormal set for angular coordinates. Recall

L2|ℓ,m〉 = ℓ(ℓ+ 1)h−2|ℓ,m〉 ,
Lz|ℓ,m〉 = mh−|ℓ,m〉 ,
L±|ℓ,m〉 = h−

√

ℓ(ℓ+ 1) −m(m± 1)|ℓ,m± 1〉 ,
and



90 Chapt. 13 General Theory of Angular Momentum

L± = Lx ± iLy .

a) Solve for expectation values 〈Lx〉, and 〈Ly〉, and standard deviations ∆Lx and ∆Ly.
HINTS: You will need expressions for Lx and Ly in terms of the given operators. Also
the everything can be done by operator algebra: there is no need to bring in the spherical
harmonics or particular representations of the operators.

b) Let us now see if there are classical analogs to the results in part (a). Let classical

Lz = mh− ,

Lx = h−
√

ℓ(ℓ+ 1) −m2 cos(φ)

and

Ly = h−
√

ℓ(ℓ+ 1) −m2 sin(φ) ,

where φ is the azimuthal angle of the angular momentum vector. Note L2
x + L2

y + L2
z =

ℓ(ℓ+1). Now solve for the classical 〈Lx〉 and 〈Ly〉, and the classical ∆Lx and ∆Ly assuming
(i) that φ has a random uniform distribution the range [0, 2π] and (ii) that φ = wt where
ω is a constant angular frequency.

013 qfull 00600 2 5 0 moderate thinking: orb. ang. mon. commutator proofs
7. You are given the basic commutator identity [ri, pj ] = ih−δij and the correspondence principle

result ~L = ~r × ~p.

a) Prove [Li, rj ] = ih−εijkrk.

b) Prove [Li, pj] = ih−εijkpk.

c) Prove [Li, Lj] = ih−εijkLk. HINT: Remember the old subtract and add the same thing
trick.

d) Prove [Li, qjqj ] = 0, where ~q is any of ~r, ~p, and ~L.

e) Prove [Li, Qj ] = ih−εijkQk with ~Q = A~qB, where A and B are any scalar combination of

~r, ~p, and ~L: e.g., A = r2kp4mL2n . . ., where k, m, and n are integers.

f) Prove [α̂ · ~L, ~Q] = ih−~Q× α̂, where α̂ is a constant c-number unit vector.

g) Show that

d ~Q

dα
=

i

h−
[α̂ · ~L, ~Q]

is the differential equation for a right-hand-rule rotation by α of operator ~Q about the axis
in the direction α̂. HINT: I’m not looking for mathematical rigor—but if you can do that
it’s OK.

h) Show that the solution of

d ~Q

dα
=

i

h−
[α̂ · ~L, ~Q]

is
~Q = ei~L·~α/h− ~Q0e

−i~L·~α/h− ,

where ~α = αα̂ is a general angle in vector form and ~Q0 is the inital operator ~Q.

013 qfull 02000 1 5 0 easy thinking: ang. mom. fundamental commutation
Extra keywords: for addition. Reference Ba-332.
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8. The fundamental commutation relation of angular momentum can be generalized for multiple
degrees of freedom. The degrees of freedom could be the angular momenta of multiple particles
or the spatial and spin angular momenta of a particle or combinations thereof. Say we have
degrees of freedom f and g, then the relation is

[Jfi, Jgj ] = δfgih−εijkJfk .

We see that component operators refering to different degrees of freedom commute: this is true
even in the case of indistinguishable particles. The total angular momentum operator ~J for a set
of degrees of freedom with individual angular momentum operators ~Jf is, by the correspondence
principle,

~J =
∑

f

~Jf .

a) Prove that the fundamental commutation relation holds for the components of ~J : i.e., prove

[Ji, Jj ] = ih−εijkJk .

What does this result imply for summed angular momenta?

b) Now let ~J = ~J1 + ~J2. Prove
J± = J1± + J2± .

c) Prove
J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z .

013 qfull 02100 3 5 0 hard thinking: Clebsch-Gordan ell plus 1/2
Extra keywords: See Ba-341 and CT-1020

9. One special case of great interest for which general formulae can be found for all Clebsch-Gordan
coefficients is that of a general angular momentum added to a spin 1/2 angular momentum. Let
the original angular momentum operators be labeled J2

1 , J1z, J
2
2 , and J2z : the corresponding

eigenvalues are j1(j1 + 1), m1, (1/2)(1/2 + 1), and ±1/2. The set of product states of the
original operators is {|j1, 1/2,m1,m2 = ±1/2〉}. The summed operators are J2 and Jz:

the corresponding eigenvalues are j and m. The set of eigenstates of ~J2
1 , J2

2 , J2, and Jz is
{|j1, 1/2, j = j1 ± 1/2,m〉}. The expression for the Clebsch-Gordan coefficients is

〈j1, 1/2,m1,m2 = ±1/2|j1, 1/2, j = j1 ± 1/2,m〉 .

a) For a given j1 what are the possible j values?

b) Consider the trivial subspace for j1 = 0. What are all the Clebsch-Gordan coefficients for
this subspace.

c) Now consider the general subspace for j1 ≥ 1/2. First find the expression for the summed
state with the largest m value. HINT: Recall

〈j1, j2,m1,m2|Jz|j1, j2, j,m〉 = 〈j1, j2,m1,m2|(J1z + J2z)|j1, j2, j,m〉 ,
and so

m〈j1, j2,m1,m2|j1, j2, j,m〉 = (m1 +m2)〈j1, j2,m1,m2|j1, j2, j,m〉 .

Thus, the Clebsch-Gordan coefficient is zero unless m = m1 +m2.

d) Determine the expression for

|j1, 1/2, j = j1 + 1/2,m = j1 − 1/2〉 .
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e) Now show that general expression for Clebsch-Gordan coefficient

〈j1, 1/2,m1 = m− 1/2,m2 = 1/2|j1, 1/2, j = j1 + 1/2,m〉

is given by

〈j1, 1/2,m1 = m− 1/2,m2 = 1/2|j1, 1/2, j = j1 + 1/2,m〉

=

√

j1(j1 + 1) − (m+ 1/2)(m− 1/2)

(j1 + 1/2)(j1 + 3/2)− (m+ 1)m

√

j1(j1 + 1) − (m+ 3/2)(m+ 1/2)

(j1 + 1/2)(j1 + 3/2) − (m+ 2)(m+ 1)
. . .

√

j1(j1 + 1) − j1(j1 − 1)

(j1 + 1/2)(j1 + 3/2)− (j1 + 1/2)(j1 − 1/2)
.

HINT: What is mostly needed is a word argument.

f) Now show that

√

j1(j1 + 1) − (m+ 1/2)(m− 1/2)

(j1 + 1/2)(j1 + 3/2) − (m+ 1)m

√

j1(j1 + 1) − (m+ 3/2)(m+ 1/2)

(j1 + 1/2)(j1 + 3/2)− (m+ 2)(m+ 1)
. . .

√

j1(j1 + 1) − j1(j1 − 1)

(j1 + 1/2)(j1 + 3/2) − (j1 + 1/2)(j1 − 1/2)

=

√

j1 +m+ 1/2

2j1 + 1
.

HINTS: Simplify
√

j1(j1 + 1) − (m+ 1/2)(m− 1/2)

(j1 + 1/2)(j1 + 3/2) − (m+ 1)m

by dividing top and bottom by a common factor. You might try (Aj1 +Bm+ . . .)(Cj1 +
Dm+ . . .) factorizations of the top and bottom.

g) Now show that the general expressions for the Clebsch-Gordan coefficients are

〈j1, 1/2,m1 = m∓ 1/2,m2 = ±1/2|j1, 1/2, j = j1 + 1/2,m〉 =

√

j1 ±m+ 1/2

2j1 + 1

〈j1, 1/2,m1 = m∓ 1/2,m2 = ±1/2|j1, 1/2, j = j1 − 1/2,m〉 = ∓
√

j1 ∓m+ 1/2

2j1 + 1
.

HINTS: Use the parts (e) and (f) answers and the normalization and orthogonality
conditions.

h) The operator ~J1 · ~S turns up in the spin-orbit interaction where ~J1 = ~L. Show that the

summed states |j1, 1/2, j = j1±1/2,m〉 are eigenstates of ~J1 · ~S. What are the eigenvalues?
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Multiple-Choice Problems

014 qmult 00100 1 4 5 easy deducto-memory: spin defined
Extra keywords: mathematical physics

1. “Let’s play Jeopardy! For $100, the answer is: It is the intrinsic angular momentum of a
fundamental (or fundamental-for-most-purposes) particle. It is invariant and its quantum
number s is always an integer or half-integer.

What is , Alex?

a) rotation b) quantum number c) magnetic moment
d) orbital angular momentum e) spin

014 qmult 00110 1 4 1 easy deducto-memory: Goudsmit and Uhlenbeck, spin
Extra keywords: Don’t abbreviate: it ruins the joke

2. “Let’s play Jeopardy! For $100, the answer is: Goudsmit and Ulhenbeck.”

a) Who are the original proposers of electron spin in 1925, Alex?
b) Who performed the Stern-Gerlach experiment, Alex?
c) Who are Wolfgang Pauli’s evil triplet brothers, Alex?
d) What are two delightful Dutch cheeses, Alex?
e) What were Rosencrantz and Gildenstern’s first names, Alex?

014 qmult 00120 1 1 1 easy memory: spin magnitude
3. A spin s particle’s angular momentum vector magnitude (in the vector model picture) is

a)
√

s(s+ 1)h−. b) sh− c)
√

s(s− 1)h− d) −sh− e) s(s+ 1)h−2

014 qmult 00130 1 1 5 easy memory: eigenvalues of spin 1/2 particle
4. The eigenvalues of a COMPONENT of the spin of a spin 1/2 particle are always:

a) ±h−. b) ± h−
3

. c) ± h−
4

. d) ± h−
5

. e) ± h−
2

.

014 qmult 00130 1 1 2 easy memory: eigenvalues of spin s particle
5. The quantum numbers for the component of the spin of a spin s particle are always:

a) ±1. b) s, s− 1, s− 2, . . . ,−s+ 1,−s. c) ±1

2
. d) ±2. e) ±1

4
.

014 qmult 00140 1 4 2 easy deducto-memory: spin and environment
6. Is the spin (not spin component) of an electron dependent on the electron’s environment?

a) Always.
b) No. Spin is an intrinsic, unchanging property of a particle.
c) In atomic systems, no, but when free, yes.
d) Both yes and no.
e) It depends on a recount in Palm Beach.

93
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014 qmult 00400 1 4 5 easy deducto-memory: spin commutation relation
7. “Let’s play Jeopardy! For $100, the answer is:

[Si, Sj] = ih−εijkSk .”

What is , Alex?

a) the spin anticommutator relation b) an implicit equation for εijk

c) an impostulate d) an inobservable
e) the fundamental spin commutation relation

014 qmult 00500 1 4 2 easy deducto-memory: Pauli spin matrices
8. “Let’s play Jeopardy! For $100, the answer is:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.”

What are , Alex?

a) dimensioned spin 1/2 matrices b) the Pauli spin matrices
c) the Pauli principle matrices d) non-Hermitian matrices
e) matrix-look-alikes, not matrices

014 qmult 00600 1 1 1 easy memory: spin anticommutator relation
9. The expression

{σi, σj} = 2δij1

is

a) the Pauli spin matrix anticommutator relation.
b) the Pauli spin matrix commutator relation.
c) the fundamental spin commutator relation.
d) the covariance of two standard deviations. e) an oddish relation.

014 qmult 00700 1 1 2 easy memory: spin rotation DE
10. The expression

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂]

is a differential equation for

a) α.

b) the spin operator ~S · n̂ as a function of rotation angle ~α.
c) n̂.

d) the translation of the spin operator ~S.
e) none of the above.

014 qmult 00800 1 4 5 easy deducto-memory: spin rotation operator
11. “Let’s play Jeopardy! For $100, the answer is:

U(α) = e−i~S·~α/h− = e−i~σ·~α/2 .”

a) What the Hermitian conjugate of U(−2α), Alex?
b) What is a bra, Alex?
c) What is a spin 1/2 eigenstate, Alex?
d) What is the NON-UNITARY operator for the right-hand rule rotation of a spin 1/2

state by an angle α about the axis in the direction α̂, Alex?
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e) What is the UNITARY operator for the right-hand rule rotation of a spin 1/2 state by
an angle α about the axis in the direction α̂, Alex?

014 qmult 00900 1 1 3 easy memory: space and spin operators commute
12. A spatial operator and a spin operator commute:

a) never. b) sometimes. c) always. d) always and never. e) to the office.

014 qmult 01000 2 1 4 moderate memory: joint spatial-spin rotation
13. The operator

U(α) = e−i ~J·~α/h−

a) creates a spin 1/2 particle.
b) annihilates a spin 1/2 particle
c) left-hand-rule rotates both the space and spin parts of states by an angle α about an axis

in the α̂ direction.
d) right-hand-rule rotates both the space and spin parts of states by an angle α about an axis

in the α̂ direction.
e) turns a state into a U-turn state.

014 qmult 01100 1 4 5 easy deducto-memory: spin-magnetic interaction
14. “Let’s play Jeopardy! For $100, the answer is:

~µ = g
q

2m
~J , ~F = ∇(~µ · ~B) , ~τ = ~µ× ~B , H = −~µ · ~B .”

a) What are Maxwell’s equations, Alex?
b) What are incorrect formulae, Alex?
c) What are classical formulae sans any quantum mechanical analogs, Alex?
d) What are quantum mechanical formulae sans any classical analogs, Alex?
e) What are formulae needed to treat the interaction of angular momentum of a particle and

magnetic field in classical and quantum mechanics, Alex?

014 qmult 01200 1 1 2 easy memory: Bohr magneton
15. What is

µB =
eh−
2me

= 9.27400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T ?

a) The nuclear magneton, the characteristic magnetic moment of nuclear systems.
b) The Bohr magneton, the characteristic magnetic moment of electronic systems.
c) The intrinsic magnetic dipole moment of an electron.
d) The coefficient of sliding friction.
e) The zero-point energy of an electron.

014 qmult 01210 1 1 3 easy memory: g factor g-factor
16. The g factor in quantum mechanics is the dimensionless factor for some system that multiplied

by the appropriate magneton (e.g., Bohr magneton for electron systems) times the angular
momentum of the system divided by h− gives the magnetic moment of the system. Sometimes
the sign of the magnetic moment is included in the g factor and sometimes it is just shown
explicitly. The modern way seems to be to include it, but yours truly finds that awkward and
so for now yours truly doesn’t do it. For the electron, the intrinsic magnetic moment operator
associated with intrinsic spin is given by

~µop = −gµB

~Sop

h−
,
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where µB is the Bohr magneton and Sop is the spin vector operator. What is g for the intrinsic
magnetic moment operator of an electron to modern accuracy?

a) 1. b) 2. c) 2.0023193043622(15). d) 1/137. e) 137.

014 qmult 01210 1 1 4 easy memory: magnetic moment precession
Extra keywords: The precession is also called Larmor precession (En-114)

17. An object in a uniform magnetic field with magnetic moment due to the object’s angular
momentum will both classically and quantum mechanically:

a) Lancy progress. b) Lorenzo regress. c) London recess. d) Larmor precess.
e) Lamermoor transgress.

014 qmult 01300 1 1 3 easy memory: Zeeman effect
Extra keywords: See Ba-312 and Ba-466–468

18. What is an effect that lifts the angular momentum component energy degeneracy of atoms?

a) The spin-orbit effect.
b) The Paschen-Back effect or, for strong fields, the Zeman effect.
c) The Zeeman effect or, for strong fields, the Paschen-Back effect.
d) The Zimmermann effect.
e) The Zimmermann telegram.

014 qmult 01500 1 4 1 easy deducto-memory: spin resonance
Extra keywords: See Ba-317

19. “Let’s play Jeopardy! For $100, the answer is: the effect in which a weak sinusoidal radio
frequency magnetic field causes a particle with spin to precess about a direction perpendicular
to strong uniform magnetic field that separates the spin component energy levels of the particle
in energy.”

a) What is spin magnetic resonance, Alex?
b) What is spin magnetic presence, Alex?
c) What is the preferred spin effect, Alex?
d) What is the dishonored spin effect, Alex?
e) What is the Zeeman effect, Alex?

014 qmult 01600 1 1 3 easy memory: spin resonance field
20. In spin magnetic resonance you can replace a rotating magnetic field by a sinusoidal one if you

can neglect or filter:

a) magnetic fields altogether.
b) precession altogether.
c) the very HIGH frequency effects of the sinusoidal field.
d) spin altogether.
e) the very LOW frequency effects of the sinusoidal field.

014 qmult 01700 1 4 5 easy deducto-memory: atomic clock
21. “Let’s play Jeopardy! For $100, the answer is: The simplest of these consists of a beam of

spinned particles that passes through two cavities each with crossed constant and sinusoidal
magnetic fields.”

What is a/an , Alex?

a) Stern-Gerlach experiment b) Gentle-Gerlach experiment c) quartz-crystal
d) nuclear magnetic resonance machine e) atomic clock

014 qmult 01800 1 1 1 easy memory: second defined.
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22. The spin state energy level separation of a 133Ce atom used in an atomic clock to define the
second corresponds by definition to a frequency of:

a) 9 192 631 770 Hz.
b) 3.141 592 65 Hz.
c) 2.718 28 Hz.
d) 0.577 215 66 Hz.
e) 299 792 458 Hz.

Full-Answer Problems

014 qfull 00100 2 5 0 moderate thinking: Pauli matrices in detail
1. The Pauli spin matrices are

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, and σz =

(

1 0
0 −1

)

.

a) Are the Pauli matrices Hermitian?

b) What is the result when Pauli matrices act on general vector

(

a
b

)

?

c) Diagonalize the Pauli matrices: i.e., solve for their eigenvalues and NORMALIZED
eigenvectors. NOTE: The verb ‘diagonalize’ takes its name from the fact that a matrix
transformed to the representation of its own eigenvectors is diagonal with the eigenvalues
being the diagonal elements. One often doesn’t actually write the diagonal matrix explicitly.

d) Prove that
σiσj = δij1 + iεijkσk ,

where i, j, and k stand for any of x, y, and z, 1 is the unit matrix (which can often be
left as understood), δij is the Kronecker delta, εijk is the Levi-Civita symbol, and Einstein
summation is used. HINT: I rather think by exhaustion is the only way: i.e., extreme
tiredness.

e) Prove
[σi, σj ] = 2iεijkσk and {σi, σj} = 2δij ,

where {σi, σj} = σiσj + σjσi is the anticommutator of Pauli matrices. HINT: You should
make use of the part (d) expression.

f) Show that a general 2× 2 matrix can be expanded in the Pauli spin matrices plus the unit
matrix: i.e.,

(

a b
c d

)

= α1 + ~β · ~σ ,

where ~σ = (σx, σy, σz) is the vector of the Pauli matrices. HINT: Find expressions for the
expansion coefficients α, βx, βy, and βz.

g) Let ~A and ~B be vectors of operators in general and let the components of ~B commute with
the Pauli matrices. Prove

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ .
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HINT: Make use of the part (d) expression.

014 qfull 00110 1 3 0 easy math: diagonalization of y Pauli spin matrix
Extra keywords: (CT-203:2), but it corresponds to only part of that problem

2. The y-component Pauli matrix (just the y-spin matrix sans the h−/2 factor) expressed in terms
of the z-component orthonormal basis (i.e., the standard z-basis with eigenvectors |+〉 and |−〉)
is:

σy =

(

0 −i
i 0

)

.

Diagonalize this matrix: i.e., solve for its eigenvalues and NORMALIZED eigenvectors written
in terms of the standard z-basis eigenvector kets or, if your prefer, in column vector form for
the z-basis. One doesn’t have to literally do the basis transformation of the matrix to the
diagonal form since, if one has the eigenvalues, one already knows what that form is. In
quantum mechanics, literally doing the diagonalization of the matrix is often not intended by a
diagonalization.

014 qfull 00200 2 3 0 mod math: spin 1/2, spin Sx + Sy

Extra keywords: (Ga-241:9), spin 1/2, spin Sx + Sy, diagonalization
3. Consider a spin 1/2 system. Find the eigenvectors and eigenvalues for operator Sx + Sy. Say

the system is in one of the eigen-states for this operator. What are the probabilities that an Sz

measurement will give h−/2?

014 qfull 00250 2 5 0 moderate thinking: Euler formula for matrices
Extra keywords: Reference Ba-306, but I’ve generalized the result

4. Say that A is any matrix with the property that A2 = 1, where 1 is the unit matrix. If we
define eixA by

eixA =

∞
∑

ℓ=0

(ixA)ℓ

ℓ!

(where x is a scalar), show that

eixA = 1 cos(x) + iA sin(x) .

This last expression is a generalization of Euler’s formula (Ar-299).

014 qfull 00300 3 5 0 tough thinking: rotation parameters
Extra keywords: (Ba-330:1b), but there is much more to this problem

5. The unitary spin 1/2 rotation operator is

U(~α) = e−i~S·~α/h− = e−i~σ·~α/2 ,

where ~α is the vector rotation angle: ~α = αα̂ with α being the angle of a right-hand rule rotation
about the axis aligned by α̂. To rotate the spin component operator Sz from the z direction to
the n̂ direction one uses

~S · n̂ = U(~α)SzU(−~α)

(Ba-305) To rotate a z basis eigenstate into an n̂ basis eigenstate one uses

|n±〉 = U(~α)|z±〉

(Ba-306).

a) Expand U(~α) into an explicit 2 × 2 matrix that can be used directly. Let the components
of α̂ be written α̂x, etc.
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b) Now write out U(~α)|z±〉 explicitly.

c) You are given a general normalized spin vector

|n̂+〉 =

(

a+ ib
c+ id

)

.

Find expressions for α and ~α that yield this vector following a rotation of |z+〉. Then for
those α and ~α written in terms of a, b, c, and d, find the rotated |z−〉 state |n̂−〉. Show
explicitly that |n̂−〉 is normalized and orthogonal to |n̂+〉.

d) We gone so far: why quit now. Using our explicit matrix version of U(~α) find explicit
expressions for the components of n̂ for a rotation from ẑ in terms of α and the components
of α̂. One has to solve for the components from

~σ · n̂ = U(~α)σzU(−~α) .

HINT: Write U(~α) in simplified symbols until it’s convenient to switch back to the proper
variables: e.g.,

U(~α) =

(

a+ ib −c+ id
c+ id a− ib

)

,

where a, b, c, and d have the same meanings as you should have found in the part (c)
answer.

014 qfull 00400 1 5 0 easy thinking: electron spin in B-field Hamiltonian
Extra keywords: electron spin in magnetic field Hamiltonian

6. What is the Hamiltonian fragment (piece, part) that describes the energy of an electron spin
magnetic moment in a magnetic field? This fragment in a Schrödinger equation can sometimes
be separated from the rest of the equation and solved as separate eigenvalue problem. Solve this
separated problem. The intrinsic angular momentum operator is ~S and assume the magnetic
field points in the z direction. HINTS: Think of the classical energy of a magnetic dipole in a
magnetic field and use the correspondence principle. This is not a long question.

014 qfull 00500 2 5 0 moderate thinking: classical Larmor precession
7. Let’s tackle the classical Larmor precession.

a) What is Newton’s 2nd law in rotational form?

b) What is the torque on a magnetic dipole moment ~µ in a magnetic field ~B? HINT: Any
first-year text will tell you.

c) Say that the magnetic moment of a system is given by ~µ = γ~L, where γ is the gyromagnetic

ratio and ~L is the system’s angular momemtum. Say also that there is a magnetic field
~B = (0, 0, Bz). Solve for the time evolution of ~L using Newton’s 2nd law in rotational form

assuming the INITIAL CONDITION ~L(t = 0) = (Lx,0, 0, Lz,0). HINTS: You should

get coupled differential equations for two components of ~L. They are not so hard to solve.
For niceness you should define an appropriate Larmor frequency ω.

014 qfull 00600 3 5 0 tough thinking: quantum mech. Larmor spin precession
Extra keywords: (Ba-330:1a), but there is much more to this problem

8. Consider a spin 1/2 particle with magnetic moment ~M = γ~S. We put a uniform magnetic

field in z direction: thus ~B = Bz ẑ. As usual we take the z-basis as the standard basis for the
problem.

a) Determine the normalized eigenstates for the Sx, Sy, and Sz operators in the z-basis. What are
the eigenvalues?
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b) Now expand the eigenvectors for Sz in the bases for Sx and Sy. You will need the expansions
below.

c) If we consider only the spin degree of freedom, the Hamiltonian for the system is

H = −~m · ~B = −γ~S · ~B ,

where γ is a constant that could be negative or positive. Sometimes γ is called the gyromagnetic
ratio (CT-389), but the expression gyromagnetic ratio is also used for the Landé g factor which
itself has multiple related meanings. What are the eigenvalues and eigenvectors of H in the
present case? HINT: Defining an appropriate Larmor frequency ω would be a boon further
on.

d) The time-dependent Schrödinger equation in general is

ih− ∂

∂t
|Ψ〉 = H |Ψ〉 .

What is the formal solution for |Ψ(t)〉 in terms of H and a given |Ψ(0)〉. HINT: Expand |Ψ(0)〉
in a the eigenstates of H which you are allowed to assume you know.

e) For our system you are given

|Ψ(0)〉 = a+|z+〉+ a−|z−〉 .

What is |Ψ(t)〉? What are the probabilities for measuring spin up and down in the z direction
and what is 〈Sz〉?

f) What are the probabilities for measuring spin up and down in the x direction and what is 〈Sx〉?
Try to get nice looking expressions.

g) What are the probabilities for measuring spin up and down in the y direction and what is 〈Sy〉?
Try to get nice looking expressions.

h) What can you say about the vector of spin expectation values given the answers to parts (f)
and (g)?

i) Now given the initial state as |x+〉, what are 〈Sx〉, 〈Sy〉, and 〈Sz〉 in this special case?

014 qfull 00700 2 5 0 tough thinking: spin algebra generalized
Extra keywords: (Ba-331:3)

9. Spin algebra can be used usefully for situations not involving spin. Say we have an atom
or molecule with two isolated stationary states: i.e., there can be perturbation coupling and
transitions between the two states, but no coupling to or transitions to or from anywhere else.
Let the states be |+〉 and |−〉 with unperturbed energies ǫ+ and ǫ−; let ǫ+ ≥ ǫ−. The states
are orthonormal.

a) Write the Hamiltonian for the states in matrix form and then decompose it into a linear
combination of Pauli spin matrices and the unit matrix. What are the eigenstates |+〉 and
|−〉 in column vector form? Note there is no spin necessarily in this problem: we are just
using the Pauli matrices and all the tricks we have learned with them.

b) Now we add a perturbation electric field in in the z direction: E = E0 cos(ωt). You are
given that the diagonal elements of the dipole moment matrix are zero and that the off
diagonal elements are both equal to the real constant µ: i.e., µ = 〈+|ez|−〉 = 〈−|ez|+〉.
Note µ can be positive or negative. Write down the Hamiltonian now.

c) Write the Schrödinger equation for the perturbed system and then make a transformation
that eliminates the unit matrix term from the problem. Do we ever really need to transform
the state expressions back?
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d) Show that a pretty explicit, approximate solution for the (transformed) Schrödinger
equation is

|Ψ〉 = e−iωtσz/2e−iΩσ̂t/2|Ψ(0)〉 ,

where

Ω =
√

(ω0 − ω)2 + ω2
1 and σ̂ =

(ω0 − ω)

Ω
σz − ω1

Ω
σx .

The solution is valid near resonance: i.e., the case of ω ≈ ω0, where ω0 ≡ (ǫ+ − ǫ−)/h−.
In order to get the solution we have averaged over times long enough to eliminate some of
the high frequency behavior. To do this one assumes that |ω1| = |µE0/h−| << |ω| ≈ |ω0|.
HINT: The problem is pretty much isomorphic to the spin magnetic resonance problem.

e) Given that the initial state is |+〉, what are the probabilities that the system is in |+〉 and
|−〉 at any later time? What are corresponding probabilities if the initial state is |−〉? Do
any of these probabilities have high frequency behavior: i.e., time variation with frequency
of order ω ≈ ω0 or greater?

f) The factor e−iωtσz/2 in the solution

|Ψ〉 = e−iωtσz/2e−iΩσ̂t/2|Ψ(0)〉

is actually physically insufficient to give the high frequency behavior—although it is right
in itself—since we dropped some high frequency behavior in deriving the solution. Thus
any high frequency behavior predicted by the solution can’t be physically accurate. You
should have found in part (e) that the high frequency behavior from e−iωtσz/2 canceled out
of the probability expressions. Is there any reason for keeping the factor e−iωtσz/2 in the
formal solution? If there is a reason, what is it? HINT: There is a reason.
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Multiple-Choice Problems

015 qmult 00090 1 1 1 easy memory: quantum perturbation Santa

Extra keywords: the Christmas question

1. Santa Claus discovers that an intractable time-independent Schrödinger equation (i.e., a
Hamiltonian eigen-problem) has an approximated form that is exactly solvable and has solutions
that must be nearly those of the original problem. The approximated form eigen-solutions are
also NOT degenerate. Not being a sage for nothing, Santa leaps to the conclusion that the
original problem can now be solved by:

a) non-degenerate time-independent perturbation theory.

b) checking it twice.

c) getting the elves to work on it.

d) unthrottling the antlers,

bidding Blixen to bound to the world’s height,

and chasing the dim stars,

pass into nightness and out of all sight.

e) peace on Earth and goodwill to humankind.

015 qmult 00100 1 1 1 easy memory: time-independent perturbation

2. Non-degenerage time-independent perturbation theory assumes that the stationary states and
eigen-energies of a time-independent system can be expanded in convergent power series in a
perturbation parameter about, respectively:

a) the stationary states and eigen-energies of another system called the unperturbed system.
b) the eigen-energies and stationary states of a time-dependent system. c) the origin.
d) the center. e) infinity.

015 qmult 00200 1 1 5 easy memory: zeroth order perturbation

3. The zeroth order perturbation of a system is:

a) the most strongly perturbed system. b) the mostest strongly perturbed system.
c) the deeply disturbed system. d) the negatively perturbed system
e) the unperturbed system.

015 qmult 00300 1 1 2 easy memory: 1st order corrected energy

4. The formula

E1st
n = E(0)

n + λ〈ψ(0)
n |H(1)|ψ(0)

n 〉

in non-degenerate time-independent perturbation theory is the:

a) 0th order corrected energy. b) 1st order corrected energy.
c) 2nd order corrected energy. d) 1st order corrected state.
e) 2nd order corrected state.

015 qmult 00400 1 4 4 easy deducto-memory: 1st order corrected state

102
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5. The formula

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, except k 6=n

〈ψ(0)
k |H(1)|ψ(0)

n 〉
E

(0)
n − E

(0)
k

|ψ(0)
k 〉

in non-degenerate time-independent perturbation theory is the:

a) 0th order corrected energy. b) 1st order corrected energy.
c) 2nd order corrected energy. d) 1st order corrected state.
e) 2nd order corrected state.

015 qmult 00500 1 1 3 easy memory: 2nd order corrected energy
6. The formula

E2nd
n = E(0)

n + λ〈ψ(0)
n |H(1)|ψ(0)

n 〉 + λ2
∑

all k, except k 6=n

|〈ψ(0)
k |H(1)|ψ(0)

n 〉|2

E
(0)
n − E

(0)
k

in non-degenerate time-independent perturbation theory is the:

a) 0th order corrected energy. b) 1st order corrected energy.
c) 2nd order corrected energy. d) 1st order corrected state.
e) 2nd order corrected state.

015 qmult 00600 1 4 1 easy deducto-memory: degeneracy and perturbation
7. “Let’s play Jeopardy! For $100, the answer is: A common cause for the failure of time-

independent perturbation theory—but failure can be recovered from with diagonalization.”

What is , Alex?

a) degeneracy b) tarnation c) subversion d) lunacy e) regency

015 qmult 01000 1 4 5 easy deducto-memory: diagonalization
Extra keywords: mathematical physics

8. “Let’s play Jeopardy! For $100, the answer is: A standard, non-perturbative approximate
method of solving for the eigen-energies and stationary states of a system. If the system is in a
finite Hilbert space, the method can be done for an exact solution.”

What is , Alex?

a) perturbation theory b) divagation c) strangulation d) triangulation
e) diagonalization

015 qmult 01020 1 1 2 easy memory: 2x2 eigenvalues
9. The values

E± =
1

2

[

(H11 +H22) ±
√

(H11 −H22)2 + 4|H12|2
]

are:

a) the stationary states of a 2 × 2 Hamiltonian matrix.
b) the eigen-energies of a 2 × 2 Hamiltonian matrix.
c) the eigen-energies of a 3 × 3 Hamiltonian matrix.
d) the stationary states of a 3 × 3 Hamiltonian matrix.
e) the 1st order non-degenerate perturbation correction energies.

Full-Answer Problems

015 qfull 00080 2 5 0 moderate thinking: what is a perturbation?
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1. What is a perturbation?

015 qfull 0082 2 5 0 moderate thinking: basic perturbation hypothesis
2. What is the basic non-degenerate perturbation method hypothesis?

015 qfull 00084 2 5 0 moderate thinking: smallness parameter
3. What is role of the smallness parameter in non-degenerate perturbation theory?

015 qfull 00086 2 5 0 moderate thinking: 2nd bigger than 1st
4. If all the 2nd order non-degenerate perturbation corrections are greater than the 1st order ones,

what might you suspect?

015 qfull 00088 2 5 0 moderate thinking: 2nd bigger than 1st all zero
5. If all the 2nd order non-degenerate perturbation corrections are greater than the 1st order ones,

but the 1st order ones were all identically zero, what might you suspect?

015 qfull 00190 2 5 0 tough thinking: 2nd order state correction
6. In non-degenerate time-independent perturbation theory, the 1st and 2nd order energy

corrections for state i are, respectively,

E
(1)
i = 〈ψ(0)

i |H(1)|ψ(0)
i 〉 and E

(2)
i =

∑

all j, except j 6=i

|〈ψ(0)
j |H(1)|ψ(0)

i 〉|2

E
(0)
i − E

(0)
j

and the 1st order state correction (which is not a state itself nor normalized in general) is

|ψ(1)
i 〉 =

∑

all j, except j 6=i

c
(1)
ij |ψ(0)

j 〉 =
∑

all j, except j 6=i

〈ψ(0)
j |ψ(1)

i 〉|ψ(0)
j 〉

=
∑

all j, except j 6=i

〈ψ(0)
j |H(1)|ψ(0)

i 〉
E

(0)
i − E

(0)
j

|ψ(0)
j 〉 .

The 2nd order corrected energy is

E2nd
i = E

(0)
i + λE

(1)
i + λ2E

(2)
i

and the 1st order corrected state is

|ψ1st
i 〉 = |ψ(0)

i 〉 + λ|ψ(1)
i 〉 ,

where λ is the perturbation parameter. We have assumed that the set of states {|ψ(0)
i 〉} is a

complete orthonormal set of non-degenerate states.
But what is the 2nd order state correction? Let’s see if we can find it.

a) The general equation for the nth order perturbation for a state i is

n
∑

k=n−1

H(n−k)|ψ(k)
i 〉 =

n
∑

k=0

E
(n−k)
i |ψ(k)

i 〉 .

Specialize this for the 2nd order (i.e., to n = 2) and expand the sums so that all the terms
are shown explicitly.

b) Take the inner product of the part (a) answer with |ψ(0)
i 〉 and recover the formula for the

2nd order energy correction. Show the steps of the recovery. HINT: In order to get the
answer, you will need to use a result for order n = 1 that follows from the normalization

constraint on the full perturbation solution. The result is 〈ψ(0)
i |ψ(1)

i 〉 = 0.
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c) The 2nd order state correction can be obtained from an expansion in the complete set of
unperturbed states:

|ψ(2)
i 〉 =

∑

k

c
(2)
ik |ψ(0)

k 〉 =
∑

k

〈ψ(0)
k |ψ(2)

i 〉|ψ(0)
k 〉 .

Now using the part (a) result, solve for

c
(2)
ij = 〈ψ(0)

j |ψ(2)
i 〉

for the case of
j 6= i .

Write out the solution entirely in 0th order quantities, except for the perturbation
Hamiltonian H(1).

d) The part (c) answer did not obtain the expansion coefficient

c
(2)
ii = 〈ψ(0)

i |ψ(2)
i 〉 .

To find this coefficient we need to make use a result for order n = 2 that follows from
the normalization constraint on the full perturbation solution. For general n ≥ 1, this
constraint is

n
∑

m=0

〈ψ(n−m)
i |ψ(m)

i 〉 = 0 ,

where
〈ψ(0)

i |ψ(k)
i 〉

is pure real for all k. Use the constraint for the case of n = 2 to find

c
(2)
ii = 〈ψ(0)

i |ψ(2)
i 〉 .

Write out the solution entirely in 0th order quantities, except for the perturbation
Hamiltonian H(1). Simplify the result as much as reasonably possible.

015 qfull 01400 2 3 0 moderate math: infinite square well Dirac delta perturbation 1
Extra keywords: (Gr-225:6.1) Dirac delta perturbation, 1-dimensional infinite square well

7. Say you have a 1-dimensional infinite square well with

V (x) =
{

0 for the x range 0 to a;
∞ otherwise.

a) Solve for the eigen-states (i.e., stationary states) and eigen-energies from the time-
independent Schrödinger equation. You must properly normalize the eigen-states states
to answer part (b) correctly.

b) Say we add the Dirac delta function perturbation Hamiltonian

H(1) = cδ(x− a/2) .

What is the general expression for this perturbation for the first order perturbation energy
correction for all eigen-states? Simplify the formula as much as possible.

015 qfull 01402 2 3 0 moderate math: infinite square well Dirac delta perturbation 2
Extra keywords: (Gr-225:6.1) Dirac delta perturbation, 1-dimensional infinite square well
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8. Say you have a 1-dimensional infinite square well with

V (x) =
{

0 for the x range 0 to a;
∞ otherwise.

The stationary states are

ψn(x) =

√

2

a
sin (knx) ,

where
kna = nπ and kn =

nπ

a

with n = 1, 2, 3, . . . as allowed quantum numbers. The eigen-energies are

En =
h−2

2m

(π

a

)2

n2 .

Say we add the Dirac delta function perturbation Hamiltonian

H(1) = cδ(x− a/2) .

What is the general formula for this perturbation for the first order perturbation energy
correction for all eigen-states? Simplify the formula as much as possible.

015 qfull 01404 2 3 0 moderate math: infinite square well Dirac delta perturbation 3
Extra keywords: (Gr-225:6.1) Dirac delta perturbation, 1-dimensional infinite square well

9. Say you have a 1-dimensional infinite square well with

V (x) =
{

0 for the x range 0 to a;
∞ otherwise.

The stationary states are

ψn(x) =

√

2

a
sin (knx) ,

where
kna = nπ and kn =

nπ

a

with n = 1, 2, 3, . . . as allowed quantum numbers. The eigen-energies are

E{0}
n =

h−2

2m

(π

a

)2

n2 = E
{0}
1 n2 .

We now add the Dirac delta function perturbation Hamiltonian

H(1) = cδ(x− a/2) .

a) Can we use non-degenerate perturbation theory for the infinite square well? Why or why not?

b) What is the general formula for the perturbation for the 1st order perturbation energy correction
for all eigen-states? Simplify the formula as much as possible.

c) Now evaluate a general matrix element for the perturbation

〈ψm|H(1)|ψn〉 .

d) Simplify the general matrix element by inventing two simple functions of integer ℓ. The first
is zero for ℓ even and 1 for ℓ odd. The second is 1 for k odd and −1 for k even where odd
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ℓ = 2k + 1 and k runs through all positive integers: i.e., 0, 1, 2, 3, . . . . HINT: If you this can’t
get this part, go on since the later parts don’t require it.

e) Write out the 1st order perturbation correction formula for a general state n in as explicit and
as simplified a form as reasonably possible. Note the correction is wanted, not the full 2nd
order corrected state. HINT: Just leave the unperturbed states in the ket form |ψ0

n〉. For
compactness, one doesn’t want to be explicit about them.

f) Write out the 2nd order perturbation correction formula for a general eigen-energy n in as
explicit and as simplified a form as reasonably possible. Note the correction is wanted, not the
full 2nd order corrected eigen-energy.

015 qfull 01410 2 3 0 moderate math: 2-particle Dirac delta perturbation 1
10. You are give a complete set of orthonormal 1-dimensional single-particle states {ψn(x)}, where

n is the indexing quantum number that determines energy. The state are NOT degenerate in
energy. NOTE: Some parts of this problem can be done independently. So don’t stop at any
part that you can’t immediately solve.

a) Now we need a general way to evaluate the eigen-energies for a symmetrized multi-particle
state for a set of non-interacting identicle particles. The single-particle Hamiltonian Hi

acting on single-particle state ψn(xi) gives

Hiψn(xi) = Enψn(xi) .

A multi-particle state can be created from the single-particle states. Each particle for the
multi-particle state has its own single-particle HamiltonianHi, but these Hamiltonians have
identical formulae. For multi-particle state of I particles, the multi-particle Hamiltonian is

HI =

I
∑

i=1

Hi .

A product state (i.e., an unsymmetrized state) for I particles) is

ψI,prod = ψn1
(x1)ψn2

(x2) . . . ψnI
(xI) .

This state though unphysical (since unsymmetrized) is an eigenstate of the multi-particle
Hamiltonian. We find

HIψI,prod =





I
∑

j=1

Enj



ψI,prod ,

and so the eigen-energy of the product state is

EI =
I
∑

i=1

Eni
,

where the sum is over the set of n indexes that are in the product state.
What is the eigen-energy of the symmetrized state that is constructed from the product

state? HINT: In symmetrizing the multi-particle state, the set of nj indexes does not
change. In the case of fermions, all nj indexes are distinct. In the case of bosons, some nj

indexes may be the same: i.e., repeated single-particle states can occur in a product state.
The answer is by inspection.

b) Say you have two non-interacting identical particles and a set of single-particle states for
them. The particles could be bosons or fermions. If the particles are bosons, they are
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spinless. If the particles are fermions, they are in the same spin state. Thus, for both
particles, we don’t have to consider spin any further in this problem.

Give the general normalized symmetrized wave function for the two particles. Label
the single-particle states m and n and the coordinates for the particles x1 and x2. Be sure
the normalization is correct for both the m 6= n and m = n cases.

c) Now say we turn on a perturbation Hamiltonian

H(1) = aV0δ(x1 − x2) ,

where a is a characteristic length, V0 is strength factor, and δ(x1 − x2) is a Dirac delta
function. The perturbation gives an interaction between the two particles. Determine the
first order non-degenerate perturbation energy correction for the general two-particle state.
Be as explicit as possible. HINT: For 2-dimensional space,

〈φ|Q|ψ〉 =

∫ ∞

−∞

∫ ∞

−∞

φ(x1, x2)
∗Qψ(x1, x2) dx1 dx2 ,

where |φ〉 and |ψ〉 are general states and Q is a general quantum mechanical observable
(i.e., quantum mechanically relevant Hermitian operator).

d) Let’s now specialize to the infinite square complete set of states. Recall the potential for
the infinite square well is

V (x) =
{

0 for the x range 0 to a;
∞ otherwise.

The single-particle stationary states of this set are

ψℓ(x) =

√

2

a
sin (kℓx) ,

where

kna = ℓπ and kn =
ℓπ

a

with ℓ = 1, 2, 3, . . . as allowed quantum numbers. The eigen-energies are

Eℓ =
h−2

2m

(π

a

)2

n2 .

What is the energy for a general two-particle infinite-square-well state without
perturbation? HINT: Remember the part (a) answer.

e) Determine the 1st order non-degenerate perturbation energy correction for the general two-
particle infinite-square-well state. Be as explicit as possible. HINT: You will need a couple
of trig identities:

sin2(A) =
1

2
[1 − cos(2A)] and cos(A) cos(B) =

1

2
[cos(A−B) + cos(A+B)] .

Just keep going step by step carefully.

f) Using the part (e) answer, what are the 1st order non-degenerate perturbation energy
corrections for the case of m = n and the case of m 6= n.

015 qfull 01412 3 5 0 tough thinking: 2-particle Dirac delta perturbation 2
Extra keywords: (Gr-226:6.3)
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11. The single-particle stationary states and eigen-energies for a 1-dimensional infinite square well
for region [0, a] are, respectively,

ψn(x) =

√

2

a
sin
(nπ

a
x
)

and En =
h−2

2m

(π

a

)2

n2 .

a) What is the expression for elementary 2-particle stationary states for DISTINCT spinless
particles of the same mass? Label the particles 1 and 2 for convenience. Label the states n
and n′ for convenience too. What is the general expression for the energy of such 2-particle
states? What are all the possible reduced energies n2 + n′2 up to 100? These energies can
be called energy levels: the levels may correspond to more than one state. What are are
degeneracies of the energy levels? Remember the particles are DISTINCT. HINT: You
are permitted to use a computer program to generate energy levels and degeneracies. But
you can find them by hand too—a little tedious, but not hard if you go at it systematically.

b) Now suppose we turn on a perturbation potential for the non-identical particles of the form

H(1) = V (x1, x2) = aV0δ(x1 − x2) .

What is the expression for the diagonal matrix element

H(nn′)(nn′) = 〈ψnn′(x1, x2)|H(1)|ψnn′(x1, x2)〉 ?

If you expand sine functions in exponentials evaluating, the matrix element is pretty easy,
but you do have to treat the cases where n 6= n′ and n = n′ a bit differently.

Can you do perturbation theory on all the 2-particle states?

c) What is the expression for elementary 2-particle stationary states if we replace the distinct
particles by identical spinless bosons? What is the general expression for the energy of
such 2-particle states? (we have turned off the perturbation potential.) What are all the
possible reduced energies n2 + n′2 up to 100? These energies can be called energy levels:
the levels may correspond to more than one state. What are are degeneracies of the energy
levels? HINT: You don’t have to do part (a) all over again, just mutatis mutandis it.)

d) Now suppose we turn on a perturbation potential of part (b) for the identical bosons. What
is the expression for the diagonal matrix element

H(nn′)(nn′) = 〈ψnn′(x1, x2)|H(1)|ψnn′(x1, x2)〉 ?

If you expand sine functions exponentials evaluating, the matrix element is pretty easy,
but you do have to treat the cases where n 6= n′ and n = n′ a bit differently. Note the
perturbation correction is a bit different from the distinct particle case. Why?

Can you do perturbation theory on all the 2-particle states?

e) What is the expression for elementary 2-particle stationary states if the 2 particles identical
fermions with the same spin coordinate. Since the spin coordinates are identical, the spin
part of the single-particle states are symmetrical. Don’t bother writing down spinors or
such. What is the general expression for the energy of such 2-particle states? What are all
the possible reduced energies n2 + n′2 up to 100? HINT: You don’t have to do part (a)
all over again, just mutatis mutandis it.)

f) Now suppose we turn on a perturbation potential of part (b) for the identical fermions.
What is the expression for the diagonal matrix element

H(nn′)(nn′) = 〈ψnn′(xa, xb)|H(1)|ψnn′(xa, xb)〉 .
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Don’t whine: this is easy if you see the trick. Why do you get the simple result you get?
Can you do perturbation theory on all the 2-particle states?

g) What does the Dirac delta potential

V (xa − xb) = aV0(xa − xb)

imply or do physically?

015 qfull 01500 1 3 0 easy math: SHO 1st order perturbation cx
Extra keywords: SHO 1st order perturbation cx

12. Say you add a perturbation potential cx to a 1-dimensional simple harmonic oscillator (SHO)
system. Calculate all the first order weak-coupling perturbation corrections for the eigen-
energies. Recall the 1st order perturbation energy correction is given by

E(1)
n = 〈ψ(0)

n |H(1)|ψ(0)
n 〉 = 0 ,

where the |ψ0
n〉 are unperturbed eigenstates. HINT: Think about the parity of SHO energy

eigenstates.

015 qfull 01600 2 3 0 mod math: SHO exact cx perturbation
Extra keywords: (Gr-227:6.5), SHO, linear perturbation cx, exact cx solution

13. Say you added a perturbation H(1) = cx to the 1-dimensional simple harmonic oscillator (SHO)
Hamiltonian, and so have

H =
p2

2m
+

1

2
mw2x2 + cx

for the Hamiltonian. An exact solution to the time independent Schrödinger equation is, in
fact, possible and easy since the new problem is still a SHO problem.

a) Let’s consider just the mathematical aspects of the problem first. Given a quadratic

y = ax2

with a > 0, where is its minimum and roots? Say you now add bx to get

y = ax2 + bx .

Where are the minimum and roots now? By measuring the horizontal coordinate from a new
origin it is possible to eliminate the linear dependence on the horizontal coordinate. Find this
new origin. From a geometrical point of view what have you done by adding bx to y = ax2: i.e.,
what has happened to the parabola on the plane? Sketch a plot of the original and translated
parabolae and the curve y = bx. Why is should it be clear that adding the linear term bx that
the mininum of the curve will be shifted downward?

b) Now that the math is clear what about the physics. What are the classical forces associated
with the potentials

1

2
mω2x2 , cx , and

1

2
mω2x2 + cx ?

What are the equilibrium points of the forces? What are the potential energies of the first and
third equilibrium points? What has adding the cx potential done to the potential well of the
SHO? How could you reduce the problem with the third potential to that with the first?

c) Now reduce time independent Schrödinger problem with the given Hamiltonian to the SHO
problem. What are the solutions in terms of horizontal coordinate distance from the new origin
and what are eigen-energies of the solutions? (I don’t mean solve for the solutions. Just what
are known solutions for reduced problem.)
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015 qfull 01700 3 3 0 mod math: SHO and 2nd order perturbation cx
Extra keywords: SHO and 2nd order perturbation cx

14. Say you add a perturbation potential cx to a 1-dimensional simple harmonic oscillator (SHO)
system. Give the formula for the 2nd order weak coupling perturbation correction for this
special case simplified as much as possible. HINT: You will probably find the following matrix
element formula for SHO eigenvectors useful:

〈Ψk|x|Ψn〉 =











1

β

√

max(k, n)

2
if |k − n| = 1;

0 otherwise,

where β =
√

mω/h− (e.g., Mo-406).

015 qfull 03000 3 3 0 tough math: SHO and 2nd order x3 pre-perturbation
Extra keywords: SHO and 2nd order x3 pre-perturbation

15. In preparation for calculating the 1st order perturbation wave function correction and the 2nd
order perturbation energy correction for the 1-dimensional simple harmonic oscillator (SHO)
system with perturbation potential cx3, one needs to find a general expression for

〈ψk|x3|ψn〉 .
Find this expression simplified as much as possible.

INSTRUCTIONS: You will need the following to formulae (which I hope are correct)

1√
2β

[√
n+ 1ψn+1(x) +

√
nψn−1(x)

]

= xψn(x)

and

〈ψk|x2|ψn〉 =



























2n+ 1

2β2
if k = n;

√

[max(k, n) − 1] max(k, n)

2β2
if |k − n| = 2;

0 otherwise,

where β =
√

mω/h−. There are seven initial cases (one being zero) to find and five final cases

after combining initial cases with same k and n relation. Write the expressions in terms of n,
not k. You will simply have to work carefully and systematically to grind out the cases. What
is the appropriate Kronecker delta function to go with each case so that one can put them
in a sum over k in the 2nd order perturbation formulae? Make the Kronecker deltas in the
form δk,f(n) where f(n) is an expression like, e.g., n− 1. Since k in the sum for the 2nd order
perturbation runs only from zero to infinity is there any special treatment needed for including
cases with Kronecker deltas like δk,n−1 for n = 0? HINT: Are such cases ever non-zero when
they should be omitted?

015 qfull 03100 3 3 0 mod math: SHO and 2nd order cx3 perturbation
Extra keywords: SHO and 2nd order cx3 perturbation

16. The following result is for simple harmonic oscillator eigenvectors:

〈ψk|x3|ψn〉 =
1

2
√

2β3







































3(n+ 1)
√
n+ 1 if k = n+ 1 with δk,n+1;

3n
√
n if k = n− 1 with δk,n−1;

√

(n+ 1)(n+ 2)(n+ 3) if k = n+ 3 with δk,n+3;
√

(n− 2)(n− 1)n if k = n− 3 with δk,n−3;

0 otherwise.
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Using this expression find the general expression for the SHO for the 2nd order weak-coupling
perturbation corrections to the eigenstate energies for a perturbation potential cx3. Why can
you use the expression above without worrying about the fact that sum over states from zero
to infinity doesn’t include states with index less than zero.

015 qfull 03110 2 5 0 moderate thinking: 4x4 eigenproblem/perturbation
17. You are given a zeroth order Hamiltonian matrix

H(0) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






.

a) Solve for the eigenvalues and normalized eigenvectors by inspection. You should label the
states 1, 2, 3, and 4 for convenience. Is there any degeneracy and if so what are the
degenerate states?

b) The evil wizard of physics now turns on a perturbation and the Hamiltonian becomes

H =







1 ǫ 0 0
ǫ 1 0 0
0 0 1 ǫ
0 0 ǫ −1






,

where ǫ is a small quantity. Solve for the exact eigenvalues and normalized eigenvectors
in this case: i.e., diagonalize the perturbed Hamiltonian matrix. Is there any degeneracy
now? HINT: Is there any reason why the two 2×2 blocks in the matrix cannot be treated
as separate eigenvalue problems and the two-component eigenvectors extended trivially for
the 4 × 4 problem?

c) Do non-degenerate perturbation theory to solve for the energy to 2nd order for those initial
eigenstates which are NOT degenerate. HINT: All the perturbation matrix elements can
be found in the part (b) QUESTION.

015 qfull 03300 3 5 0 tough thinking: perturbation and variation
Extra keywords: (Gr-235:6.9)

18. Consider quantum system of 3 dimensions with initial Hamiltonian

H(0) =





1 0 0
0 1 0
0 0 2





and perturbed Hamiltonian

H =





1 − ǫ 0 0
0 1 ǫ
0 ǫ 2



 .

Note we assume ǫ << 1. Also note that H(0) andH are matrix Hamiltonians: i.e., Hamiltonians

in a particular representation. The matrix elements are 〈φi|H(0)
op |φk〉. 〈φi|Hop|φk〉, respectively,

where H
(0)
op and Hop are operator versions of the Hamiltonian and the set {|φi〉} is an

orthonormal basis. Usually we drop the “op” subscript and allow context to tell whether the
Hamiltonian is in matrix or operator representation.

a) Solve by inspection for the eigen-energies and eigenvectors of the initial unperturbed
Hamiltonian. To help with the rest of the problem label the states 1, 2, and 3 in some sensible
order.
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b) Solve for the exact eigen-energies and normalized eigenvectors of the perturbed Hamiltonian:
i.e., diagonalize the perturbed Hamiltonian matrix. HINTS: It’s not so hard—if you don’t
make a mistake in the first step.

c) Expand the exact eigen-energies and eigenvectors (where applicable) to 2nd order in small ǫ.
(Note I mean Taylor expansion, not perturbation series expansion although the two expansion
are closely related in this case.) Simplify the eigenvectors to nice forms so that it is easy to see
which perturbed vector grew out of which unperturbed vector as ǫ grew from 0.

d) Determine from (weak-coupling) perturbation theory the energies to 2nd order and the
eigenvectors to 1st order of the perturbed Hamiltonian. How do these results compare with
those of the part (c) answer? HINT: Perturbation theory can be applied to the degenerate
states in this case because they are completely uncoupled.

e) Now use the truncated Hamiltonian matrix method (or linear variational method if you know
it) to find approximate eigen-energies and eigenvectors for the two initially degenerate eigen-
energy states. To what order goodness in small ǫ are the results? Why the are results for one
perturbed state exact and for the other rather poor compared to the exact results?

015 qfull 03400 2 3 0 moderate math: variational x**4 potential
19. You are given a 1-dimensional Hamiltonian with a quartic potential:

H = − h−2

2m

∂2

∂x2
+ V0

(x

a

)4

,

where V0 is a constant. The Hamiltonian applies over the whole x-axis.

a) Write H in a dimensionless form in units of energy h−2
/(2ma2), with y = x/a, and with a

dimensionless potential constant V1.

b) Show definitively that a trial Gaussian wave function

ψ(x) = Ae−βx2/a2

,

where β is a variational parameter, cannot be an eigenfunction of the Hamiltonian for any
value of β. Remember a trial wave function could fortuitously have the right form to be
an eigenfunction.

c) Write down the dimensionless variational energy ǫv using the trial Gaussian wave function
and solve for ǫv as an explicit function of β and V1. HINT: Remember to account for
normalization.

d) Sketch ǫv as a function of β on a schematic plot.

e) Determine the βmin value that makes ǫv stationary and, in fact, a minimum. What is
minimum ǫv,min? Why can’t ǫv,min be the true ground state energy of the dimensionless
Hamiltonian? What is the qualitative relation between ǫv,min and ǫground.
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Multiple-Choice Problems

016 qmult 00700 1 1 3 easy memory: equivalent postulates
1. If two postulates are said to be equivalent, then

a) one can be derived from the other, but not the other from the one.
b) the other can be derived from the one, but not the one from the other.
c) each one can be derived from the other.
d) neither can be true.
e) both must be true.

016 qmult 00800 1 4 5 easy deducto-memory: variational principle
2. “Let’s play Jeopardy! For $100, the answer is: Usually the demand that an action (or action

integral) be stationary with respect to arbitrary variation in a function appearing somehow in
the integrand.”

a) What is a Hermitian conjugate, Alex?
b) What is an unperturbation principle, Alex?
c) What is a perturbation principle, Alex?
d) What is an invariation principle, Alex?
e) What is a variational principle, Alex?

016 qmult 00900 1 1 3 easy memory: quantum mechanics action
3. In non-relativistic quantum mechanics the action of the usual variation principle is:

a) the integral of angular momentum.
b) the derivative of angular momentum.
c) the expectation value of the Hamiltonian.
d) the time independent Schrödinger equation.
e) the Dirac equation.

016 qmult 01000 1 1 1 easy memory: stationary action
4. An exact solution |φ〉 to the time-independent Schrödinger equation is the one that by the

variational principle in quantum mechanics makes the action

E(φ) =
〈φ|H |φ〉
〈φ|φ〉

be stationary with respect to:

a) arbitrary variations of the state |φ〉 (i.e., δE(φ) = 0).
b) some variations of the state |φ〉.
c) no variations of the state |φ〉.
d) reasonable variations of the state |φ〉.
e) unreasonable variations of the state |φ〉.

114
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016 qmult 01100 1 1 5 easy memory: simple variational method
5. In the simple variational method one takes a parameterized trial wave function and finds the

parameters that make the expectation value of the Hamiltonian:

a) a maximum.
b) 1.
c) negative.
d) positive.
e) a minimum.

016 qmult 01200 1 4 3 easy deducto-memory: linear variation method
6. “Let’s play Jeopardy! For $100, the answer is: The justification for the linear variational method

(or Rayleigh-Ritz method or truncated Hamiltonian matrix eigen-problem).”

a) What is Hermitian conjugation, Alex?
b) What is bra/ket notation, Alex?
c) What is the quantum mechanics variational principle, Alex?
d) What is the Dirac principle, Alex?
e) What is the cosmological principle, Alex?

016 qmult 01500 1 4 1 easy deducto-memory: repulsion of the energy levels
7. Any perturbation applied to a two-level system that is initially degenerate causes:

a) a repulsion of the energy levels.
b) an attraction of the energy levels.
c) a warm and affectionate relationship between the energy levels.
d) a wonderful, meaningful togetherness of the energy levels.
e) an eternal soul-bliss of the energy levels.

Full-Answer Problems

016 qfull 00010 1 5 0 easy thinking: equivalent results
1. If two different looking theorems or postulates were said to be equivalent what would that

mean?

016 qfull 00020 2 5 0 moderate thinking: variational principle and method
2. Are the variational principle and the variational method the same thing? Explain please.

016 qfull 00030 1 5 0 easy thinking: what is a stationary point?
3. What does it mean to say a function is stationary at a point?

016 qfull 00040 2 3 0 moderate math: differentiation for stationarity
4. Take the derivative of

E(α) =
5

4

h−2

mα2
+

1

14
mω2α2

and determine the stationary point. Just by imagining the function’s behavior in the large
and small α limits determine whether the stationary point is a minimum. Give the analytic
expression for E(α) at the stationary point.

016 qfull 00050 2 5 0 moderate thinking: Snell’s law and var. princ.
5. Can Snell’s law be derived using the variational principle (or a variational principle “as you

prefer”)? Please explain.
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016 qfull 00060 2 5 0 moderate thinking: Schr”od. and var. princ.
6. Can the time-independent Schrödinger’s equation be derived using the variational principle?

Please explain.

016 qfull 00070 2 5 0 moderate thinking: convert to matrix eigenproblem
7. Convert the braket eigenproblem H |Ψ〉 = E|Ψ〉 to the discrete {|uj〉} orthonormal basis

representation by expanding |Ψ〉 in terms of the |uj〉 kets and then operating on the equation
with the bra 〈ui|. Find the matrix representation of the eigenproblem.

016 qfull 00080 1 5 0 easy thinking: solving infinite matrix problem
8. Can one literally solve in a numerical procedure an infinite matrix problem: i.e. a problem with

an infinite number of terms to number crunch? Why so or why not?

016 qfull 00090 1 5 0 easy thinking: diagonalization defined
9. What is meant by diagonalization in quantum mechanics?

016 qfull 00200 2 5 0 moderate thinking: simple variational method
Extra keywords: simple variational method for excited states

10. The simple variational method can in principle be applied to excited states.

a) Say an unnormalized trial wave function |ψ〉 is orthogonal to all energy eigenstates |φi〉
of quantum number less than n, where the eigen-energies increase monotonically with
quantum number as usual. Show that Etrial ≥ En where Etrial is the expectation value of
the Hamiltonian for |ψ〉. When will the equality hold? Remember there is such a thing as
degeneracy.

b) Using the simple variational method for finding excited eigenstate energies isn’t really of
general interest since constructing trial functions with the right orthogonality properties
is often harder than using the other approaches. However, if the eigenstates have definite
parity, definite parity trial wave functions can be used to determine the lowest eigen-energies
for wave functions of each kind of parity.

For example, let us consider the simple harmonic oscillator problem in one dimension.
We know that the eigenstates are non-degenerate and have definite parity. It is given that
the ground state has even parity and the first excited state has odd parity. We can use
an odd trial wave function and the variational method to approximately determine the
energy of the first excited state. The simple harmonic oscillator eigenproblem in scaled
dimensionless variables is

(

− d2

dx2
+ x2

)

ψ = Eψ ,

where

x =

√

mω

h−
xphy and E =

Ephy

h−ω/2
= 2n+ 1 .

The n is the SHO energy quantum number (n runs 0, 1, 2, 3, . . .) and the “phy” stands for
physical. Consider the odd trial wave function

ψ =

{

x(x2 − c2), |x| ≤ c;
0. |x| > c,

where c is a variational parameter. Normalize this trial wave function, evaluate its
expectation energy, and minimize the expectation energy by varying c. How does this
variational method energy compare to the exact result which in scaled variables is 3.
HINT: There are no wonderful tricks in the integrations: grind them out carefully.
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016 qfull 00300 3 5 0 tough thinking: variational hydrogen
Extra keywords: (Ha-327:4.1)

11. We know, of course, the ground state for the hydrogenic atom sans perturbations:

ψnℓm =
1√
4π

(2a−3/2)e−r/a ,

where a = a0/[(m/me)Z] is the radial scale parameter: a0 = h−2
/(mee

2) = λCompton/(2πα) =
0.529 Å is the Bohr radius, m is the reduced mass, and Z is the nuclear charge (Gr-128, 141).
But as a tedious illustration of the simple variational method, let us try find an approximate
ground state wave function and energy starting with the trial Gaussian wave function

ψ = Ae−βr2/a2

.

a) Can we obtain the exact solution with a trial wave function of this form?

temitemb) The varied energy is given by

Ev =
〈ψ|H |ψ〉
〈ψ|ψ〉 =

∫∞

0
[ψ(r)∗Hψ(r)] (4πr2) dr

∫∞

0
[ψ(r)∗ψ(r)] (4πr2) dr

,

where H is the Hamiltonian for ℓ = 0 (i.e., the zero angular momentum case) given by

H = − h−2

2m

1

r2
∂

∂r
r2
∂

∂r
− Ze2

r
.

Note the varied energy form does not require a Lagrange undetermined multiplier since we are
building the constraint of normalization into the variation. We, of course, need to evaluate A later
to normalize the minimized wave function. Convert the varied energy expression into a dimensionless
form in terms of the coordinate x = r/a and reduced varied energy ǫv = Ev/[Ze

2/(2a)] =
Z−2(m/me)Ev/ERyd ≈ Z−2(m/me)Ev/(13.606 eV). HINT: A further integration transformation
can make the analytic form even simpler.

temitemc) Find the explicit analytic expression for ǫv. Sketch a plot of ǫv as a function of β.
HINT: Use an integral table.

d) Now find the minimizing β value and the minimum ǫv. Compare ǫv to exact ground state
value which is −1 in fact.

016 qfull 01000 3 5 0 tough thinking: non-orthogonal linear variation
Extra keywords: method for a two level system.

12. You are given two basis states |1〉 and |2〉 and want to solve a two-dimensional system with
Hamiltonian H in terms of this basis. The basis is not orthogonal although the basis states
are normalized of course. Recall in this case that the non-orthogonal linear variational method
eigenproblem is

H~c = ES~c ,

where ~c is an unknown eigenvector, E and unknown eigen-energy, and S is the overlap matrix.

Let

H =

(

ε1 V
V ε2

)

.

We have assumed that 〈1|H |2〉 = 〈2|H |1〉 and designated these elements by V : i.e., the
eigenstates are pure real. This assumption is generality that probably pointless for the cases
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where this problem is probably of most interest: i.e., in LCAO method (i.e., linear combination
of atomic orbitals method) for molecular orbitals. We will also assume V < 0 which is also
appropriate for LCAO, and so avoids needles generality. As a fiducial choice assume ε2 ≥ ε1
although all the formulae will not depend this choice in fact. For the overlap matrix let

S =

(

〈1|1〉 〈1|2〉
〈2|1〉 〈2|2〉

)

=

(

1 s
s 1

)

.

Your mission Mr. Phelps—if you choose to accept it—is solve for the eigen-energies and
eigenvectors. These quantities tend to come out in clumsy forms. So you should try to find
nice forms. You may subsume large clumpy expressions into single symbols, but show some
restraint. One trick is to re-origin all the energies: i.e., define

ε̄ =
ε1 + ε2

2
, −ε′ = ε1 − ε̄ , ε′ = ε2 − ε̄ , V ′ = V − ε̄s , and E′ = E − ε̄ .

Note with our fiducial assumptions ε′ ≥ 0, but all the formula should work for ε′ < 0 too. Note
also that V ′ < 0, V ′ > 0, or V ′ = 0 are all possible now. Now subtract

ε̄

(

1 s
s 1

)

~c

from both sides of the eigenproblem and solve for the primed eigen-energies and the eigen-
vectors in terms of the primed quantities. Having found the solutions, you should examine the
special limiting cases: i.e., ε′ → 0, and s→ 0.

The State Department confesses that it does not know the ideal forms for the solutions and
in any case will disavow all knowledge of your activities.



Chapt. 17 Time-Dependent Perturbation Theory

Multiple-Choice Problems

017 qmult 00100 1 1 4 easy memory: Fermi, person identification
Extra keywords: Fermi, person identification

1. Who was Enrico Fermi?

a) An Italian who discovered America in 1492.
b) An Italian who did not discover America in 1492.
c) An Italian-American biologist.
d) An Italian-American physicist.
e) Author of Atoms in the Family.

017 qmult 00200 1 4 5 easy deducto-memory: golden rule
Extra keywords: Sc-288

2. “Let’s play Jeopardy! For $100, the answer is: This quantum mechanical time-dependent
perturbation result was discovered by Pauli, but named by Fermi.”

a) What is the categorical imperative, Alex?
b) What is the sixth commandment, Alex?
c) What is the no-fault insurance, Alex?
d) What is the iron law, Alex?
e) What is the golden rule, Alex?

017 qmult 00300 1 4 5 easy deducto-memory: golden rule validity
3. “Let’s play Jeopardy! For $100, the answer is: This aureate time-dependent perturbation result

requires, among other things, that

δElevel separation <<
2πh−

t− tchar

<∼∆Ebandwidth ,

where δElevel separation is of order of the separation between energy levels in a continuum band
of energy levels, t− tchar is the time since the perturbation became significant (i.e., tchar), and
∆Ebandwidth is the characteristic energy width of the continuum band.”

a) What is 2nd order perturbation, Alex?
b) What is 3rd order perturbation, Alex?
c) What is the optical theorem, Alex?
d) What is Pauli’s exclusion principle, Alex?
e) What is Fermi’s golden rule, Alex?

017 qmult 00100 1 1 4 easy memory: exponential decay of state
4. Fermi’s golden rule if it applies to transitions to all states from an original state and for all time

after a perturbation is applied (which may be from the time the original state forms) causes
the original state to have:

a) no transitions.

119
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b) a linear decline in survival probability.
c) a power law decline in survival probability.
d) an exponential decline in survival probability.
e) an instantaneous decline in survival probability.

017 qmult 00800 1 1 5 easy memory: harmonic perturbation, sinusoidal
Extra keywords: harmonic perturbation, sinusoidal time dependence

5. Harmonic perturbations have:

a) a linear time dependence.
b) a quadratic time dependence.
c) an inverse time dependence.
d) an exponential time dependence.
e) a sinusoidal time dependence.

017 qmult 01200 1 1 1 easy memory: principal value integral
6. One can sometimes in integrate over a first order singularity and get a physically reasonable

result. This kind of integral is called:

a) a principal value integral or Cauchy principal value integral.
b) an interest integral.
c) a capitol integral.
d) a bull-market integral.
e) a bear-market integral.

017 qmult 02000 1 1 5 easy memory: electric dipole selection rules
Extra keywords: electric dipole selection rules

7. The selection rules for electric dipole transitions are:

a) ∆l = 0 and ∆m = 0.
b) ∆l = ±2 and ∆m = ±1.
c) ∆l = −1 and ∆m = 1.
d) ∆l = ±1 and ∆m = 0.
e) ∆l = ±1 and ∆m = 0, ±1.

Full-Answer Problems

017 qfull 00010 1 5 0 easy thinking: time-dependent Sch.eqn.
1. Is the time-dependent Schrödinger equation needed for time-dependent perturbation theory?

017 qfull 00020 2 5 0 moderate thinking: energy eigenstates
2. Are stationary states (i.e., energy eigenstates) needed in time-dependent perturbation theory?

Please explain.

017 qfull 00030 2 5 0 moderate thinking: energy eigenstates
3. What is done with the radiation field in quantum electrodynamics.

017 qfull 00100 2 3 0 easy math: Fermi’s golden rule integral
Extra keywords: Fermi’s golden rule integral, Simpson’s rule

4. In the simplest version of the derivation of Fermi’s golden rule one uses the integral
∫ ∞

−∞

sin2 x

x2
dx = π
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which can be evaluated using complex variable contour integration (Ar-364). One of the features
of this integral that is used in the justification of the golden rule is that most of the total comes
from the central bump of the integrand: i.e., the region [−π, π]. It would be good to know what
fraction of the total comes from the central bump. Alas,

Icen =

∫ π

−π

sin2 x

x2
dx .

is not analytically solvable.

a) Find an excellent approximate value for Icen. HINTS: It’s probably no good trying to
find a good approximation for the central bump directly since it is most of the total. An
approximate value could easily turn out to be off by of order |Icen −π|. Try finding a value
for the non-central bump region.

b) Now—if you dare—evaluate Icen numerically and compare to your analytic result from
part (a). HINT: I use double precision Simpson’s rule myself.

017 qfull 00200 3 3 0 tough math: time dependent perturbation, square well
Extra keywords: (MEL-141:5.3), time dependent perturbation, infinite square well

5. At time t = 0, an electron of charge ẽ is in the n eigenstate of an infinite square well with
potential

V (x) =
{

0, x ∈ [0, a];
∞ x > a.

At that time, a constant electric field Ẽ pointed in the positive x direction is suddenly applied.
(Note the tildes on charge and electric field are to distinguish these quantities from the natural
log base and energy.) NOTE: The 1-d infinite square-well eigenfunctions and eigen-energies
are, respectively

ψn(x) =

√

2

a
sin
(nπ

a
x
)

and En =
h−2
k2

2m
=

h−2

2m

(π

a

)2

n2 ,

where n = 1, 2, 3, . . . The sinusoidal eigenfunctions can be expressed as exponentials: let
z = πx/a, and then

sin(nz) =
einz − e−inz

2i
.

a) Use 1st order time-dependent perturbation theory to calculate the transition probabilities
to all OTHER states m as a function of time. You should evaluate the matrix elements
as explicitly: this is where all the work is naturally.

b) How do the transition probabilities vary with the energy separation between states n and
m?

c) Now what is the 1st order probability of staying in the same state n?

017 qfull 00300 3 5 0 tough thinking: usual and general Fermi’s golden rule
6. Say we have time-dependent perturbation

H(t) =

{

0, t < 0;
H, t ≥ 0,

and initial state |φj〉, where |φj〉 is the eigenstate belonging to the complete set {|φi〉}. The
state at any time t ≥ 0 is |Ψ(t)〉.
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a) Work out as far as one reasonably can the 1st order perturbation expression for the
coefficient ai(t) in the expansion of |Ψ(t)〉 in terms of the set {|φi〉}. Include the case
of i = j. HINT: The worked out expression should contain a sine function. Define
ωij = (Ei − Ej)/h−.

b) Given i 6= j, find the transition probability (to 1st order of course) from state j to state i.

c) What is this probability at early times when ωijt/2 << 1 for all possible ωij? Describe the
behavior of the probability as a function of time for all times. (You could sketch a plot of
probability as a function of time.) What is the behavior for ωij = 0 (i.e., for transitions to
degenerate states)?

d) You want to calculate the summed probability of transition to some set of states (which
may not be all possible states) that are dense enough in energy space to form a quasi-
continuum or even a real continuum of states. The set does not include the initial state j.
The summed probability for energy interval Ea to Eb can be approximated by an integral:

P (t) =
∑

i6=j

Pi(t) ≈
∫ Eb

Ea

P (E, t)ρ(E) dE ,

where ρ(E) is the density of states per unit energy and where the time-independent part
of the matrix element Hij is replaced by H(E) which is a continuous function of energy.

What is the total transition probability to all states in the set assuming integrand is
only significant in small region near Ej . The region is small eneough that |H(E)|2 and
ρ(E) can be taken as constants and that the limits of integration can be set to ±∞. (Note
you will probably need to look up a standard definite integral.)

In fact, 90 % of the integral (assuming |H(E)|2 and ρ(E) constant) comes from the
energy range [Ej − 2πh−/t, Ej + 2πh−/t]. (Can you show this by a numerical integration?
No extra credit for doing this: insight is the only reward.) We can see that at some
time the 90 %-range will be so narrow that the approximation |H(E)|2 and ρ(E) constant
will probably become valid. They should clearly be evaluated at Ej . Practically, this
often means that the approximation becomes valid when almost all of the transitions are
to nearly degenerate states. Of course, the 90 %-range can become so narrow that the
approximation of a continuum of states breaks down and then the integration becomes
invalid again. In fact, for the integration to be valid we require |H(E)|2 and ρ(E) to be
constant over ∆E such that ∆E >∼ 2πh−/t and that the energy separation δE between the

final satisfy δE << 2πh−/t. Thus we require

δE << 2πh−/t <∼∆E .

What is the rate of transition for (i.e., time derivative of) the total transition
probability? The transition rate result is one of the usual forms of Fermi’s golden rule.
Although it is restricted in many ways, it is still a very useful result: hence golden.

e) Let’s see if we can derive a generalized golden rule without the restriction that the
perturbation is constant after a sudden turn-on. To do this assume that the perturbation
Hamiltonian has the form

H(t) = Hf(t) ,

where H is now constant with time and f(t) is a real turn-on function with the property
that f(t) is significant only for t ≥ tch, where tch is a characteristic time for turn-on. Let
time zero be formally set to −∞ for generality.

First, derive Pi(t) with explicit integrals. Second, assume again that there is a continuum
or quazi-continuum of states (of which state i is one) with density of states ρ(E) and that Hij
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can be replaced by H(E). Third, argue that the time integrals must be sharply peaked functions
of E about the initial E = Ej for t ≥ tch. Fourth, re-arrange the integrals and integrate over
energy making use of the third point. You can then make use of the result

δ(x) =

∫ ∞

−∞

e±ikx

2π
dk ,

where δ(x) is the Dirac delta function (Ar-679). What is the total transition probability for
t ≥ tch? What is the total transition rate t ≥ tch? When does this generalized golden rule
reduce to Fermi’s golden rule?



Chapt. 18 The Hydrogenic Atom and Spin

Multiple-Choice Problems

018 qmult 00100 1 1 4 easy memory: spin-orbit interaction, hydrogenic atom

Extra keywords: spin-orbit interaction, hydrogenic atom

1. What is the main internal perturbation/perturbations preventing the spinless hydrogenic
eigenstates from being the actual ones?

a) The Stark effect. b) The Zeeman effect. c) The Stern-Gerlach effect.
d) The spin-orbit interaction and the relativistic perturbation.
e) The Goldhaber interaction.

018 qmult 00200 2 4 5 moderate deducto-memory: orbital ang. mom., spin

Extra keywords: orbital angular momentum, spin, total angular momentum

2. The scalar product of operators ~L · ~S equals

a) J2.

b) (~L+ ~S) · (~L + ~S).

c) (~L− ~S) · (~L − ~S).

d) (J2 + L2 + S2)/2.

e) (J2 − L2 − S2)/2.

018 qmult 00300 1 4 3 easy deducto-memory: spin-orbit good quantum numbers

Extra keywords: spin-orbit interaction, good quantum numbers

3. “Let’s play Jeopardy! For $100, the answer is: The spin-orbit interaction causes the eigenstates
of the real hydrogen atom to be mixtures of the Ψnℓm states, but one Ψnℓm state is usually
overwhelmingly dominant.

a) Why are the quantum numbers n, ℓ, and m perfectly rotten, Alex?

b) Why are the quantum numbers n, ℓ, and m only approximately rotten, Alex?

c) Why are the quantum numbers n, ℓ, and m only approximately good, Alex?

d) Why are the quantum numbers n, ℓ, and m only indifferent, Alex?

d) Why are the quantum numbers n, ℓ, and m dependent on a recount in Palm Beach, Alex?

Full-Answer Problems

018 qfull 00500 1 3 0 easy math: fine-structure energy levels

1. The hydrogen atom energy level energies corrected for the fine structure perturbations (i.e., the
relativistic and spin-orbit perturbations) is

E(n, ℓ,±1/2, j) = −ERyd

n2

m

me

[

1 +
α2

n2

(

n

j + 1/2
− 3

4

)]

,

124
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where n is the principal quantum number, ℓ is the orbital angular momentum quantum number,
±1/2 is allowed variations of j from ℓ, j (the total angular momentum quantum number) is a
redundant parameter since j = max(ℓ± 1/2, 1/2) (but it is a convenient one),

ERyd =
1

2
mec

2α2

is the Rydberg energy, me is the electron mass, α ≈ 1/137 is the fine structure constant, and

m =
memp

me +mp

is the reduced mass with mp being the proton mass. The bracketed perturbation correction
term is

α2

n2

(

n

j + 1/2
− 3

4

)

which is of order α2 ≈ 10−4 times smaller than the unperturbed energy. Show that the
perturbation term is always negative and reduces the energy from the unperturbed energy:
i.e., show that

n

j + 1/2
− 3

4
> 0

in all cases.
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Multiple-Choice Problems

019 qmult 00100 1 4 5 easy deducto-memory: symmetrization principle
1. “Let’s play Jeopardy! For $100, the answer is: It is the quantum mechanics POSTULATE

that the state for identical fundamental particles must be symmetrized: i.e., must be symmetric
or antisymmetric under the exchange of any two particles in the state expression. Bosons have
symmetric state and fermions antisymmetric states. A second part of the postulate is that
integer spin particles are bosons and half-integer spin particles are fermions. The postulate
evolved in the 1920s from the work of Pauli, Fierz, Weisskopf, Heisenberg, Dirac, and others:
there seems to be no one discoverer. An immediate corollary of the postulate is that composite
particles with identical constituent elementary particles obey the postulates too even though
the composite particles are not identical in their states because of excitations and perturbations.
The composite particles are identical in their properties (though not their state), and so are
called identical too. A composite particle is boson if it contains an even number of fermions
and a fermion if it contains an odd number of fermions.

Actually one needs to define exchange. A general definition is too much for here. For
simplicity, we will only consider two particles whose state is given in the spatial representation:
i.e., by a wave function. The formalism (justifed by it working) is to give each particle its own
spatial coordinate and spin coordinate. Particle 1 has coordinate set ~r1m1 and particle 2 has
coordinate set ~r2m2. The state of the system is the wave function

ψ(~r1m1, ~r2m2) .

In general, the function will have a different dependence on the two coordinate sets. If we
exchange we get the new state

ψnew(~r1m1, ~r2m2) = ψ(~r2m2, ~r1m1) .

In quatnum mechanics jargon, the coordinate set exchange is called exchanging the particles.
The new state is clearly in general a different mathematical state of the formal coordinate sets.
The new state will be the same mathematically as the old state only if it is symmetric: i.e.,
only if

ψ(~r2m2, ~r1m1) = ψ(~r1m1, ~r2m2)

for all values of the coordinate sets.
If the particles are physically distinct, we create in general a different state by particle

exchange. This is because the new state will evolve differently in time in general because the
distinct particles are affected by different potentials in general. Note that the two particles do
have to have the same spin for the exchange to be mathematically and physically consistent.
The only way the new state could be the same physical state as the original state is if

ψ(~r2m2, ~r1m1) = eiφψ(~r1m1, ~r2m2) ,

where φ is a constant phase factor. A constant phase factor does not change the physical state
though, of course, it changes the mathematical state.

126
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If the two particles are identical, then particle exchange creates clearly does not create a
different physical state even though it creates a different mathematical state. But this causes a
paradox which is called the exchange paradox. A linear combination state

ψcom(~r1m1, ~r2m2) = ciψ(~r1m1, ~r2m2) + cjψ(~r2m2, ~r1m1)

is mathematically and, a priori, physically distince from ψ(~r1m1, ~r2m2). The coefficients ci
and cj are only constrained, a priori, by the requirement that ψcom(~r1m1, ~r2m2) be normalized.
In quantum mechanics, ψcom(~r1m1, ~r2m2) describes the system in a superposition of states
ψ(~r1m1, ~r2m2) and ψ(~r2m2, ~r1m1). But how can an infinite continuum of distinct states be
created by the superposition of a state with itself. The paradox has no derivable solution. It is
resolved by the postulate we are describing.

To see the resolution, say that state ψ(~r1m1, ~r2m2) has the general exchange property that

ψ(~r2, ~r1) = eiφψ(~r1, ~r2) .

Now the linear combination state

ψcom(~r1m1, ~r2m2) = ciψ(~r1m1, ~r2m2) + cjψ(~r2m2, ~r1m1)

= ciψ(~r1m1, ~r2m2) + cje
iφψ(~r1m1, ~r2m2)

= (ci + cje
iφ)ψ(~r1m1, ~r2m2)

which is physically the same state as before: mathematically it differs by a constant phase
factor. The general exchange property resolves the exchange paradox. But what sets the phase
factor eiφ. Arguments we will not go into here suggest that only eiφ = ±1 are reasonable phase
factor values. Observation tells us that eiφ = 1 holds for integer spin particles and eiφ = −1
holds for half-integer spin particles. This observation becomes part of the postulate we are
describing. Actually, the spin-statistics theorem proves the spin rule, but that theorem itself
depends on hypotheses which may not be true (CT-1387). Also actually quasiparticles called
anyons that exist in two-dimensional systems have the general exchange property rather than
just the eiφ = ±1 possibilities.”

What is , Alex?

a) Born’s hypothesis b) Schrödinger’s dilemma c) Dirac’s paradox
d) Wigner’s last stand e) the symmetrization principle or postulate

019 qmult 00110 1 1 3 easy memory: exchange degeneracy and symmetrization principle
2. As strange as the symmetrization principle seems at first, quantum mechanics would be

inconsistent without it since then you could create infinitely many physically distinct states
by superpositions of the same state. This inconsistency is called the:

a) symmetrization paradox. b) symmetrization degeneracy.
c) exhcange degeneracy. d) baffling degeneracy. e) baffling paradox.

019 qmult 01000 1 4 5 easy deducto-memory: Bose-Einstein condensate
Extra keywords: References Gr-216, CT-1399, Pa-179

3. “Let’s play Jeopardy! For $100, the answer is: The name for the state of a system of all identical
bosons when all the bosons or at least a large fraction settle into the ground state.”

What is , Alex?

a) a Hermitian conjugate b) a Hermitian condensate
c) a Rabi-Schwinger-Baym-Sutherland-Jeffery degeneracy d) just another state
e) a Bose-Einstein condensate
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Full-Answer Problems

019 qfull 00100 2 5 0 moderate thinking: permutation operator
1. The permutation operator P for functions of two variables has the seemingly arbitrary, but well

defined, property that
Pf(x1, x2) = f(x2, x1) ,

where f(x1, x2) is a general complex function of two real number variables or, one could say,
coordinates. Note that an operator is formally a mathematical entity that changes a function
into another function or, in a more general context, changes a generalized vector into another
generalized vector. Thus Pf(x1, x2) is NOT f(x1, x2) evaluated with exchanged argument
values, but a new function of coordinates x1 and x2 that has values equal to f(x2, x1). Of
course, if one views x1 and x2 as just particular values and not coordinates, then one can view
Pf(x1, x2) just as f(x1, x2) evaluated with exchanged argument values—but that’s not the way
we view things in this question.

a) Say x1 and x2 are orthogonal coordinates with the x2 counterclockwise from the x1.
Describe Pf(x1, x2) in comparison to f(x1, x2). HINT: It might be helpful to consider
specific points in the x1-x2 plane (a, b) and (b, a) which are obviously mirror reflection
positions relative to each other about the x1 = x2 line.

b) Prove that P is a linear operator: i.e., that

P [f(x1, x2) + g(x1, x2)] = Pf(x1, x2) + Pg(x1, x2)] .

HINT: Define
h(x1, x2) = f(x1, x2) + g(x1, x2) .

c) What is

P

[

∂f(x1, x2)

∂x1

]

equal to. HINT: You might consider a specific example first, e.g., one with

f(x1, x2) = x3
1x2 .

But for a general proof, recall the definition of the derivative

df(x)

dx
= lim

h→0

f(x+ h) − f(x)

h
.

d) Show that the permutation operation and the complex conjugation operation commute:
i.e., show that

[Pf(x1, x2)]
∗ = P [f(x1, x2)

∗] .

HINT: Decompose f(x1, x2) into real and imaginary parts.

e) Show from the definition of the Hermitian conjugate,

〈φ|Q|ψ〉 = 〈ψ|Q†|φ〉∗

(where Q is any operator), that P is a Hermitian operator: i.e., that P = P †. HINT:
Recall that for two spatial dimensions

〈φ|Q|ψ〉 =

∫

1

∫

2

φ(x1, x2)
∗Qψ(x1, x2) dx1 dx2 .
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f) Solve for ALL the eigenvalues of P .

g) Show that any function f(x1, x2) can be expanded in eigenfunctions of P , and thus the
eigenfunctions of P form a complete set for the space of functions of two coordinates
including wave function spaces of two coordinates. Show explicitly that the eigenfunctions
of different eigenvalues are orthogonal. Since P is Hermitian and has a complete set of
eigenfunctions for any wave function space of two arguments, it is formally a quantum
mechanical observable.

h) Given that A(x1, x2) is an operator, show that

PA(x1, x2)f(x1, x2) = A(x2, x1)Pf(x1, x2) ,

where A(x2, x1) could be a function operator, a differentiating operator or both. Recall
that operators act on everything to the right—except, of course, when they don’t: but that
situation is usually (but not always) made explicit with brackets. Do P and A commute
in general? When do they commute?

i) Show that P and the Hamiltonian for identical particles,

H = − h−2

2m

∂2

∂x2
1

− h−2

2m

∂2

∂x2
2

+ V (x1, x2) ,

commute. Show that if ψ(x1, x2) is an eigenstate of the Hamiltonian, then Pψ(x1, x2) is
an eigenstate. If ψ(x1, x2) is non-degenerate in energy, is Pψ(x1, x2) a physically distinct
state? Show that there are only two possibilities for what Pψ(x1, x2) is?

j) Given that P andH commute, show that P is a constant of the motion as far as Schrödinger
equation evolution goes.

019 qfull 00200 1 3 0 easy math: symmetrization principle
2. Consider the general normalized wave function for two particles

Ψ(~r1m1, ~r2m2)

where ~r is the spatial coordinate, m is the spin coordinate, and the labels 1 and 2 are formally
assigned to particles 1 and 2.

a) First, let’s assume that the two particles are physically distinct. This means that under
some circumstances, but not all in general, they we behave differently. Say we now act on
the state with the permutation operator P2,1 and obtain

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) = ±Ψ(~r1m1, ~r2m2) ,

where we recall that the two-particle permutation operator is Hermitian and only has
eigenvalues ±1. Have we created a new physical state? Explain. Say we now act on the
state with the permutation operator P2,1

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) 6= ±Ψ(~r1m1, ~r2m2) .

Have we created a new physical state? Explain.

b) Now let’s say that the two particles are identical and

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) 6= ±Ψ(~r1m1, ~r2m2) ,
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where we recall that the two-particle permutation operator is Hermitian and only has
eigenvalues ±1. Have we created a physically distinct state? Explain. (For the moment,
we are not assuming the symmetrization principle.)

c) Carrying over the assumptions of part (b), consider the mixed state

Ψmixed = ciΨ(~r1m1, ~r2m2) + cjΨ(~r2m2, ~r1m1) ,

where the only constraint on coefficients ci and cj is the the normalization constraint
coefficients ci and cj

|ci|1 + |cj |2 + Re[cicj〈Ψ(~r1m1, ~r2m2)|Ψ(~r2m2, ~r1m1)〉] = 1 .

Note we are not assuming Ψ(~r1m1, ~r2m2) and P21Ψ(~r1m1, ~r2m2) are orthogonal.
Argue that Ψmixed is physically distinct from Ψ(~r1m1, ~r2m2) and P21Ψ(~r1m1, ~r2m2)?
Actually, there is a continuum infinity of possible Ψmixed which is only constrained

by the normalization constraint. This infinity of states that can be constructed from
Ψ(~r1m1, ~r2m2) and P21Ψ(~r1m1, ~r2m2) is called the exchange degeneracy (CT-1375).

Given the widely, but not universally, accepted quantum mechanical interpretation,
that a linear combination of states constitutes a particle or a set of particles in a
superposition of those states argue that the exchange degeneracy creates a paradox.

d) The paradox of part (c) is eliminated by invoking the symmetrization principle that
states that the only physically allowed state for a set of identical particles is one that is
symmetrized: i.e., is one that is symmetric (i.e., an eigenstate of the permutation operator
with eigenvalue 1) or antisymmetric (i.e., an eigenstate of the permutation operator with
eigenvalue -1) under the exchange of any pair of particles. Note identical particles of one
type can have only one kind of symmetrized wave functions: i.e., they must either have only
symmetric ones in all cases (in which case they are called bosons) or only antisymmetric
ones in all cases (in which case they are called fermions). A separate postulate or if
one prefers an extra part of the symmetrization principle is that integer-spin particles
are bosons and half-integer-spin particles are fermions. Explain how the symmetrization
principle eliminated the paradox.

e) The Hamiltonian for a set of identical particles is necessarily symmetric. What does this
imply for the symmetrization state of the state as time passes?

f) Say that you had a set of non-identical particles that in a certain system had a symmetric
Hamiltonian. Say the particles were put into a symmetrized state. Would the state stay
symmetrized as time passes?

g) The symmetrization principle can be taken as stated for fundamental particles only. But it
applies as an immediate corollary to identical composite particles where whether particle
is boson or fermion depends on whether it contains an even or odd number of fermions.
Prove the corollary.

h) The Pauli exclusion principle is actually a corollary of the symmetrization principle. One
version is that the probability amplitude and therefore probability of density for two
identical fundamental fermions at the spatial coordinate and spin coordinate is zero. Prove
this.

019 qfull 00210 2 5 0 moderate thinking: exchange degeneracy
Extra keywords: Probably absolutely displaced now by 00200

3. Say you have two distinct, ORTHONORMAL single-particle energy eigenstates ψa(x) and
ψb(x) and you wish to construct from them a two-particle energy eigenstate for two identical
spinless particles: particles 1 and 2. One possibility is

ψ(x1, x2) = ψa(x1)ψb(x2) .
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A more general two-particle state is

ψ(x1, x2) = c1ψa(x1)ψb(x2) + c2ψa(x2)ψb(x1) .

NOTE: We are only discussing spatial eigenstates here, not full time dependent wave functions.

a) Find the condition on the coefficients c1 and c2 such that ψ(x1, x2) is normalized.

b) How many energy degenerate states can be formed by the various choices of c1 and c2
consistent with normalization? This degeneracy is called the exchange degeneracy (CT-
1376). Would this degeneracy exist if the particles were distinct? Why or why not?

c) All of statistical mechanics and atomic spectroscopy (where transition rates depend on
degeneracies) tell us that the vast degeneracy found in the part (b) answer does not exist in
nature. No limitation on this degeneracy can be derived. But one can postulate a limitation.
Given that the particles are identical, one natural way to mostly kill the degeneracy is to
postulate that the only allowed choices of c1 and c2 are those that yield the same expectation
value for an observable that formally depends only one particle’s coordinate no matter which
particle coordinate is used. To be more explicit, say observable Q1 and Q2 are identical,
except that Q1 depends only on x1 and Q2 depends only on x2. Solve for c1 and c2, such
that in general

〈Q1〉 = 〈Q2〉 .

HINT: Don’t forget the cross terms. Also note that c1 and c2 pairs that only differ by a
common phase factor are not physically distinct since wave functions that differ only by a
global phase factor are actually only one physical wave function.

d) Evaluate 〈x1〉 and 〈x2〉 for the allowed c1 and c2 values found in the part (c) answer. You
can take as given

〈x〉a = 〈ψa|x|ψa〉 and 〈x〉b = 〈ψb|x|ψb〉 .

Formally the operators x1 and x2 are quantum mechanical observables. But would the
expectation values 〈x1〉 and 〈x2〉 be INDIVIDUALLY observable in fact if for c1 and c2
values other than those allowed by the part (c) answer?

e) Show that the wave functions with the allowed coefficients are eigenfunctions of the
permutation operator P which has the effect on the wave function that

Pψ(x1, x2) = ψ(x2, x1) .

019 qfull 02000 2 5 0 moderate thinking: symmetrization of 4 orthonormal single-particle states

Extra keywords: defect in part (b). Must rework.

4. Say |ai〉 and |bi〉 are ORTHONORMAL single-particle states, where i is a particle label. The
label can be thought of as labeling the coordinates to be integrated or summed over in an inner
product: see below. The symbolic combination of such states for two particles, one in a and
one in b is

|12〉 = |a1〉|b2〉 ,

where 1 and 2 are particle labels. This combination is actually a tensor product, but let’s not
worry about that now. The inner product of such a combined state is written

〈12|12〉 = 〈a1|a1〉〈b2|b2〉 .
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If one expanded the inner product in the position and spinor representation assuming the wave
function and spinor parts can be separated (which in general is not the case),

〈12|12〉 =

[∫

ψa(x1)
∗ψa(x1) dx1 ( c∗a+ c∗a− )1

(

ca+

ca−

)

1

]

×
[∫

ψb(x2)
∗ψb(x2) dx2 ( c∗b+ c∗b− )2

(

cb+
cb−

)

2

]

.

A lot of conventions go into the last expression: don’t worry too much about them.

a) Let particles 1 and 2 be distinct particles. What are the two normalizaed product 2-particle
states that can be constructed from states a and b? What happens if a = b (i.e., the two
single-particle states are only one state actually)?

b) Say particles 1 and 2 are identical bosons or identical fermions. What is the only normalized
physical 2-particle state that can be constructed in either case allowing for the possibility that
a = b (i.e., the two single-particle states are only one state actually)? What happens to the
state if a = b for bosons and what does it mean? What happens to the state if a = b for
fermions and what does it mean?

019 qfull 02100 1 5 0 easy thinking: slater determinant, triplet singlet
Extra keywords: (Gr-181:5.3)

5. Say that we have obtained four distinct orthonormal single-particle eigenstates for identical spin
1/2 particles:

ψa(~r )χ+ , ψa(~r )χ− , ψb(~r )χ+ , ψb(~r )χ− ,

where the spinors are

χ+ =

(

1
0

)

and χ− =

(

0
1

)

.

To label a state for a particular particle i, we can write for example

ψa(~r i)χ+,i .

a) How many distinct two-particle product states can be constructed for identical particles 1
and 2 that are consistent with the Pauli exclusion principle? There is no distinction between
which factor state you give to which particle: i.e.,

ψa(~r 1)χ+,1ψa(~r 2)χ−,1 and ψa(~r 2)χ+,2ψa(~r 1)χ−,2

are the same product state for identical particles. Write down the product states. Are the
product states orthornormal? If the particles were distinct, how many distinct two-particle
product states could be constructed? How many distinct linearly-independent symmetrized
states can be constructed from the two-particle product states? HINT: The first part is
a problem of choosing k objects from n objects with no replacement and no distinction on
ordering of choices.

b) Are the linearly-independent symmetrized states created from orthonormal product states
of single particles always orthonormal? Prove your answer. HINT: The proof takes a bit
of thinking.

c) Using the Slater determinant formalism construct from the part (a) product states all
the symmetrized states in which the only one kind of single-particle spatial state occurs.
Remember to normalize the symmetrized states. What kind of states are these in spin
description?
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d) Using the Slater determinant formalism construct from the part (a) product states all the
symmetrized states in which two distinct single-particle spatial states occur. Remember to
normalize the symmetrized states. What kind of states are these in spin description?

e) Two of the states constructed in the part (d) answer are neither triplet nor singlet states.
But you can construct by linear combination a triplet state and singlet state from these
two. Do so. Then you have full triplet-singlet set of symmetrized states comprising the
two unused states from the part (d) answer and the two newly constructed states.

f) Discuss when you would expect the four symmetrizied states of the part (d) answer to
be stationary states and when the you would expect the triplet-singlet set of symmetrized
states to the stationary states.

019 qfull 02200 3 5 0 tough thinking: 2-particle infinite square well
Extra keywords: (Gr-182:5.4)

6. The set of individual eigen states for a 1-dimensional, infinite square well confined to [0, a] can
be written |n〉 where n = 1, 2, 3, . . . The energies of the states are given by

E(n) =
h−2

2m

(π

a

)2

n2

(e.g., Gr-26). For convenience Ered(n) = n2 can be called the reduced energy of state n.

a) Say we have two non-interacting particles a and b in the well. Write write down the
Hamiltonian for this case. The particles have the same mass m, but are not necessarily
identical.

b) The reduced energy of a 2-particle state that satisfy the Schrödinger equation of part (a)
can be written

Ered(n1, n2) = n2
1 + n2

2 .

Write a small computer code to exhaustively calculate the possible reduced energy levels
up to and including Ered = 50 and the n1 and n2 combinations that yield these energies.
The code should also calculate the degeneracy of each energy for the cases of non-identical
particles, bosons, and fermions. I’ll left you off easily, accidental degeneracies can be
idendified by eye. (Note: An accidental degeneracy is when a distinct pair of n values (i.e.,
a pair not counting order) gives the same reduced energy.)

c) Write down the normalized vector expressions for all the 2-particle states up to the 4th
allowed energy level for the cases of non-identical particles, identical bosons, and identical
fermions. Just to get you started the non-identical particle ground state is

|a1, b1〉 = |a1〉|b1〉 with Ered = 2 .

019 qfull 02300 3 5 0 tough thinking: exchange force
Extra keywords: (Gr-182)

7. Say we have orthonormal single-particle states |a〉 and |b〉. If we have distinct particles 1 and 2
in, respectively, |a〉 and |b〉, the net state is

|a1, b2〉 = |a1〉|b2〉 .

Of course, each of particles 1 and 2 could be in linear combinations of the two states if the states
physically allowed the distinct particles to be in either one. In that case the linear combined
state would be a four term state. But we have no interest in pursuing that digression at the
moment.
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Now two identical particles in states |a〉 and |b〉 have no choice, but to be in a symmetrized
state by the symmetry postulate:

|1, 2〉 =
1

√

2(1 + δab)
(|a1, b2〉 ± |a2, b1〉) ,

where the upper case is for identical bosons and the lower case for identical fermions. If the two
states are actually the same state |a〉, then the state for bosons reduces to

|1, 2〉 = |a1, a2〉

and for fermions the state reduces to the null state |0〉 which is not a physical state, and thus
the Pauli exclusion principle is incorporated in the state expression.

Note products of kets are actually tensor products (CT-154). In taking scalar products,
the bras with index i (e.g., 1 or 2 above) act on the kets of index i. For example, for the state
|1a, 2b〉 = |a1〉|a2〉 the norm squared is

〈a1, b2|a1, b2〉 = 〈a1|a1〉〈a2|a2〉 .

The fact that identical particles must be in symmetrized states means that their wave
functions will be more or less clumped depending on whether they are bosons or fermions than
if they could be fitted into simple product states like distinct particles. We are not bothering
with the complication of spin for this problem. We will assume that all the particles are in the
same spin state: e.g., they are all in the spin up state.

The clumping/declumping effect is called the EXCHANGE FORCE. Obviously, it is
not really a force, but rather a result of the symmetrization principle requirements on physical
states for identical particles. Still for some practical purposes one can certainly consider it as
force. In this problem, we investigate the effect of the EXCHANGE FORCE.

a) Expand 〈∆x2〉 = 〈(x1 − x2)
2〉 into three terms that can be evaluated individually.

b) For the given two-particle state for DISTINCT PARTICLES |a1, b2〉 = |a1〉|b2〉, formally
show that

〈∆x2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ,
where the particle labels can be dropped from the single-particle state expectation values, but
these values must be identified by the single-particle state that they are for: i.e., for states |a〉
and |b〉. What happens in the case that |a〉 = |b〉? HINT: Remember that variance is defined
by

σ2 = 〈x2〉 − 〈x〉2 .

c) There is an identity that is needed for part (d) and is useful in many other contexts. Say |α〉
and |β〉 are general states (e.g., they could be one-particle or two-particle states). Say that

|Ψ〉 = cα|α〉 + cβ |β〉

and we have general observable Q. We have the identity

〈Ψ|Ψ〉 = |cα|2〈α|α〉 + |cβ |2〈β|β〉 + 2Re(c∗αcβ〈α|Q|β〉) .

Prove the identity.

d) For the given two-particle state for IDENTICAL PARTICLES

|1, 2〉 =
1

√

2(1 + δab)
(|a1, b2〉 ± |a2, b1〉) ,
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determine 〈∆x2〉 for identical bosons and fermions. What happens in the case that |a〉 = |b〉?
HINT: Recall that

〈a|b〉 = δab ,

since the states are orthonormal.

019 qfull 02400 2 5 0 moderate thinking: exchange force and infsq well
Extra keywords: (Gr-185:5.5) and the infinite square well

8. Imagine two non-interacting particles in an infinite square in the range [0, a]. Recall the eigen-
functions for this case are

ψn =

√

2

a
sin
(nπ

a
x
)

for n = 1, 2, 3, . . .. Recall also the results of the Gr-182 and Gr-29:2.5 questions.

a) Say the particles are distinguishable and are in states n andm. What is 〈∆x2〉 = 〈(x1−x2)
2〉

for this case? What is it if n = m?

b) Say the particles are identical bosons/fermions and are in the only allowed combination of
states n and m. What is 〈∆x2〉 = 〈(x1 − x2)

2〉 for this case? What is it if n = m?

019 qfull 02500 2 3 0 mod math: coupled simple harmonic oscillator, coupled SHOs
Extra keywords: On tests going to part f might be sufficient

9. There are two particles subject to separate simple harmonic oscillator (SHO) potentials.
Initially, we assume that they are distinct particles. They are also coupled by a mutual SHO
potential. The full Hamiltonian is:

H =
p2
1

2m1
+

p2
2

2m2
+

1

2
m1ω

2x2
1 +

1

2
m2ω

2x2
2 +

1

2
k(x1 − x2)

2 ,

where k > 0 which in this context means the interaction is attractive. The problem is 1-
dimensional: it is in the x dimension only.

a) Write down the formulae for the center-of-mass (CM) and relative (REL) coordinate and
their inverses (i.e., x1 and x2 expressed in terms of the CM coordinate X and the relative
x).

b) Transform the Hamiltonian to the center-of-mass-relative (CM-REL) coordinates (showing
all the steps).

c) Now show that the time-independent Schrödinger equation for the Hamiltonian separates
into CM and REL time-independent Schrödinger equations. Define

ω̃ =

√

ω2 +
k

µ
= ω

√

1 +
k

µω2

(where µ is the reduced mass) in order to simplify the REL equation. Does the overall
time-independent Schrödinger equation have an exact solution?

d) Write down the general expression for the eigen-energies of the total stationary states in
terms of the SHO quantum numbers nCM and nREL for the respective CM and REL parts.

e) Next write the expression for the eigen-energies in the case that k = 0. Define a new
quantum number n that alone gives the eigen-energy and the degeneracy of the eigen-
energy. What is the degeneracy of an eigen-energy of quantum number n?

f) Now assume that k > 0, but that k/(µω2) << 1. Write down a 1st order correct expression
for the energy in terms of n and nREL. Give a schematic energy-level diagram.
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g) Now assume that k/(µω2) >> 1. Give a schematic energy-level diagram in this case.

h) Now assume that the two particles are identical spin-0 bosons. Note that identical means
they now have the same mass. Given the symmetry requirement for boson states, which
solutions (specified by the nCM and nREL quantum numbers) are not physically allowed?

i) Now assume that the two particles are identical spin-1/2 fermions. Note again that identical
means they now have the same mass. But also note they arn’t electrons. Their interactions
are determined by the given Hamiltonian only. Because the particles are spin-1/2 fermions,
the stationary state wave functions for system must be multiplied by appropriate eigen-
spinors to specify the full stationary state. Given the antisymmetry requirement for fermion
states, what restrictions are put on the wave function and spinor quantum numbers of an
eigenstate?

019 qfull 02600 1 5 0 easy thinking: symmetrization, Slater determinant
Extra keywords: (Gr-187:5.7)

10. Say that you solve a Schrödinger equation for N identical particles to get the normalized wave
function ψ(~r1, ~r2, ~r3, . . . , ~r N ). How would you symmetrize the wave function for bosons? Then
how would you symmetrize for fermions all in the spin-up state so that you don’t have spinors
to complicate the question? How would you normalize the wave function?

019 qfull 02700 1 5 0 easy thinking: doubly excite He decay
Extra keywords: (Gr188.58a)

11. Say you put two electrons into the n = 2 principle quantum number shell of a neutral helium
atom and immediately one electron is ejected and the other decays to the ground of the He+ ion.
What approximately is the kinetic energy of the ejected electron. NOTE: Without a detailed
specification of the doubly-excited helium atom we cannot know exactly what the energies of the
excited electrons are. There are two simple approximate choices for their energies: 1) assume
that the energy levels of the singly-excited helium atom apply (see, e.g., Gr-189); 2) assume that
the Z = 2 hydrogenic energy levels apply. The first choice is probably most in error because it
assumes too much electron-electron interaction: the electrons may further apart in the actual
doubly-excited state; but, in fact, where they are depends on exactly what doubly excited state
they are in. The 2nd choice is certainly wrong by assuming zero electron-electron interaction.

019 qfull 02900 2 5 0 moderate thinking: helium with bosons
Extra keywords: (Gr-188:5.9)

12. Describe qualitatively how the helium atom energy level diagram would plausibly change under
the following conditions.

a) Say the electrons were spin zero bosons.

b) Say the electrons were spin 1/2 bosons—a contradiction in postulates, but for the sake of
argument have it so.

c) Say the electrons were spin 1/2 fermions, but were quantum mechanically distinguishable
particles. HINT: In this case the answer is going to be pretty much indefinite.

019 qfull 03000 2 5 0 moderate thinking: Bose-Einstein counting
Extra keywords: See Po-13 and Po-47

13. In statistical mechanics, the symmetrization requirement on identical bosons enters in the way
that probabilities are assigned to the global states they can form. We will investigate how
symmetrization manifests itself in this case.

a) Say you had g single-particle states and n distinct particles. How many distinct global
states can you form? What is the probability of each global state assuming that each has
equal probability?
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b) Now a trickier case. Say you had g single-particle states and n identical particles. The
probability pi that a particle goes into single-particle state i is INDEPENDENT of what
the other particles do: note

∑g
i=1 pi = 1, of course. You can construct all possible global

states by inserting one particle at a time into the system—can you imagine a global state
that cannot be so constructed? Say you do insert the n particles one at a time to the system.
The probability of an n-particle global state formed by the insertion sequence ijk . . . ℓ is
pipjpk . . . pℓ which has n factors, of course. But because the particles are identical, each
(distinct) global state can be constructed in general by multiple insertion sequences. How
many distinct insertion sequences for n particles correspond to a single global state with
occupation number set {ni}? If all the pi are equal, what is the probability of a global
state with occupation number set {ni} formed by random insertion of particles?

The sum of the probabilities for all insertion sequences is 1. Why must this be so
on general grounds? Now prove more explicitly that the sum of all inserttion sequence
probabilities is 1. HINT: Consider

1 =

(

g
∑

i=1

pi

)n

and a proof by induction.

c) Now in the part (b) answer, we didn’t find out how many distinct global states there were.
To find this out you need a different counting procedure. Let’s consider finding all possible
global states given the following conditions. Imagine that all n particles were distinct and
that the order in which you choose the single-particle states to slot them into also matters.
To start with you must select a state: you can’t put a particle in a non-state. Then proceed
selecting a particle for the current state or a new state until you are out of particles and
states. Now did the order of the states matter or the order of the choice of particles?

d) Now for classical, non-interacting particles randomly slotted into single-particle states,
the probability of each global state is as determined in part (b). Quantum mechanical
non-interacting bosons do not act like classical particles. Because of the symmetrization
principle—in a way the instructor has never found out—each distinct global state has equal
probability. What is this probability for n bosons in g single-particle states? Say that we
have all n bosons in one single-particle state. What is the classical probability of this global
state? Which is larger the classical probability or the boson probability? What does the
last result suggest about the random distributions of bosons relative to classical random
distributions?

e) Consider two identical coins—say quarters. How many distinct global physical states can
be made given that the single-coin states are head and tail? Now toss them up together
in a completely randomizing way 36 times. Count the number of distinct global states of
each kind that you get? Do the probabilities of each distinct global state appear to be
classically random or boson random?
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Multiple-Choice Problems

020 qmult 00100 1 1 1 easy memory: atom defined
1. An atom is a stable bound system of electrons and:

a) a single nucleus. b) two nuclei. c) three nuclei. d) a single quark.
e) two quarks.

020 qmult 01000 1 4 1 easy deducto-memory: central potential
2. “Let’s play Jeopardy! For $100, the answer is: A favored approximation in the simpler solutions

for the electronic structure of atoms in quantum mechanics.”

What is the , Alex?

a) central potential approximation b) non-central potential approximation
c) grand central approximation d) atom-approximated-as-molecule method
e) electrons-as-bosons approximation

Full-Answer Problems

020 qfull 00200 1 3 0 easy math: electronic configurations to Ca
1. Write down the ground state electronic configurations of the neutral atoms from hydrogen

(element 1) to calcium (element 20). Write down the element symbols too.

020 qfull 00400 1 5 0 easy thinking: spectrum of He II
Extra keywords: (Gr-188:58b)

2. Describe the spectrum of He II (i.e., singly-ionized helium or He+) sans perturbations..

020 qfull 00410 3 3 0 tough math: helium atom 1st order perturbation
Extra keywords: (Gr-188:5.10)

3. If one neglects the electron-electron interaction of the helium atom then the spatial ground state
is just the product of two hydrogenic states:

ψ(~r1, ~r 2) = ψ100(~r 1)ψ100(~r 2) =
1

πa3
He/8

e−2(r1+r2)/a =
8

πa3
e−2(r1+r2)/a ,

where aHe = a/Z = a/2 is the helium Bohr radius and a is the standard Bohr radius (see, e.g.,
Gr-137–138 and Gr-187). The 1st order perturbation correction to the helium atom ground
state is given by

〈H ′〉 ,

where H ′ is the perturbation Hamiltonian: i.e.,

e2

4πǫ0

1

|~r1 − ~r2|

138
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in MKS units (see, e.g., Gr-187) or
e2

|~r1 − ~r2|
in Gaussian CGS units. Note that we use e for both fundamental charge unit and the exponential
factor: this is conventional of course: context must decide which is which.

a) Analytically calculate
〈

1

|~r1 − ~r2|

〉

.

HINTS: Set

|~r1 − ~r2| =
√

r21 + r22 − 2r1r2µ ,

where µ = cos θ is the angle cosine between the vectors. Integrate over all ~r2 space first
taking ~r1 as the z axis for spherical coordinates. It helps to switch to dimensionaless
variables earlier on. There are no specially difficulties or tricks: just a moderate number
of steps that have to be done with tedious care.

b) Now the expression for a hydrogenic energy level, sans perturbations, is

En = −1

2
mec

2α2Z
2

n2
= −Z

2Eryd

n2
≈ −13.6Z2

n2
eV ,

where me is the electron mass, α is the fine structure constant, Z is the nuclear charge,
and Eryd ≈ 13.6 eV is the Rydberg energy (see, e.g., Ga-197). In Gaussian CGS units

α =
e2

h−c
and a =

h−
mecα

(e.g., Ga-199). What is the energy of the helium atom ground state in terms of Rydberg
energies and eVs?

020 qfull 01000 2 5 0 moderate thinking: quantum defects
Extra keywords: (MEL-220:9.1) Needs some more work, particularly (b)

4. Excited states of atoms can usually be approximated as merely promoting a valence electron to
a single-particle state at a higher energy than any of the ones used in the ground state. For high
energy single-particle states one often finds that their energies form a quasi-Rydberg series: i.e.,

Enℓ ≈ − ERyd

(n− µnℓ)2
,

where n is the principal quantum number, ℓ is the angular momentum quantum number, ERyd =
13.606 eV is the Rydberg energy, and µnℓ is the quantum defect. I suppose quantum defect gets
its name since it accounts for a “defect” in the quantum number. When quantum defects are
small the wave functions will be quasi-hydrogen-like and hydrogen-like approximations can be
used with some confidence—which is often an immense simplification. (Note I use hydrogen-like,
not hydrogenic: hydrogen-like implies that the central potential is like e2/r, whereas hydrogenic
implies the central potential is like ZNe

2/r—at least that’s the way it is in this question. Various
uses can be made of the quantum defect parameterization of energy (e.g., Mi-97).

In understanding quantum defects, three facts are useful to know. First, the single-particle
potential well outside of the core approximates

V (r) = −e
2

r
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for a neutral atom. Second, near the nucleus of the atom, the single-particle potential
approximates the bare nucleus potential

V (r) = −ZNe
2

r
,

where ZN is the nuclear charge. Third, wave functions in central potentials for small radius tend
to go as rℓ. This result is rather robust since it is true of hydrogenic wave functions (MEL-57;
Ar-622) and spherical Bessel functions (Ha-37) which are the radial solutions of the infinite
spherical well. Only s states (i.e., ℓ = 0 states) have non-zero probability amplitude at r = 0.

a) Find the formula for the quantum defect in terms of the energy of the energy level. Then
compute the quantum defects for sodium and lithium given the following table. HINT: A
computer program would lessen the labor.

Table: Observed Energy Levels in Electronvolts (not to modern accuracy)

n s p d f

Li

2 −5.3923 −3.5442 . . . . . .
3 −2.0188 −1.5577 −1.5133 . . .
4 −1.0509 −0.8701 −0.8511 −0.8502
5 −0.6432 −0.5544 −0.5446 −0.5434

Na

3 −5.1397 −3.0359 −1.5223 . . .
4 −1.9480 −1.3863 −0.8557 −0.8507
5 −1.0229 −0.7946 −0.5472 −0.5445
6 −0.6297 −0.5150 −0.3797 −0.3772

b) As you can see from your table of quantum defects, the quantum defects are NOT nearly
zero in general as they would be if the states were almost exactly hydrogen-like at their
principal quantum number. Also the quantum defects are NOT just equal to the principal
quantum number of highest core shell ncore: i.e., they are not 1 for Li and 2 for Na. Thus,
the quantum defect shows that the outer states are not hydrogen-like either for their actual
principal quantum number n nor at an effective principal quantum number n−ncore. Why
are these two a priori guesses for quantum defects wrong even though the potential is close
to that of hydrogen with ZN = 1 in the region where the bulk of the probability for outer
states is located.

c) Give a reason why quantum defects should have positive values if they are significantly
large. Why might small quantum defects be negative?

d) Why do quantum defects decrease with ℓ?

e) Explain why the Na quantum defects tend to be larger than the Li quantum defects?

f) Give a reason why quantum defects may not vanish as n→ ∞.
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Multiple-Choice Problems

021 qmult 00100 1 1 1 easy memory: molecule defined
1. A stable bound system of electrons and more than one nucleus with some specific recipe for the

numbers of each kind of nuclei is:

a) a molecule.
b) an atom.
c) a nucleon.
d) a fullerene.
e) a baryon.

021 qmult 00100 1 4 1 easy deducto-memory: atoms bound in molecules
2. “Let’s play Jeopardy! For $100, the answer is: Because they are formed by bonding atoms and

dissociate into atoms?”

a) What is one good reason for thinking of molecules as bound atoms, Alex?
b) What are three bad reasons for thinking of molecules as bound atoms, Alex?
c) What is no reason at all for thinking of molecules as bound atoms?
d) What is ambiguous answer, Alex?
e) What is am-Piguous answer, Alex?

021 qmult 00300 2 1 2 easy memory: molecular energy scales
3. Given electron mass m and typical nuclei mass M , the ratio of electronic, vibrational, and

rotational energies for a molecule is of order:

a) 1 : 1 : 1.
b) 1 : (m/M)1/2 : (m/M).
c) 1 : (m/M) : (m/M).
d) 1 : (m/M)1/4 : (m/M)1/2.
e) 1 : (m/M)1/4 : (m/M)1/3.

021 qmult 00400 1 4 4 easy deducto-memory: Born-Oppenheimer approx.
Extra keywords: (Ba-473)

4. “Let’s play Jeopardy! For $100, the answer is: This approximation allows one to treat the
nuclei in atoms as though they interacted only with an effective potential constructed from
actual potentials and the electronic kinetic energy (i.e., the total electronic energy).”

a) What is the Alpher-Behte-Gamow recipe, Alex?
b) What is the Einstein-Woody-Allen approximation, Alex?
c) What is the linear combination of atomic orbitals method, Alex?
d) What is the Born-Oppenheimer approximation, Alex?
e) What is the tight-binding approximation, Alex?

021 qmult 00500 1 4 5 easy deducto-memory: tight-binding theory

141
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5. “Let’s play Jeopardy! For $100, the answer is: It posits that overlapping wave functions of
bound atoms can be treated to some degree in terms of the orbitals of isolated atoms.”

a) What is the genetic algorithm method, Alex?

b) What is the linear variational method, Alex?

c) What is tight-binder theory, Alex?

d) What is tight-wadding theory, Alex?

e) What is tight-binding theory, Alex?

021 qmult 00600 1 1 3 easy memory: LCAO

6. In LCAO (linear combinations of atomic orbitals method) one uses atomic orbitals as a non-
orthonormalized basis set for constructing:

a) bound states of nucleons.

b) bound states of photons.

c) inter-atomic bonding and anti-bonding states.

d) intra-atomic stationary states.

e) property-law violating beach-front homes in California.

Full-Answer Problems

021 qfull 00100 2 5 0 moderate thinking: universal sp-coupling parameters

Extra keywords: See Ha-95

1. Harrison (Ha-95) presents “universal” sp-bond matrix elements or coupling pararameters:

〈s1|H |s2〉 = Vssσ = −π
2

8

h−2

md2
,

〈pz1|H |pz2〉 = Vppσ =
3π2

8

h−2

md2
,

〈s1|H |pz2〉 = Vspσ =
π

2

h−2

md2
,

and

〈px1|H |px2〉 = 〈py1|H |py2〉 = Vppπ = −π
2

8

h−2

md2
= Vssσ ,

where 1 and 2 denote two atoms aligned along the z-axis, H is the single-particle Hamiltonian
owing to the cores of the two atoms, the |s1〉, etc., are single-particle atomic orbitals (radial
parts of some sort times the cubical harmonics for the angular parts) oriented relative to a
common set of axes, d is the inter-nuclei separation, and Vspσ has a π, not π2. The s and p
subscripts on the V ’s indicate the atomic orbitals in the coupling and the σ and π indicate the
indicates the quantum numbers m2 of L2

z operator of the molecular orbitals that result from
the coupling of the different states: σ is for m2 = 0 and π is for m2 = 1.

The reason for the complication of using the eigenvalues of the L2
z operator rather than the Lz

operator is that the |px〉 and |py〉 cubical harmonics are eigenstates of L2
z, but not of Lz. Recall

the lowest quantum number spherical harmonics Yℓ,m are

Y0,0 =
1√
4π

, Y1,0 =

√

3

4π
cos(θ) , and Y1,±1 =

√

3

8π
sin(θ)e±imφ ,
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where ℓ is the L2 quantum number, m is the Lz quantum number, θ is the angle from the z-axis,
and φ is the azimuthal angle. The cubical harmonics are defined by

|s〉 = Y0,0 =
1√
4π

,

|px〉 =
Y1,1 + Y1,−1√

2
=

√

3

4π

x

r
,

|py〉 =
Y1,1 − Y1,−1

i
√

2
=

√

3

4π

y

r
,

and

|pz〉 = Y1,0 =

√

3

4π

z

r
.

a) Verify that polar plots of the “p” cubical harmonics are a touching pair of spheres of radius
√

3/(4π)/2. (I mean, of course, when you consider the plots as spherical polar coordinate
plots.) For |pz〉, for example, the spheres touch at the z-axis origin and are aligned with
the z-axis: the upper sphere is “positive” and the lower sphere is “negative”: i.e., the
radial position from the origin comes out a negative number: one just plots the magnitude.
HINTS: It is sufficient to do the proof for |pz〉, since the others are the same mutatis

mutandis. A diagram would help.

b) Interpret the physical significance of the polar plots of the cubical harmonics.

c) Show that |px〉 and |py〉 are eigenstates of L2
z, but not Lz. What other angular momentum

operators are they eigenstates of? HINT: Recall

Lz =
h−
i

∂

∂φ
.

d) Now we come to the question yours truly wanted to ask before chronic digression set in.
Write sp-bond coupling parameters in terms of fiducial values in units eV-Å2: e.g.,

C

d2

A
◦
,

where C is a numerical constant (i.e., an actual value) in eV-Å2 and d
A
◦ is mean nuclei

separation in Angstroms. Then evaluate the constants for d
A
◦ = 3. HINT: Recall

h−2

m
= 7.62 eV-Å2 ,

where m is the electron mass.

021 qfull 00300 2 3 0 easy math: Li2 with spin
Extra keywords: Reference Ha-72

2. Let us consider the single-particle bonding and antibonding states and their energies for Li2.
We assume that the single-particle Hamiltonian of the Li2 molecule is

H =
−h−2

2m
∇2 + V (~r ) =

−h−2

2m
∇2 + V (~r − ~r1) + V (~r − ~r2) .

where ~r is measured from the midpoint between the nuclei, ~r1 is the position of nucleus 1,
and ~r2 the position of nucleus 2. We are assuming the nuclei are at fixed positions which is the
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crudest Born-Oppenheimer approximation. The observed equilibrium separation of the nuclei is
d = 2.67 Å: we take this to be the fixed separation. We will make the LCAO (linear combination
of atomic orbitals) approximation.

a) Use the linear variational method to calculate the the bonding and antibonding states and
their energies. The basis states are the two atomic orbital 2s states of the atoms: call them
|1〉 and |2〉. We assume |1〉 and |2〉 are knowns: they have the same energy εs = −5.34 eV.
Assume the basis states are orthogonal: a poor approximation actually, but this problem is
intended to be heuristic. Make a reasonable approximation to evaluate the diagonal matrix
elements. For off-diagonal or coupling matrix elements use

Vssσ = −π
2

8

h−2

md2
= −9.40 eV-Å

d2

A
◦

.

this is one of Harrison’s “universal” sp-bond couplings (Ha-95). Which state is the bonding
state and which the antibonding state and why are they so called?

b) What is the component of orbital angular momentum of single-particle states about the
inter-nuclear axis? How do you know this? What symbol represents this orbital angular
momentum component value for molecules? HINT: Recall that the z-component orbital
angular momentum operator is

Lz =
h−
i

∂

∂φ
,

where φ is the azimuthal angle about the z-axis (MEL-23).

c) Now construct six plausible symmetrized two-particle states including spinor from our
bonding and antibonding position states: a ground state and the five excited states. So
everyone is on the same wavelength let

α =

(

1
0

)

and β =

(

0
1

)

.

What are the approximate energies of these states? Can we construct any more states
from the bonding and antibonding states? We, of course, are assuming that there is no
spin operator in the Hamiltonian. NOTE: These states may not be very realistic: this is
just an exercise.

021 qfull 03000 2 5 0 moderate thinking: molecular relative coordinates
Extra keywords: A misconcieved problem.

3. One usually wishes to separate the center of mass and relative parts of the nuclei part of a
molecular wave function. For two nuclei, the situation is a two-body problem and can be treated
like hydrogenic systems (Da-334). For the general multiple nuclei case, a different approach is
needed that treats all nuclei on the same footing. Let ~ri be nucleus i’s position relative to
an external inertial frame. Let ~r′i be nucleus i’s position relative to ~R the molecular center of
mass. We make the approximation that the electrons can be neglected in evaluating the center
of mass. NOTE: I was fooled into thinking there was neat way of doing this. The cross term
doesn’t vanish. But one probably has to construct independent coordinates in a special way for
each kind of molecule. But maybe something is salvageable so I’ll leave this around for now.

a) Express ~R and ~r′i in terms of the positions ~ri.

b) Now express the operators ∂/∂xi and ∂2/∂x2
i in terms of operators ∂/∂x′i and ∂/∂X.

For simplicity we only consider the x-components of the various coordinates. The y- and
z-components are handled similarly.
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c) Now show that

H =
∑

i

p2
i

2Mi
+ V ({ri}) =

p2
cm

2Mtot
+
∑

i

p′2i
2M ′

i

+ V ({r′i}) ,

where H is the Hamiltonian of the nuclei in the effective potential V ({ri}) (the curly
brackets mean “set of”) with no external potential present, p′i are the relative coordinate
momentum operators, and

M ′
i =

Mi

[1 − (Mi/Mtot)]
2 .
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Multiple-Choice Problems

022 qmult 00100 1 1 3 easy memory: simplest quantum mechanical solid model
1. The simplest quantum mechanical solid model is arguably:

a) the hydrogen atom. b) the helium atom. c) the free electron gas model.
d) the infinite periodic potential model. e) the finite periodic potential model.

022 qmult 00110 1 1 1 easy memory: infinite square boundary conditions
2. For the simple free electron gas model of a solid, one choice of boundary conditions out of two

possibilities is boundary conditions.

a) infinite square well b) finite square well c) Gaussian well d) hydrogen atom
e) helium atom

022 qmult 00130 1 4 4 easy deducto-memory: periodic boundary conditions
Extra keywords: mathematical physics

3. “Let’s play Jeopardy! For $100, the answer is: These quantum mechanical boundary conditions
for solids, also known a Born-von-Karman boundary conditions, are not realistic in most cases.
They are realistic in some cases. For example, for the dimension of a solid that forms a closed
loop: e.g., a solid that has donut shape can be have an angular coordinate that must be periodic
by symmetry over the range [0◦, 360◦]. But whether realistic or not, it can be shown that they
lead to the same average behavior as realistic boundary conditions for macroscopically large
solid samples.

Why are these boundary conditions used at all? Well for one thing they are an ideal kind
of boundary conditions that are completely independent of what the surface behavior of solid
is. Thus, they are neutral case. For another thing they are easy to use in developments in
particular when dealing with periodic potentials in a solid.”

What are boundary conditions, Alex?

a) infinite square well b) aperiodic c) Rabi-Schwinger-Baym-Sutherland
d) periodic e) relaxed

022 qmult 00500 1 4 5 easy deducto-memory: Bloch’s theorem
Extra keywords: mathematical physics

4. “Let’s play Jeopardy! For $100, the answer is: It is a theorem in quantum mechanics that applies
to systems with periodic potentials. In one dimension, say one has the periodic potential

V (x) = V (x+ a)

where a is the period distance The theorem then says that the wave function must satisfy

ψ(x+ a) = eKaψ(x) or ψ(x) = eKaψ(x− a)

or
ψ(x+ na) = eKnaψ(x) or ψ(x) = eKnaψ(x− na) ,

146
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where K is wave number quantity and n is any integer. Say that one has ψ(x) for the range
[0, a]. Then the ψ(x) for the range [na, (n+ 1)a] can be evaluated from the last formula: e.g.,

ψ(na) = eKnaψ(0) and ψ[n+ 1)a] = eKnaψ(a) .”

What is , Alex?

a) Lorentz’s theorem b) Einstein’s rule c) Schrödinger’s last theorem
d) Born’s periodicity law e) Bloch’s theorem

022 qmult 00530 1 1 3 easy memory: Dirac comb
5. A periodic potential that consists a periodic array of equally strong Dirac delta function

potential spikes separated by flat potential reigons is called a comb.

a) Bloch b) Compton c) Dirac d) Fermi e) Pauli

Full-Answer Problems

022 qfull 00100 2 5 0 moderate thinking: free electron gas model of a solid
Extra keywords: (Ha-324:2.4)

1. The free electron gas model of a solid is arguably the simplest model of solid. The electrons
are assumed to be non-interacting fermions confined to a potential well. The background of
positive ions and the electrons’s own Coulomb force combine to create the potential well. The
potential inside the well is flat. The most obvious set of boundary conditions are infinite square
well boundary conditions.

Periodic boundary conditions (AKA Born-Von-Karman boundary conditions) are also used.
They give the same macroscopic results as infinite square well boundary conditions and are
better suited for treating periodic potentials inside solids. Periodic boundary conditions actually
means you imagine space looping back on itself for opposing ends of a rectangular box. If you
go out one end, you come back in the opposing end. If we assume a 1-dimensional wave function
along a box dimension (which we actually require in our development in this problem), then
we demand that that wave function be single-valued as it loops around and around through
looped space. We have no physical meaning for a multi-valued wave function. You could at
first imagine that there could be a discontinuity in the wave function as it crosses a boundary.
But the ordinary continuity conditions on a wave function at locations of finite potential require
that the wave function and its 1st derivative must be continuous across the boundary. Thus,
to loop back into itself, the wave function and its 1st derivative must have the same values at
opposing boundaries.

Let us consider a free electron gas model of a solid in 1, 2, and 3 dimensions simultaneously.
Use periodic boundary conditions in all three cases: a 1-dimensional rectangular box is a line
segment, a 2-dimensional rectangular box is a rectangle, and a 3-dimensional rectangular box is
what one ordinarly means by a rectangular box. Let Li be the length of side i of the rectangular
box and V =

∏

i Li be the rectangular box volume. Let ℓ be the number of dimensions.

a) Solve the time-independent Schrödinger equation for the single-particle stationary states
for all three dimension cases. These states can be called k states since they distinguished
by their wavenumbers for the available dimensions. Normalize the solutions solutions and
give their quantization rules for wavenumber and energy. HINT: You must separate the
multi-particle time-independent Schrödinger equation.

b) Each single-particle stationay k state can be located in what is called k-space by a

wavenumber vector ~k = (k1, k2, k2), where we have used 1, 2, and 3 to label the dimensions.
What is the volume Vk in k-space of the k-space rectangular boxes that are centered on
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the stationary state wavenumber vector tips and tile all k-space without gaps or overlaps
and are all of the same size. The volume Vk is the k-space volume per state. What is the
average density of spatial states in k-space ρk?

c) We now make the continuum approximation which is valid for samples that are macroscopic
in all available dimensions. This means that we treat the average density of spatial states
in k-space as if it were an uniform density. Find the expression for the differential number
of states dNk per unit space volume in a spherical shell in k-space. The shell radius is k
and its thickness is dk. Include the spin degeneracy by a factor g which equals 2 for spin
1/2 electrons. But leave g unevaluated. By leaving g unevaluated, one can track how the
spin degeneracy affects dNk and expressions derived from dNk.

d) The Pauli exclusion principle for fermions requires that each single particle k state (where
the states now thought of as distinguished by both wavenumber vector and spin state)
have only one fermion at most. This statement must be qualified. What it really means
is that the product wave function of single particle states can have each distinct single-
particle state included once only. If there are N fermions, the overall symmetrized wave
function contains N ! versions of the product wave function with the individual particle
coordinate labels in all possible permuations. But we don’t have to worry about product
wave functions or symmetrized wave functions explicitly in the free electron gas model of
solids. We simply make use of the Pauli exclusion principle to say that the single-particle
states can only be used once in calculating results or to put this in common jargon only
one electron can occupy at single particle state at most.

Now in the ground state of (which is the absolute zero temperature state) in our free
electron gas model, the electrons occupy the lowest energy single-particle states consistent
with the Pauli exclusion principle. This means in k-space, the electrons occupy a sphere
of radius kF where F where stands for Fermi. Since F stands for a name, not a variable
it ought to be in Roman, not Italic, font, but convention seems to dictate Italic font (e.g.,
Gr-221, CT-1435). (I guess since Fermi was Italian . . .) The radius kF is called the Fermi
wavenumber. The sphere is called the Fermi surface. It’s not called the Fermi sphere
usually since the concept of Fermi surface applies to periodic potential cases, where in
general the Fermi surface is not a sphere.

Using the results of the part (c) answer solve for kF in general and explicitly for the
3 dimensional cases. Assume the electron density (in space space) is ne = N/V .

e) Now solve for the Fermi energy EF in general and for the 3 dimensional cases.

f) What is ρE : i.e., the density of states per unit space volume per unit energy in
the continuum of states approximation. Write a general formula that is valid for all
three dimension cases. HINT: One requires the same number of states between any
corresponding limits: i.e.,

dN = ρk shell dk = ρE dE ,

where ρk shell is the density of k states in the differential k space shell dk. The general
expression for ρk shell must have turned up in the part (c) answer without so labeling it.

g) Now solve for the total energy per unit space volume E of the ground state for electron
density ne. Also find Eave the average energy of the electrons. Don’t bother to expand
EF using the expressions from the part (e) answer. The formulae for this answer are long
enough as it is. Just do the general dimensional case for E , but show all the dimensional
cases explicitly for Eave.

022 qfull 00110 1 3 0 easy math: free electron gas formulae and fiducial formulae

2. For a free electron gas (in 3 dimensions) at abolute zero temperature, the Fermi energy is given
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by

EF =
h−2

2m

[(

2

g

)

(3π2)ne

]2/3

,

where h− is Planck constant divided by 2π, m is the electron mass, g = 2 is the spin 1/2 particle
degeneracy, and

ne =
N

V

is the free electron density with N being the number of electrons and V being the sample
volume. The average energy per electron Eave is given by

Eave =
3

5
EF .

For this question, you will need the following constants,

e = 1.602176487(40)× 10−19 C ,

m = 9.10938215(45)× 10−31 kg ,

mc2 = 510998.910 eV ,

kB = 1.3806504(24)× 10−23 J/K ,

h− = 1.054571628(53)× 10−34 J, s ,

mamu = 1.660538782(83)× 10−27 kg .

a) Free electron density can be expressed in terms of ordinary density (AKA mass density) ρ
by

ne =
ρ

mamu

∑

i

XiZi

Ai
,

where the sum is over all atoms in the sample, Xi is the mass fraction of atom i, Zi is
the number of free electrons per atom for atom i, and Ai is the atomic weight of atom i.
Convince yourself that this formula makes sense. Actually the formula can be simplified
by introducing the mean mass per electron µe defined by

1

µe
=
∑

i

XiZi

Ai
.

Take 1000 kg/m3 as a fiducial value for ρ (which is just like writing density in grams per
cubic centimeter). Take 50 as a fiducial value for µe: this is like an element in the atomic
weight vicinity of iron with one valence electron delocalized. Now write ne in terms of
fiducial values: i.e., find the coefficient in the formula expression

ne = coefficient × ρ

1000 kg/m3

50

µe
,

The coefficient is a fiducial electron density.

b) Now find the formula for EF in terms of fiducial values both for joules and electronvolts:
i.e., find the coefficient in the formula

EF = coefficient ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

.

The coefficient is a fiducial Fermi energy. Are solids in human environments relativistic?
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c) Now find the formula for the Fermi temperature TF = EF /kB in terms of fiducial values
both for joules and electronvolts. The coefficient is a fiducial Fermi temperature. Are solids
in human environments hot or cold in comparison to the Fermi temperature?

d) Now find the formula for the Fermi velocity vF =
√

2EF /m (which is the non-relativistic
formula) in terms of fiducial values. The coefficient is a fiducial Fermi velocity.

e) From classical thermodynamics, we know that pressure

P = −
(

∂E

∂V

)

S,N

where E is the sample internal energy, V is the sample volume, S is the sample entropy,
N is the sample particle number, and the subscript S,N indicates the partial derivative is
taken with entropy and particle number held constant. Since a free electron gas is confined
by a confining potential, it must exert a counter potential on entities that confine it. In
fact, by the correspondence principle of quantum mechanics, this counter potential can
be assumed at the macroscopic level to a free electron gas pressure. The energy of the
free electron gas is identifiable with the classical internal energy. Thus, we expect that a
free electron gas exhibits a pressure derivable from the classical expression. Observation
shows that this expectation is fulfilled. The pressure is called the degeneracy pressure, and
its equation of state (i.e., pressure formula) is quite unlike that for an ideal gas. Derive
the zero-temperature free-electron-gas pressure formula as a function of ne. Then find the
pressure formula in terms of fiducial values. HINT: The total energy of a sample is NEave.

f) The bulk modulus of a material is a measure of its incompressibility or stiffness. The
definition is

B = −V
(

∂P

∂V

)

X

= ρ

(

∂P

∂ρ

)

X

where one assumes a constant mass and X stands for the thermodynamic variable
held constant, either temperature or entropy (which can be held constant by adiabatic
conditions). For ordinary solids and liquids, the difference between constant temperature
and constant entropy is usually negligible. For a free electron gas at zero temperature,
there is no difference.

The bulk modulus is actually a characteristic pressure for signficant volume or density
change under a change pressure as can be seen by writing formula in the differential form

−dV
V

=
dρ

ρ
=
dP

B
.

If B were a constant (which it is not in any real case), then B would be the e-folding
pressure: i.e., the pressure change required to change volume or density by a factor of e.
The bigger the bulk modulus, the stiffer the substance.

Find the bulk modulus formula for the zero-tempature free electron gas. Then find
the bulk modulus formula in terms of fiducial values.

022 qfull 00200 2 5 0 moderate thinking: Fermi energies for free electron gas metals
Extra keywords: (Ha-324:2.3) volumes per atom 39.3, 23.0, 16.6 in A**3

3. The metals Na, Mg, and Al have, respectively 1, 2, and 3 free electrons per atom, standard
atomic masses 22.98976928, 24.3050, and 26.9815386, and, under ordinary pressure and
temperature, densities 0.968 g/cm3, 1.738 g/cm3, and 2.70 g/cm3. What is the Fermi energy
of these metals in electronvolts? Recall

EF =
h−2

2m

[(

2

g

)

(3π2)ne

]2/3
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= 3.06973 . . .× 10−19 J ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

= 1.91597958 . . . eV ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

,

where density is in MKS units.

022 qfull 00210 1 3 0 easy math: free electron gas pressure
4. The pressure of a free electron gas (in three dimensions) is given by

P =
2

3
E =

h−2

2m

[

3π2

(

2

g

)]2/3
2

5

(

ρ

µemamu

)5/3

,

where E is the energy per unit volume and g = 2 for electron spin degeneracy. This result
can be derived by using the classical 1st law of thermodynamics for T = 0 to relate P and E
interpreted as the classical internal energy per unit volume. But it can also be derived from
kinematics argument.

First note that a standing wave free electron eigenstate for one dimension of a infinite
square well of length ℓ and wave number k

ψ =

√

2

ℓ
sin(kx)

can be written as a superposition of oppositely traveling traveling wave states

ψ =
1√
2

(

√

1

ℓ
eikx −

√

1

ℓ
e−ikx

)

,

where have used the complex number definition of the sine function and dropped the global
phase factor 1/i since it is physically irrelevant. Following the paradigm of quantum mechanics,
it seems plausible to treat the standing wave state as literally a superposition of traveling wave
states. One can generalize this idea to three dimensions. The traveling wave states can be
thought of as continuously bouncing elastically off the walls of a 3-dimensional infinite square
well and having their momentum component normal to wall inverted in the bounce. During the
bounce, some kinetic energy becomes potential energy for a brief time. Perhaps, in real metals
wave packets that are strongly peaked about stationary state ~k values are actually doing this.
Textbooks grow coy on this point. But in any case, a classical interpretation of the traveling
waves as particles bouncing off the walls of 3-dimensional infinite square well potential leads to
the correct pressure result. One just says that the energy density of states per unit volume for
E ≤ EF

ρE =

(

2m

h−2

)3/2
g

2

1

4π2
E−1/2

is the density of classical particles in energy space per unit volume up to EF and uses that
density to calculate the pressure the particles exert.

Let’s do the calculation.

a) If a (classical) particle of momentum magnitude p bounces elastically off a wall at an angel
θ relative to the normal to the wall, what momentum is transferred to the wall in the
normal direction? at angle

b) If you have a density of particles per unit (kinetic) energy per unit volume of ρE and the
particle distribution in angle is isotropic, what is the density of particles per unit energy
per unit volume per unit solid angle?
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c) What is the flux of particles in per unit energy per unit area per unit solid angle?

d) What is the momemtum flux normal to the wall per unit area per unit energy per unit
solid angle on the wall? Remember for a beam of particles coming in at angle to the wall of
θ that cross-sectional area for the beam is cos θ dA, where dA is the area of wall the beam
impinges on. For example, the cross-sectional area is θ = π/2 is zero. A diagram might
help you understand this cross-sectional area result.

e) Integrate the result from the part (d) answer over 2π solid angle about the normal to the
wall and over all energy up the Fermi energy EF to get the formula for the free electron
gas pressure. Express the formula in terms of E .

022 qfull 00500 1 3 0 easy math: energy band structure function
Extra keywords: Bloch states

5. The energy band structure of the 1-dimensional Dirac comb solid is determined by the equation

cos(Ka) = cos(z) +
β

z
sin(z) ,

where a is the cell size, K is the Bloch wavenumber, z = ka ≥ 0 (where k is the wavenumber
for a single cell), and

β =
mαa

h−2

(where m is electron mass and α is the strength of the Dirac delta function potentials that make
up the Dirac comb). The Bloch wavenumbers are quantized according to the rule

Ka =
2π

N
m ,

where m = 0, 1, 2, 3, . . . , N−1 (where N is the number of cells). Actually, Ka is not determined
to within an additive constant of 2π. Therefore one could also specify the range for m as

m = −N
2
,−N

2
+ 1, . . . ,

N

2
− 1,

N

2

since for N large one can with negligible error approximateN as even no matter what it actually
is and add on an extra unphysical state. This second specification for m is more symmetrical
and, as it turns out, makes k vary monotonically with K within a band. For definiteness in this
problem, we assume β ≥ 0.

The only possible solution z values are those that make confine

f(z) = cos(z) +
β

z
sin(z)

to the range [−1, 1]. For a Ka value, one solves

cos(Ka) = f(z)

for ka and then k. Thus, the k values have a non-trivial quantization rule. The energy of the
k state is then determined by

E =
h−2
k2

2m
.

The energies have a non-trivial quantization rule too.
A key point is the function f(z) can oscillate above 1 and below −1 and in those regions

there are no solutions for k, and therefore no allowed states and no solutions for E. Those
energy regions are the famous energy gaps. The allowed regions are the energy bands. Since N
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is an enormous number for macroscopic samples, the energy bands are very dense in number of
states and one gets states virtually to the z points where |f(z)| = 1. The z values that yield
|f(z)| = 1 are the band limits. Each band has a start and end limit. There are corresponding
energy start and end limits.

a) Determine the formula end limit of a general ℓth energy band. Note ℓ = 1, 2, 3, . . . Show
that the formula is the end limit formula and never gives start limits. HINT: Finding the
formula is easy. Showing that it is the end limit requires taking the derivative of f(z).

b) A key point to proof is that there is only one limit point between two consecutive end limit
points given by the formula in the part (a). This single limit point is a start limit point.

In a test situation just assume there is a single start limit point between the end limit
points and go onto the rest of the problem.

In a non-test situation, do the proof. HINT: Prove there is a single stationary point
between the consecutive end limit points. The function f(z) value at the stationary point
is must be outside of the range [−1, 1] by the part (a) answer. Also from the part (a)
answer, the function at the stationary point must be greater than 1 if the next end limit
point f(z) = −1 and the function at the stationary point must be less than 1 if the next
end limit point is f(z) = 1 Thus from the stationary point to the next end limit point
the function is is monotonic and crosses into the allowed range once only. That is crossing
is the start limit point itself. The stationary point itself can’t be found analytically in
general, but its uniqueness can be proven by arranging the equation for stationary point
into a form where tan(z)/z equals something.

c) Find an approximate formula for the start limit for the first band in the limit that β is
very large. Show that this formula also gives the start limit for β = 0, and thus constitutes
an interpolation formula: a formula that gives correct limiting behavior and interpolates
smoothly in between those limits. HINT: Set the function f(z) equal to 1 and expand the
trigonometric functions in f(z) about π to 1st order in small z−π. Why are the expansions
the good thing to do and why is it good not to expandi the 1/z factor to 1st order in small
z − π even though it would be consistent with the other expansions?

d) Find an approximate formula for the start limit ∆z = z−zℓ−1 = z−(ℓ−1)π for the general
ℓth band, except that ℓ ≥ 1. HINT: Set f(z) = (−1)ℓ−1 and expand cos(z) to second order
in small ∆z about zℓ−1. and sin(z) to 3rd order in small ∆z about zℓ−1 = (ℓ−1)π Do NOT
approximate 1/(zℓ−1 + ∆z. Write β = yzℓ−1/2 as a simplification. What approximate size
limit must be put on ∆z for our approximations to be valid? What is ∆z in the limit that
zℓ−1 becomes very large.

e) Take the interpolation formula from the part (c) answer the ∆z formula for very large zℓ−1

from the part (d) answer and invent an interpolation formula for ∆z valid for all ℓ. We
mean it is valid for ℓ in that it gives the right limiting behavior for β for the ℓ = 1 and the
right limiting behaviro for ℓ becoming very large. Since it has those right limiting behaviors,
it may well interpolate to some accuracy everywhere. HINT: There is no absolutely right
answer, but a fairly obvious interpolation formula leaped to yours truly’s eye.

022 qfull 00510 1 3 0 easy math: energy band structure function 2

6. This a super-easy problem if you can understand the lengthy setup.

For the 1-dimensional Dirac comb potential, the band structure is determined by the
equation

cos(Z) = f(z) ,

where

f(z) = cos(z) +
β

z
sin(z) .
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The Z is determined by the Bloch wavenumber quantization rule

Z = Ka =
2π

N
m where m = 0, 1, 2, . . . , (N − 1)

where N is the number of number of cells and a is the cell length. For a macroscopic system
N is huge, and so Z can be close to any real number in the range [0, 2π]. The z = ka, where k
is the ordinary wavenumber from which the energy of a single-particle state can be determined
from

E =
h−2
k2

2m
.

If we knew a z value, determining the corresponding Z value would be a cinch. But we
know the Z values and need to determine the z values. There is no analytic solution for general
z.

We do know that the only solutions are in bands set by the fact that cos(Z) can only be
in the range [−1, 1]. From earlier work, we know that

zℓ,start = (ℓ− 1)π + ∆zℓ = (ℓ− 1)π +
2βπ

2β + 4 + π2(ℓ− 1)

is a good approximation for the start limit of band ℓ and

zℓ,end = ℓπ

is the exact result for the end limit of a band ℓ. The band numbers run form ℓ = 1 to ℓ = ∞.
The cos(Z) value sweeps from 1 to −1 as z increases for odd bands and from −1 to 1 for even
bands.

Let’s define a parameter g that runs from 0 to 1 and parameterize Z in terms of g thusly

Z =

{

gπ for ℓ odd;
(g + 1)π for ℓ even.

Using g (which we can easily find for any Z value and any ℓ) and the formulae for zℓ,start

and zℓ,end devise an approximate z formula that is LINEAR in g. HINT: This is super-easy,
but you should test that g = 0 and g = 1 give the correct band limits: z(ℓ, g = 0) = zℓ,start and
z(ℓ, g = 1) = zℓ,end.
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Multiple-Choice Problems

023 qmult 00240 1 1 3 easy memory: statistical weight formulae
Extra keywords: See Gr-234–235

1. The formulae

W = N !
∏

i

gNi

i

Ni!
, W =

∏

i

(

gi

Ni

)

, W =
∏

i

(

gi − 1 +Ni

Ni

)

,

are statistical weights for, respectively,

a) identical fermions, distinct particles, identical bosons.
b) distinct particles, identical bosons, identical fermions.
c) distinct particles, identical fermions, identical bosons.
d) identical bosons, distinct particles, identical fermions.
e) distinct particles, identical flimsions, identical bozos.

023 qmult 00350 1 4 5 easy deducto-memory: Stirling’s series
Extra keywords: mathematical physics

2. “Let’s play Jeopardy! For $100, the answer is:

ln(z!) = z ln(z) − z +
1

2
ln(z) +

1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5

which is an asymptotic series that is increasingly accurate as z → ∞, but is not so bad even for
z as small as 1.”

What is series, Alex?

a) the ICE b) Wankel’s c) Diesel’s d) Carnot’s e) Stirling’s

023 qmult 00330 1 4 1 easy deducto-memory: Lagrance multipliers
Extra keywords: mathematical physics

3. “Let’s play Jeopardy! For $100, the answer is: It is a method for finding the constrained
stationary points of a multi-variable function.”

What is , Alex?

a) Lagrange multipliers b) the Stirling approximation c) Stirling’s series
d) the Maxwell-Boltzmann distribution e) the Fermi-Dirac distribution

023 qmult 00340 1 1 3 easy memory: Lagrange multiplier formula for W
4. The formula

h = ln(W ) + α

(

∑

i

Ni −N

)

+ β

(

∑

i

NiEi − E

)

can be used to find the Ni values that maximize value of W subject to the constraints:
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a)
∑

i

NiEi = E and all Ni ≥ 0. b)
∑

i

Ni = N and all Ni ≥ 0.

c)
∑

i

Ni = N and
∑

i

NiEi = E. d)
∑

i

Ni = N and W ≥ 0.

e)
∑

i

Ni = N and W ≤ 0

023 qmult 00352 1 1 5 easy memory: ln of factorials difference
5. The difference

ln(z!) − ln[(z − 1)!]

equals:

a) ln(z − 1). b) ln(z!). c) z − 1. d) z. e) ln(z).

023 qmult 00410 1 1 2 easy memory: stat mech entropy
6. The formula

S = k ln(W )

is the statistical mechanics formula for:

a) statistical weight. b) entropy. c) energy.
d) the Maxwell-Boltzmann distribution. e) the Fermi-Dirac distribution.

023 qmult 00490 1 1 4 easy memory: stat mech distribution formulae
Extra keywords: GR-241

7. The formulae

f = e−(E−µ)/(kT ) , f =
1

e(E−µ)/(kT ) + 1
, f =

1

e(E−µ)/(kT ) − 1

are, respectively, distributions. These distribution
give the factional occupation a state of energy E in thermodynamic equilibrium.

a) Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac
b) Maxwell-Boltzmann, Fermi-Einstein, Bose-Dirac
c) Maxwell-Dirac, Fermi-Einstein, Bose-Boltzmann
d) Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein
e) Maxwell-Bose, Fermi-Einstein, Boltzmann-Dirac

023 qmult 00530 1 1 1 easy memory: MB average energy per particle
8. The factorial function definition is

z! =

∫ ∞

0

tze−t dt .

It is easily shown that
z! = z(z − 1)! .

The formula gives
z! = n!

for z = n an integer greater than or equal to zero and (−1/2)! =
√
π. The values for z a

negative integer are undefined. Using the factorial function or otherwise find the AVERAGE
PARTICLE ENERGY for a system of particles obeying the Maxwell-Boltzmann distribution
and having density of states per energy per volume proportional to E1/2 (which the energy factor
for the density of states in an 3-dimensional infinite square containing free particles).

a) Eave =
3

2
kT b) Eave =

1

2
kT c) Eave = kT d) Eave =

3

5
EFermi

e) Eave = EFermi
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023 qmult 00540 1 1 1 easy memory: Maxwell-Boltzmann chemical potential
Extra keywords: Need the factorial function, and so give question 530 first.

9. Given the distribution function
f = e−(E−µ)/(kT )

which gives the fractional occupation of any state and

dgtotal =
g

(2π)2

(

2m

h−2

)3/2

E1/2 dE

(which is the differential degeneracy of states per unit volume in single-particle energy interval
dE in the continuum approximation for a 3-dimensional infinite square well containing free
particles of mass m and internal degeneracy g) solve for the chemical potential µ. The density
of particles is n.

a) µ = kT ln











n

g
[

mkT/
(

2πh−2
)]3/2











b) µ = kT ln











n

g
[

2mkT/
(

πh−2
)]3/2











c) µ = ln











n

g
[

mkT/
(

2πh−2
)]3/2











d) µ = kT ln











n

g
[

(3/2)mkT/
(

πh−2
)]3/2











e) µ = ln











n

g
[

2mkT/
(

πh−2
)]3/2











023 qmult 00820 1 1 3 easy memory: Planck law
10. The specific intensity formula

Bν =
2hν3

c2
1

ehν/(kT ) − 1

is for a thermodynamic equilibrium:

a) Maxwell-Boltzmann gas. b) Fermi-Dirac gas c) photon gas. d) fermion gas.
e) distinct particle gas.

023 qmult 00830 1 1 2 easy memory: hohlraum
11. A hohlraum is a cavity where the wall and radiation field are in thermodynamic equilibrium.

A small hole in the wall allows the radiation field to be observed with minimal perturbation of
the radiation field. The emission from the hole is a nearly perfect:

a) Fermi-Dirac gas. b) blackbody spectrum. c) Bose-Einstein condensate.
d) superfluid liquid. e) Maxwell-Boltzmann gas.

023 qmult 00840 1 1 3 easy memory: Wien’s law
12. The Planck law in the wavelength version is

Bλ =
2hc2

λ5

1

ehc/(λkT ) − 1
.

The SHORT-wavelength approximation to this formula is Wien’s law:

a)
kT c

λ4
. b)

2kT c

λ4
. c)

2hc2

λ5
e−hc/(λkT ) . d)

kT c

2λ4
. e)

2hc2

λ5
ehc/(λkT ) .

023 qmult 00842 1 1 2 easy memory: Rayleigh-Jeans law
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13. The Planck law in the wavelength version is

Bλ =
2hc2

λ5

1

ehc/(λkT ) − 1
.

The LONG-wavelength approximation to this formula is Wien’s law:

a)
kT c

λ4
. b)

2kT c

λ4
. c)

2hc2

λ5
e−hc/(λkT ) . d)

kT c

2λ4
. e)

2hc2

λ5
ehc/(λkT ) .

023 qmult 00850 1 1 1 easy memory: approximate solution Planck law stationary points

14. The function

f(x) =
xp

ex − 1

for x ≥ 0 and p >> 1 has the approximate maximizing value:

a) p. b) p/2. c) 1/p. d) p2. e) ln(p).

Full-Answer Problems

023 qfull 00140 1 3 0 easy math: the MB FD BE distributions derived

1. Consider a system consisting of quantized single-particle states and fixed total number of
particles N and fixed total energy E. We make the approximation that particles can occupy
only one single-particle state at time: i.e., they are not in superpositions of single-particle states.
The overall microscopic state of the system is set by specifying arrangement of the particles in
the single-particle states. Note that exchanging distinct particles changes the microscopic state
and exchanging identical particles does not.

The set of single-particle states of the same energy Ei can be called an energy level—a
term which is used in different ways in different contexts. The number of single-particle states
in an energy level i is the energy level degeneracy gi. A configuration is the set of occupation
numbers {Ni} for the energy levels of the system. The statistical weight W of a configuration
is the number of distinct microscopic states that correspond to that configuration.

The fundamental axiom of statistical mechanics is that in thermodynamic equilibrium
all the microscopic states are equally probable. Thermodynamic equilibrium for a system
occurs when the system is not changing thermodynamically with time at the macroscopic level.
In thermodynamic equilibrium, the initial conditions of the system no longer determine its
macroscopic behavior and their signature in the system has been effectively erased.

The fundamental axiom implies that probability distribution for the configuration is just
the normalized statistical weights and the most probable configuration is the one with the largest
statistical weight. It turns out the probability distribution given by the statistical weights is
extremely peaked around the most probable configuration for systems of macroscopically large
numbers of particles. The macroscopic thermodynamic equilibrium state is essentially this most
probable configuration. The natural logarithm the statistical weight times Boltzmann’s constant
k identified with the classical entropy which maximizes for thermodynamic equilibrium. Thus
we have

S = k ln(W ) .

a) The statistical weight for the configuration for a system with distinct particles is

W = N !
∏

i

gNi

i

Ni!
.
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Solve for the set of Ni that maximize the statistical weight subject to the constraints

N =
∑

i

Ni , E =
∑

i

NiEi , Ni ≥ 0 .

For conventional reasons, the Lagrange multiplier for the particle number constraint should
be label α and that for the energy constraint β. Use appropriate approximations to get a
simple analytic formula for a maximizing Ni in which the degeneracy gi occurs only as a
leading coefficient. What is the function with the degeneracy factor suppressed and what
is it called?

b) The statistical weight for the configuration for a system with identical fermions is

W =
∏

i

(

gi

Ni

)

.

Repeat the requirements from part (a) for this statistical weight.

c) The statistical weight for the configuration for a system with identical bosons is

W =
∏

i

(

gi − 1 +Ni

Ni

)

.

Repeat the requirements from part (a) for this statistical weight.

d) The lagrange multiplier function has an uncontrained stationary point at the maximizing
values of Ni. This fact along with the 1st law of classical thermodynamics

dE = T dS − µdN

for the case of fixed volume but variable entropy and particle number (T being temperature
and µ being the chemical potential) and the identificiation of entropy allows α and β to be
determined in terms of classical thermodynamics variables. Make the determinations.

023 qfull 00440 1 3 0 easy math: photon gas the full story
2. Photons in thermodynamic equilibrium with some container or with some gas of massive

particles can be thought as a photon gas obeying Bose-Einstein statistics. Photons are extreme
relativistic particles, but nevertheless the simple formalism for the statistical mechanics of non-
relativistic systems still applies with some modifications:

1) The energies of quantized single-particle states are related to the momentum, frequency,
wavelength, and wavenumber of the state by

E = pc = hν =
hc

λ
= h−ck .

Note that above expression embodies the de Broglie formula p = h/λ which de Broglie
took from photons and applied to massive particles—but with the difference that massive
particles in the non-relativistic limit relate kinetic energy to momentum by E = p2/(2m).

2) Photons are spin-1 bosons, but for some reason only the m = ±1 states are allowed. Thus,
the each spatial quantized single state has a degeneracy of g = 2.

3) The number of photons is not conserved. The unspecified processes that transform one
overall microscopic quantum state to another can create and destroy photons. Thus, photon
gas will relax to a maximum entropy state with no constraint on total photon number. This
means that the Lagrange multiplier α = µ/kT is zero.
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Let’s see what we can learn about the thermodynamic equilibrium photon gas.

a) Given that periodic boundary conditions for a 3-dimensional infinite well rectangular box
and ℓ for the length of a general dimension, the wavenumber of single-particle states for
this dimension is quantized according to the rule

kℓ = 2πn , where n = 0,±1,±2,±3, . . . .

What is the density of states in phase space which is the product of k-space and space
space? Do not forget the internal degeneracy factor g.

b) Given the Bose-Einstein distribution

f =
1

e(E−µ)/(kT ) − 1

(where E is single-particle state energy, µ is chemical potential, and T is temperature), find
the formula for the energy density per unit frequency Eν for the thermodynamic equilibrium
photon gas. Note energy density per unit frequency, NOT photon number density per unit
frequency.

c) In radiative transfer it is customary to work with specific intensity Bν rather than Eν . The
specific intensity is the energy flux (energy per unit area perpendicular to the direction of
motion per unit time) per unit frequency per unit solid angle. Find the formula for Bν .

d) Find the frequency integrated formula for Bν : i.e., find B. Note that the factorial function
is

z! =

∫ ∞

0

tze−t dt =











z(z − 1)! for general complex z, except for z a negative integer;
±∞ for z a negative integer;
n! for n an integer with n ≥ 0;√
π for z = −1/2

(Ar-453), that the Riemann zeta function defined as an infinite sum (convergent for
Re(z) > 1) is

ζ(z) =

∞
∑

ℓ=1

1

ℓz
=































π2

6
for z = 2;

π4

90
for z = 4;

π8

945
for z = 6,

(Ar-282, 285) and that the Stefan-Boltzmann constant is

σ =
2π5

15

k4

h3c2
= 5.670400(40)× 10−8 W m−2 K−4 .

Also find the total energy per unit volume. Note that the radiation constant

a =
4σ

c
= 7.5657 × 10−16 J m−3 K−4 .

e) The energy flux from a surface emitting like an exact blackbody is given by

F =

∫

2π

B cos θ dΩ ,
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where the integral is over 2π solid angle and we have assumed the z direction is the outward
normal direction from the surface. The cos θ factor decrease in area perpendicular to a beam
through an opening in the surface. For example, if θ = π/2, there would be no emission
through the opening. Evaluate the formula for F .

f) What is the formula for Bλ: i.e., the specific intensity as a function of wavelength rather
than µ. Note

Bλ dλ = Bν dν .

g) The Wein approximation (derived 1896) is the approximate formula for Bλ in the limit of
small wavelength. The Rayleigh-Jeans law (derived 1900–1905) is the approximate formula
for Bλ in the limit of large wavelength. Derive these two approximate formulae from the
exact formula for Bλ found in the part (f) answer.

h) What is an iteration formula for the maximizing point of functions of the form

f(x) =
xp

ex − 1
,

where p > 1? What is a good initial value x0 for the iteration and is the iteration guaranteed
to converge?

i) Find the formulae for the maximizing ν and λ values for, respectively, Bν and Bλ. You
only need to find the coefficients of formulae approximately, but if you are ambitious a
small computer code will allow you do find the coefficients to machine accuracy. Then give
Wien’s law (AKA Wien’s displacement law).
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Multiple-Choice Problems

024 qmult 00100 1 1 4 easy memory: Maxwell’s equations
1. Classical electrodynamics is summarized in:

a) Stirling’s formula.
b) Heitler’s five equations.
c) Montefeltro’s three laws.
d) Maxwell’s four equations.
e) Euclid’s axioms.

024 qmult 00200 1 4 5 easy deducto-memory: EM potentials
2. “Let’s play Jeopardy! For $100, the answer is:

~E = −∇Φ − 1

c

∂ ~A

∂t
and ~B = ∇× ~A .”

a) What are Maxwell’s equations, Alex?
b) What are two arbitrary equations, Alex?
c) What are the gauge transformation equations, Alex?
d) What are the Noman equations, Alex?
e) What are the equations for deriving the electromagnetic fields from the electromagnetic

potentials, Alex?

024 qmult 00300 1 1 3 easy memory: transverse gauge
3. The condition imposed for the transverse gauge (or radiation or Coulomb gauge) is:

a) ∇ · ~B = 0.

b) ∇ · ~A+ (1/c)∂Φ/∂t = 0.

c) ∇ · ~A = 0.

d) ~A′ = ~A+ ∇Λ.
e) Φ′ = Φ − (1/c)∂Λ/∂t.

024 qmult 00400 1 4 2 easy deducto-memory: EM energy density
Extra keywords: Reference Ja-236

4. “Let’s play Jeopardy! For $100, the answer is:

E =
E2 +B2

8π
.”

a) What Laplace’s equation, Alex?
b) What the energy density of the electromagnetic field in SI units, Alex?
c) What the energy density of the electromagnetic field in Gaussian units, Alex?
d) What Poynting’s vector, Alex?

162
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e) What is an example of using “E” for two quantities in one equation, Alex?

024 qmult 00500 1 1 2 easy memory: wave equation solution
5. The simple wave equation

∇2~g =
1

c

∂2~g

∂t2

has a very general solution of the form:

a) ~g = 0.

b) ~g(~k · ~r − ωt), where ~g is any vector function and ω = |~k|c.
c) ~g(~k × ~r − ωt), where ~g is any vector function and ω = |~k|c.
d) ~g(ωt).

e) ~g(~k · ~r).

024 qmult 00600 1 1 2 easy memory: EM perpendicular vectors
6. For self-propagating electromagnetic radiation the electric field, magnetic field, and propagation

directions are:

a) collinear.
b) mutually perpendicular.
c) self-perpendicular.
d) arbitrary.
e) random.

024 qmult 00700 1 4 4 easy deducto-memory: box quantization
7. “Let’s play Jeopardy! For $100, the answer is: A standard trick in quantum mechanics for

replacing basically isotropic, homogeneous systems with complex boundary conditions by a
simpler, tractable, periodic-boundary-condition system which—according to the faith—must
have the same bulk properties.”

a) What is nothing I’ve ever heard of, Alex?
b) What is the tethered function method, Alex?
c) What is black magic, Alex?
d) What is box quantization, Alex?
e) What is the way to get a completely wrong answer, Alex?

024 qmult 00800 1 4 3 easy deducto-memory: interaction Hamiltonian
8. “Let’s play Jeopardy! For $100, the answer is:

H =
1

2m

(

~p− e

c
~A
)2

+ eΦ + V .”

a) What is Schrödinger’s equation, Alex?
b) What is the Hamiltonian for the simple harmonic oscillator, Alex?
c) What is the particle Hamiltonian including the interaction with the electromagnetic field,

Alex?
d) What is the interaction Hamiltonian of the electromagnetic field, Alex?
e) What is any old Hamiltonian, Alex?

024 qmult 01200 1 1 4 easy memory: cross section
9. What one often wants from a radiation interaction calculation is a coefficient or the like that

can be employed in macroscopic radiative transfer: e.g.,

a) a postulate.
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b) a postulant.
c) a golden section.
d) a cross section.
e) a crossbow.

024 qmult 01300 1 1 1 easy memory: quantizing radiation
10. To quantize the electromagnetic radiation field we assert that the energy of radiation mode

cannot take on a continuum of values, but must come in:

a) integral amounts of a basic unit called a quantum of electromagnetic radiation or a photon.
b) amounts related by the golden section.
c) photoids.
d) integral numbers of ergs.
e) integral numbers of eVs.

024 qmult 01400 1 1 3 easy memory: creation and annihilation operators
11. The electromagnetic field operator is defined in terms of:

a) Bell and Sprint operators.
b) left and right operators.
c) creation and annihilation operators.
d) procreation and inhibition operators.
e) genesis and revelations operators.

024 qmult 01500 1 1 2 easy memory: zero point energy
12. In the formalism of quantized electromagnetic radiation, the fact that the creation and

annihilation operators don’t commute leads to:

a) nothing in particular.
b) the existence of zero-point energy.
c) energy less than the zero-point energy.
d) living close to the office.
e) living in the office.

024 qmult 01600 1 4 4 easy deducto-memory: Einstein stimulated em.
13. “Let’s play Jeopardy! For $100, the answer is: An effect discovered by Einstein by means of a

thermodynamic equilibrium detailed balance argument.”

What is , Alex?

a) spontaneous emission b) special relativity c) the photoelectric effect
d) stimulated emission e) spontaneous omission

024 qmult 01700 1 4 5 easy deducto-memory: free particles don’t radiate
14. “Let’s play Jeopardy! For $100, the answer is: A particle that cannot radiate by a Fermi golden

rule process in the non-relativistic limit and perhaps not at all—but one never knows what
special exotic cases may be said to allow it to radiate.”

a) What is a classical particle, Alex?
b) What is a neutral pion, Alex?
c) What is a quark, Alex?
d) What is an unbound particle subject to potentials, Alex?
e) What is a free particle, Alex?

024 qmult 01800 1 1 1 easy memory: conservation of momentum
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15. Since it seems that no quantum mechanical matter particle can actually be in a pure momentum
eigenstate, conservation of momentum in radiative emission or absorption in the instructor’s
view

a) cannot be strict in a classical sense.
b) can be strict in a classical sense.
c) both can and cannot be strict in a classical sense.
d) can neither be nor not be strict in a classical sense.
e) is moot and categorically valid in a classical sense.

024 qmult 01900 1 1 2 easy memory: electric dipole transitions
16. Typically, strong atomic and molecular transitions are transitions.

a) electric quadrupole b) electric dipole c) magnetic dipole
d) electric monopole e) magnetic metropole

024 qmult 02000 1 4 4 easy deducto-memory: selection rules
17. “Let’s play Jeopardy! For $100, the answer is: The selection rules for electric dipole

transitions (i.e., allowed transitions) between energy eigenstates whose angular parts are
spherical harmonics.”

a) What are Hund’s rules, Alex?
b) What are ∆m = ±2 and ∆ℓ = 0, Alex?
c) What are ∆m = ±1 and ∆ℓ = 0 or ±1, Alex?
d) What are ∆m = 0 or ±1 and ∆ℓ = ±1, Alex?
e) What are taking the fresher and firmer ones, Alex?

Full-Answer Problems

024 qfull 00300 2 5 0 moderate thinking: classical EM scattering
Extra keywords: reference Mi-83

1. Say we had a classical simple harmonic oscillator (SHO) consisting of a particle with mass m
and charge e and a restoring force mω2

0 where ω0 is the simple harmonic oscillator frequency.
This SHO is subject to driving force caused by traveling electromagnetic field (i.e., light):

~Fdrive = e ~E0e
iωt ,

where ~E0 is the amplitude, ω is the driving frequency, and we have used the complex exponential
form for mathematical convenience: the real part of this force is the real force. The magnetic
force can be neglected for non-relativistic velocities. The Lorentz force is

~F = e

(

~E +
~v

c
× ~B

)

(Ja-238) and ~E and ~B are comparable in size for electromagnetic radiation, and so the magnetic
force is of order v/c smaller than the electric force. (See also MEL-130.) An oscillating charge is
an accelerating charge and will radiate electromagnetic radiation. The power radiated classically
is

P =
2e2a2

3c3
,

where ~a is the charge acceleration. This radiation causes an effective damping force given
approximately by

~Fdamp = −mγ~v ,
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where

γ =
2e2ω2

0

3mc3
.

The full classical equation of motion of the particle is

m~a = −mω2
0~r + e ~E0e

iωt −mγ~v .

a) Solve the equation of motion for ~r and ~a. HINTS: The old trial solution approach works.
Don’t forget to take the real parts although no need to work out the real part explicitly:
i.e., Re[solution] is good enough for the moment.

b) Now solve for the time average of the power radiated by the particle. HINT: You will
need the explicit real acceleration now.

c) The average power radiated must equal the average power absorbed. Let’s say that the
particle is in radiation flux from a single direction with specific intensity

I0 =
cE2

0

8π

(Mi-9), where time averaging is assumed como usual. The power absorbed from this flux
is σ(ω)I0, where σ(ω) is the cross section for energy removed. Solve for σ(ω) and then
find show that it can be approximated by a Lorentzian function of ω with a coefficient
πe2/(mc). HINT: It is convenient to absorb some of the annoying constants into another
factor of γ.

d) Now rewrite the cross section as a function of ν = ω/(2π) (i.e., the ordinary frequency)
and then integrate over ν to get the frequency integrated cross section σν int of the system.
What is the remarkable thing about σν int? Think about how it relates to the system
from which we derived it. Evaluate this frequency integrated cross section for an electron.
HINT: The following constants might be useful

α =
e2

h−c
=

1

137.036
, h− = 1.05457× 10−27 erg s , and me = 9.10939× 10−28 g .

024 qfull 00500 2 5 0 moderate thinking: gauge invariance
Extra keywords: (Ba-299:1)

2. The gauge transformations of the electromagnetic potentials are:

~A(~r, t)′ = ~A(~r, t) + ∇χ(~r, t)

and

φ(~r, t)′ = φ(~r, t) − 1

c

∂χ(~r, t)

∂t

(Ja-220), where ~A(~r, t) is the vector potential, φ(~r, t) is the scalar potential, the primed
quantities are the transformed versions, and χ(~r, t) is the gauge. Show that the solution to
the time-dependent Schrödinger equation for n particles of charge e and mass m transforms so

Ψ(~r1, . . . , ~rn, t)
′ = exp

[

ie

h−c

n
∑

i=1

χ(~ri, t)

]

Ψ(~r1, . . . , rn, t)

under a gauge transformation of the potentials treated as classical fields: i.e., if Ψ′ satisfies a
primed version of the Schrödinger equation, then Ψ satisfies an unprimed version. HINT: It
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suffices to consider one particle in one dimension. I know of no simplifying tricks. You just
have to grind out the 15 odd terms very carefully.

024 qfull 00700 2 5 0 moderate thinking: QM CA operators
Extra keywords: (Ba-299:3)

3. The photon creation and destruction operators of the electromagnetic field photons (the CA
operators for short) are defined by, respectively

A†
~k~λ

| . . . , N~k~λ, . . .〉 =

√

2πh−c2
ω

√

N~k~λ + 1| . . . , N~k~λ + 1, . . .〉

and

A~k~λ| . . . , N~k~λ, . . .〉 =

√

2πh−c2
ω

√

N~k~λ| . . . , N~k~λ − 1, . . .〉 ,

where N~k~λ is the number of photons in the box quantization mode specified by wavenumber
~k and polarization vector ~λ. All the physically unique states created by these operators are
assumed to be orthogonal. From this assumption it follows that creation and annihilation
operators are Hermitian conjugates as their labeling indicates: we’ll leave that proof sine die.
The annihilation operator acting on the empty mode (i.e., one with N~k~λ = 0) gives a zero or
null state (or vector). Any operator acting on a zero state gives a zero state, of course. Thus,
non-zero commutator identities can’t be proven by acting on zero states and it is understood
that zero states are never thought of in proving commutator identities.

Dimensionless forms of these operators are, respectively,

a†i | . . . , Ni, . . .〉 =
√

Ni + 1| . . . , Ni + 1, . . .〉
and

ai| . . . , Ni, . . .〉 =
√

Ni| . . . , Ni − 1, . . .〉 ,

where index i subsumes both the ~k and ~λ indices.

a) Prove the commutator identities

[ai, aj ] = 0 , [a†i , a
†
j] = 0 and [ai, a

†
j] = δij .

Remember the case of i = j for the first two identities. What are the dimensioned forms
of these commutator identities?

b) Recall that classically the total energy in the radiation field is

E =

∫ (

E2 +B2

8π

)

d~r ,

where calligraphic E is total energy, E is the electric field, B is the magnetic field (or
magnetic induction if you prefer), and the integration is implicitly over all the volume of
the system. The quantum mechanical, Heisenberg representation field operator for the
radiation field is

~Aop =
∑

~k~λ

[

A~k~λ
~λ
ei(~k·~r−ωt)

√
V

+ H.C.

]

,

where we have assumed box quantization with periodic boundary conditions, V is the
volume of the box, and “H.C.” stands for Hermitian conjugate. What is the time-averaged
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Heisenberg representation of the Hamiltonian of the electromagnetic field Hem in terms of
the operator A†

~k~λ
A~k~λ?

c) What is Hem in terms of dimensionless EM operators? What is the zero point energy of a
radiation field: i.e., the energy expectation value for the state |0, 0, 0, . . . , 0〉?

d) Convert the summation for the zero point energy into an integral using the continuum
approximation for the box quantization. What is the energy density E0/V of the vacuum
up to the mode with photon energy ǫ? (Note that ǫ is not the energy in the mode, it is
the energy of photons in the mode: each photon has ǫ = h−ω.) What unfortunate thing
happens if you set ǫ = ∞?

024 qfull 00800 2 5 0 moderate thinking: commutation field operators
Extra keywords: (Ba-299:4)

4. The quantum mechanical, Heisenberg representation field operator for the radiation field is

~Aop(~r, t) =
∑

~k~λ

[

A~k~λ
~λ
ei(~k·~r−ωt)

√
V

+ H.C.

]

,

where we have assumed box quantization with periodic boundary conditions, V is the volume
of the box, and “H.C.” stands for Hermitian conjugate.

a) Determine expressions for ~Eop(~r, t) and ~Bop(~r, t).

b) Determine [ ~Eop(~r, t), ~Bop(~r, t)]. What can you say about the simultaneous knowledge that

one can have about ~E and ~B? HINTS: The following commutator relations will help
simplify:

[A~k~λ, A~k′~λ′
] = 0 , [A†

~k~λ
, A†

~k′~λ′
] = 0 , and [A~k~λ, A

†
~k′~λ′

] = δ~k~k′
δ~λ~λ′

2πh−c2
ω

,

where ω = kc, of course. You will also have to deal with the outer product of two vectors
which is a tensor: e.g., ~a⊗~b. The outer product is commutative: e.g., ~a⊗~b = ~b ⊗ ~a (e.g.,
ABS-25).

024 qfull 01500 2 5 0 moderate thinking: free particles non-radiate
Extra keywords: Reference Ba-280

5. Say you have a free particle (i.e., a free matter particle) in a momentum eigenstate with eigen
momentum h−~qn. Remember a free particle in the conventional sense of quantum mechanics
means one not affected by any potentials at all. Using Fermi’s golden rule you can try to
calculate the particle’s spontaneous emission when making a transition to another momentum
eigen state with eigen momentum ~q0 (Ba-279). You find a momentum conservation rule is
imposed:

h−~k = h−~qn − h−~q0 ,
where h−~k is the momentum of the emitted photon. But since you used the golden rule you also
imposed energy conservation:

h−ck =
h−2
q2n

2m
− h−2

q20
2m

,

where m is the particle’s mass. The conclusion that is implied by these two relations is that free
particles can’t radiate at least not through the golden rule process used in the calculations. Show
how the conclusion is reached. HINT: The two relations actually can be mutually satisfied in
a mathematical sense: think about the assumptions implicit in them.
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024 qfull 02000 3 5 0 moderate thinking: hydrogen spontaneous emission
Extra keywords: (Ba-300:7)

6. Consider a hydrogen atom with the nucleus fixed in space.

a) What are all the states of the two lowest principal quantum numbers in spectroscopic
notation: e.g., 2s(m = 0) for n=2, ℓ=0 (which is what the s symbol means), and m = 0.
Don’t distinguish states by spin state.

b) Between which states are there (electric dipole) allowed transitions transitions.

c) The spontaneous emission power per solid angle in polarization ~λ in the electric dipole
approximation is

dPλ

dΩ
=
ω4e2

2πc3
|~d0n · ~λ∗|2 ,

where
~d0n = 〈0|~R|n〉

is the dipole moment matrix element, |n〉 and |0〉 are, respectively, the initial and final
states, and

~R =
∑

i

ri

is the position operator for all the particles in the system (Ba-282). Find the expression

for ~d0n between the 1s(m = 0) and 2p(m = 0) levels of hydrogen.

024 qfull 02500 2 5 0 moderate thinking: Einstein A coefficient
Extra keywords: See Ba-282, Gr-311–313

7. In the electric dipole approximation, the power in polarization λ per unit solid angle per particle
(or system of particles) of a spontaneous transition process is

dPλ

dΩ
=
ω4e2

2πc3
|~d0n · ~λ∗|2 ,

where e is the charge on the particle (or particles),

~d0n = 〈0|~R|n〉

is the off-diagonal element of the dipole moment operator, and n and 0 label the initial and
final states, respectively (Ba-282). In general,

~R =
∑

i

~ri .

where the sum is over the position operators of the particles in the system.

a) Consider an ordinary 3-d Cartesian set of axes and radiation emitted along the z-axis.
Consider the polarization vectors to be unit vectors in the x and y directions. The dipole
matrix element points in an arbitrary direction (θ, φ) in spherical polar coordinates. What
is the expression for power SUMMED over the two polarization directions in terms of the
angle coordinates of the dipole matrix element? HINTS: A diagram probably helps and
knowing how to express ~d0n along Cartesian coordinates, but in spherical polar coordinates.

b) Using the expression from the part (a) answer, find the total power radiated by integrating
over all solid angle. HINT: Nothing forbids you from mentally transposing the z-axis from
the general direction to a convenient direction.
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c) What is the total photon number rate emitted from the transition (i.e., the Einstein A
coefficient at least as Gr-312 defines it)?

d) If at time zero you have set of N0 atoms in an excited state with only one downward
transition available with Einstein A coefficient A and spontaneous emission as the only
process, what is the population N at any time t > 0?
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Multiple-Choice Problems

025 qmult 00100 1 1 2 easy memory: 2nd quantization
1. The formalism for quantizing fields is called:

a) first quantization.
b) second quantization.
c) third quantization.
d) fourth quantization.
e) many quantization.

025 qmult 00200 1 4 3 easy deducto-memory: CA anti/commutation
2. “Let’s play Jeopardy! For $100, the answer is: These operators for a single mode have

commutation relation [a, a†] = 1 for bosons and anticommutation relation {a, a†} = 1 for
fermions.”

a) What are Hermitian operators, Alex?
b) What are anti-Hermitian operators, Alex?
c) What are creation and annihilation operators, Alex?
d) What are penultimate and antepenultimate operators, Alex?
e) What are genesis and revelations operators, Alex?

025 qmult 00300 1 1 1 easy memory: boson CA operator effects
3. For bosons the operators a and a† acting on a state |n〉 give, respectively:

a)
√
n|n− 1〉 (or the null vector if n = 0) and

√
n+ 1|n〉.

b)
√
n− 1|n− 1〉 (or the null vector if n = 0) and

√
n|n〉.

c)
√
n| − n+ 1〉 (or the null vector if n = 0) and

√
−n| − n+ 1〉.

d) the null vector and the infinite vector.
e) a non-vector and a non-non-vector.

025 qmult 00400 1 1 4 easy memory: fermion number operator
4. What are the eigenvalues of the fermion number operator obtained from the matrix

representation this operator: i.e., from

N =

(

0 0
0 1

)

?

a) ±1
b) Both are zero.
c) 1 and 2.
d) 0 and 1.
e) ±2.

171
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025 qmult 00500 1 1 1 easy memory: number operators commute
5. The number operators for different modes for the boson and fermion cases:

a) commute.
b) anticommute
c) commute and anticommute, respectively.
d) anticommute and commute, respectively.
e) promote and demote, respectively.

025 qmult 00600 1 1 2 easy memory: CA operators for symmetrization
6. Symmetrized states in second quantization formalism are easily constructed using

a) annihilation operators.
b) creation operators.
c) more annihilation operators than creation operators.
d) steady-state operators.
e) degenerate operators.

025 qmult 00700 1 4 5 easy deducto-memory: field operators
7. “Let’s play Jeopardy! For $100, the answer is: These operators are constructed from the creation

and annihilation operators in second quantization formalism.”

a) What are the copse operators, Alex?
b) What are the glade operators, Alex?
c) What are the meadow operators, Alex?
d) What are the field marshal operators, Alex?
e) What are the field operators, Alex?

025 qmult 01000 1 4 4 easy deducto-memory: 2nd QM density operator
Extra keywords: Reference Ba-422

8. “Let’s play Jeopardy! For $100, the answer is:

ρ(~r ) = Ψs(~r )†Ψs(~r ) ,

where Ψs(~r )† and Ψs(~r ) are the field creation and annihilation operators at a point ~r with spin
coordinate s.”

a) What is a non-Hermitian operator, Alex?
b) What is the density expectation value, Alex?
c) What is the first quantization density operaty, Alex?
d) What is the second quantization particle density operator, Alex?
e) What is it’s Greek to me, Alex?

025 qmult 01010 1 1 1 easy memory: density operator expectation value
Extra keywords: See Ba-422

9. There is a second quantization operator

ρ(~r ) = Ψs(~r)
†Ψs(~r ) ,

where Ψs(~r )† and Ψs(~r ) are the field creation and annihilation operators at a point ~r with spin
coordinate s. Its expectation value is:

a) the mean density of particles per unit volume.
b) the normalization constant of the state |Φ〉 IT is applied to.
c) the pair correlation function.
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d) the pair anti-correlation function.
e) the one-particle density matrix.

025 qmult 01100 1 1 3 easy memory: zeros of one-particle density matrix
Extra keywords: See Ba-426

10. The one-particle density matrix for non-interacting, spin 1/2 fermions in the ground state of a
box quantization system is

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
,

where n is the expectation particle density of the ground state and x = pf |~r − ~r ′| (i.e., Fermi
momentum times displacement vector). The zeros of this function are approximately given by:

a) x = n, where n = 0, 1, 2, . . .
b) x = nπ, where n = 1, 2, 3, . . .
c) x = (1/2 + n)π, where n = 1, 2, 3, . . .
d) x = (1/2 + n)π, where n = 0, 1, 2, . . .
e) x = nπ, where n = 0, 1, 2, . . .

025 qmult 01300 1 1 2 easy memory: pair correlation function
Extra keywords: See Ba-429

11. For a box quantization system of non-interacting, spin 1/2 fermions in the ground state we have
the useful function

gss′(~r − ~r ′) =

{

1 for s 6= s′;

1 − 9

x6
[sin(x) − x cos(x)]2 for s = s′.

where and x = pf |~r − ~r ′| (i.e., Fermi momentum times displacement vector). This function is
the:

a) pair anti-correlation function.
b) pair correlation function.
c) pair annihilation function.
d) pair creation function.
e) one-particle density matrix.

025 qmult 01700 1 4 3 easy deducto-memory: exchange effect
12. “Let’s play Jeopardy! For $100, the answer is: This effect generally decreases the absolute value

of the potential energy of an interaction between fermions of the same spin coordinate—except
in the unusual case that the interaction increases with INCREASING distance between the
fermions.”

a) What is expunge effect, Alex?
b) What is the interchange effect, Alex?
c) What is the exchange effect, Alex?
d) What is the interstate effect, Alex?
e) What is the exchange rate effect, Alex?

025 qmult 02000 1 1 2 easy memory: Feynman diagrams
Extra keywords: See Ha-211

13. As a visualization of the terms in an interaction perturbation series in second quantization
formalism, one can use:

a) Feynman landscapes.
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b) Feynman diagrams.
c) Feynman water colors.
d) Feynman lithographs.
e) Feynman doodles.

Full-Answer Problems

025 qfull 00100 2 5 0 moderate thinking: boson CA proofs
1. Let’s do proofs with the boson creation and annihilation (CA) operators a and a† for a single

mode. Recall [a, a†] = 1 is their fundamental commutation relation.

a) The number operator is defined by N = a†a. Show that N is Hermitian. Assume N is
an observable (i.e., a Hermitian operator with a complete set of eigenstates for whatever
space we are dealing with) and let its eigen-equation be

N |n〉 = n|n〉 .

We also assume there is no degeneracy. Show that n ≥ 0 and that a|0〉 = 0 (i.e., a|0〉 is the
null vector). HINT: Make use of the rule—which I think is valid—at least lots of sources
use it or so I seem to recall—that a legitimate operator acting on a vector always yields a
vector.

b) Find explicit expressions for [N, a] and [N, a†].

c) Show that a†|n〉 and a|n〉 are eigenstates of N and find explicit expressions for them.

d) Show that n must be an integer.

e) Find a general expression for |n〉 in terms of the vacuum state |0〉. Make sure that |n〉 is
properly normalized.

f) Since the |n〉 are non-degenerate states of the number operator N = a†a (an observable),
they are guaranteed to be orthogonal. But for the sake of paranoia vis-à-vis the universe,
show explicitly that

〈m|n〉 = δmn ,

making use of the part (e) answer and assuming the vacuum state is properly normalized.
HINT: This is easy after you’ve seen the trick.

g) Prove [a, (a†)n] = n(a†)n−1 for n ≥ 1.

025 qfull 00200 2 5 0 moderate thinking: 2 mode fermion CA operators
Extra keywords: (Ba-439:1)

2. Let us consider the two-mode fermion case.
a) Construct explicit 4 × 4 matrix representations of the creation and annihilation (CA)

operators a0, a
†
0, a1, and a†2. HINT: See Ba-414–415.

b) Construct explicit 4 × 4 matrix representations of the number operators N0, N1, and
N = N0 + N1. What are the eigenvalues and eigenvectors the of number operators?
Are there any degeneracies?

c) Confirm that the all commutation relations given on Ba-416 hold for the CA operators in
the matrix representation. HINT: I gave up after doing

{a0, a
†
0} = 1 and {a0, a

†
1} = 0 .
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025 qfull 00300 2 5 0 moderate thinking: one-particle density matrix
Extra keywords: See Ba-425

3. A quantity that turns out to be useful in studying non-interacting, spin 1/2 fermions in a box
quantization system of volume V is the one-particle density matrix defined by

Gs(~r − ~r ′) = 〈Φ0|Ψs(~r )†Ψs(~r
′)|Φ0〉 ,

where |Φ0〉 is the ground state and

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps and Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

are the field creation and annihilation operators with h− set to 1 and where s is the z-quantum
number for the spin state. Recall that the ground state has all the states occupied for |~p | ≤ pf ,
where pf is the Fermi momentum. to

a) Find an expression for Gs(0) using the approximation of a continuum of states. What, in
fact, is this quantity?

b) Show that Gs(~r − ~r ′) is given by

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
,

where x ≡ pf |~r−~r ′|, n is the mean density, and the approximation of a continuum of states
has been used. HINT: The integrand is not isotropic in this case, but one can choose the
z-axis for maximum simplicity.

c) Now let us analyze the dimensionless Gs(~r − ~r ′) given by

g(x) =
sin(x) − x cos(x)

x3
,

where only x greater than is meaningful, of course. First, what is the variation in x usually
to be thought to be attributed to? Second, what are the small x and large x limiting forms
of g(x): give the small x limiting form to 4th order in x. Third, give an approximate
expression for the zeros of g(x). Fourth, sketch g(x).

d) Now find a convergent iteration formula that allows you to solve for the zeros of g(x).
Implement this formula in a computer code and compute the first ten zeros to good
accuracy.

025 qfull 00400 2 5 0 moderate thinking: fermion pair correlation
Extra keywords: See Ba-428–429 and Ar-527

4. The pair correlation function for spin 1/2 fermions in the ground state of a box quantization
system is

gss′(~r − ~r ′) =

{

1 , for s 6= s′;

1 − 9

x6
[sin(x) − x cos(x)]2 , for s = s′,

where s is a spin coordinate label, x = pf |~r−~r ′|, pf is the Fermi momentum, ~r is the point where
a fermion has be removed, and ~r ′ is the point where one has measured the particle density just
after the removal of the fermion (Ba-428–429). The expectation particle density density for a
given is spin coordinate is (n/2)gss′(~r−~r ′), where n = N/V is the original expectation density
of a spin state: N is the number of particles in the system and V is the system volume.
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a) Prove that (n/2)gss′(~r − ~r ′) is properly scaled for s 6= s′: i.e., that the integral of
(n/2)gss′(~r − ~r ′) over all volume is the right number of particles.

b) Now prove that (n/2)gss′(~r − ~r ′) is properly scaled for s = s′. HINT: You might have
to look up the properties of the spherical Bessel functions—unless you know those like the
back of your hand.

025 qfull 00450 2 5 0 moderate thinking: 2nd quantization potential
Extra keywords: See Ba-434

5. The 2nd quantization operator for a two-body potential V (~r−~r ′) between identical particles is

V2nd =
1

2

∑

s′s

∫

d~r ′ d~r V (~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r ) ,

where the 1/2 prevents double counting in the integration, the sum is over all spin states, and
the Ψ†’s and Ψ’s are the field creation and annihilation operators. Prove that V2nd is correct
by showing that a matrix element of V2nd with general, properly symmetrized, n particle states
|Φ′〉 and |Φ〉 (i.e., 〈Φ′|V2nd|Φ〉) is the same as the matrix element of the same states with the
1st quantization operator for n identical particles: i.e.,

V1st =
1

2

∑

ij,i6=j

V (~ri − ~rj) ,

where the 1/2 prevents double counting. HINTS: You should recall the effect of a field creation
operator on a localized state of n− 1 particles: i.e.,

Ψs(~r )†|~r1s1, . . . , ~rn−1sn−1〉 =
√
n|~r1s1, . . . , rn−1sn−1, rnsn〉

(Ba-419) Also recall localized state unit operator for a properly symmetrized states of n particles
is

1n =
∑

s1...sn

∫

d~r1 . . . ~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn|

(Ba-421).

025 qfull 00500 3 5 0 tough thinking: fermion Coulomb exchange
Extra keywords: See Ba-436

6. The exchange energy per electron for a ground state electron gas is given by

E

N
= −9πne2

p2
f

∫ ∞

0

[sin(x) − x cos(x)]2

x5
dx ,

where N is electron number, n is electron density, pf is the Fermi momentum, and x = pfr is a
dimensionless radius for an integration over all space (Ba-436).

a) First, let us analyze the integrand of the integral. Where are its zeros approximately for
x ≥ 0? What is its small x behavior to 5th order in small x? What is its large x behavior?
Sketch the integrand.

b) Now evaluate the integral approximately or exactly by analytic means. HINT: An exact
analytic integration must be possible, but probably one must use some special method. For
approximate analytic integration, just do the best you can.

c) Now evaluate the integral numerically to high accuracy. HINT: Simpson’s rule with double
precision fortran works pretty well.
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025 qfull 00600 2 5 0 moderate thinking: two fermions in a box
Extra keywords: (Ba-439:4)

7. Consider a box quantization system with volume V : the single-particle eigenstates recall are
given by

φs(~r ) =
ei~p·~r

V
,

where periodic boundary conditions have been imposed, h− has been set to 1, and s gives the
spin coordinate. We will consider two spin 1/2 fermions in the box in state

|1~p1s1
, 1~p2s2

〉 = a†~p2s2
a†~p1s1

|0〉 ,

where the a†’s are creation operators and |0〉 is the vacuum state (Ba-417). Recall the
anticommutation relations for the fermion creation and annihilation operators:

{a~ps, a
†
~p′s′} = δ~p~p′δss′ , {a~ps, a~p′s′} = 0 , and {a†~ps, a

†
~p′s′} = 0 ,

where the a†’s are again creation operators and the a’s are annihilation operators (Ba-417).

a) Show that
〈1~p1s1

, 1~p2s2
|1~p1s1

, 1~p2s2
〉 = 1 − δ~p1~p2

δs1s2
.

What is the interpretation of this result?

b) You are now given the operator

a†~psa
†
~qs′a~q ′s′a~p ′s .

Write out the explicit expectation value of the operator for the |1~p1s1
, 1~p2s2

〉 state. HINTS:
Remember to make use of the annihilation property a|0〉 = 0. There are a lot of tedious
Kronecker deltas.

c) One form of the 2nd quantization two-body interaction operator is

v2nd =
1

2

1

V 2

∑

pp′qq′

∑

ss′

∫

d~r d~r ′ v(~r − ~r ′)e−i(~p−~p ′)·~re−i(~q−~q ′)·~r ′

a†~psa
†
~qs′a~q ′s′a~p ′s ,

where V again is volume, v(~r−~r ′) is the two-body potential function, and a†~psa
†
~qs′a~q ′s′a~p ′s

is the operator from the part (b) question. Making use of the part (b) answer express
expectation value 〈1~p1s1

, 1~p2s2
|v2nd|1~p1s1

, 1~p2s2
〉 as simply as possible. Don’t assume that

surface effects can be neglected. What is the use or significance of this matrix element?
HINTS: The summations allow one to kill most of the Kroneckar deltas and get a pretty
simple expression, but the explicit integrations are still there.

d) Say the two fermions are in different spin states and the two-body potential v(~r−~r ′) = C,
where C is a constant. What is the expectation value from the part (c) answer in this case?
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Multiple-Choice Problems

026 qmult 00100 1 4 4 easy deducto-memory: Klein-Gordan eqn
Extra keywords: See the biography of Schrodinger and BJ-343

1. “Let’s play Jeopardy! For $100, the answer is: A relativistic quantum mechanical particle
equation originally invented by Schrödinger (but never published by him) whose valid
interpretation was provided by Pauli and Weisskopf.”

a) What is the 2nd Schrödinger equation, Alex?
b) What is the relativistic Schödinger equation, Alex?
c) What is the Pauli-Weisskopf equation, Alex?
d) What is the Klein-Gordon equation, Alex?
e) What is the small Scotsman equation, Alex?

026 qmult 00200 2 1 2 moderate memory: KG eqn development
Extra keywords: See Ba-501

2. To develop the free-particle Klein-Gordon equation one assumes that the operators Eop =
ih−∂/∂t and pop = (h−/i)∇ apply in relativistic quantum mechanics and then applies the
correspondence principle to the non-quantum-mechanical special relativity result:

a) E =
√

(pc)2 + (mc2)2.
b) E2 = (pc)2 + (mc2)2.

c) γ = 1/
√

1 − β2.
d) E = mc2.

e) ℓ = ℓproper

√

1 − β2.

026 qmult 00300 1 1 2 easy memory: antiparticles
Extra keywords: See Ba-506

3. The free-particle Klein-Gordon equation leads to two energy eigen-solutions for each momentum
eigenvalue. The two energies are equal in absolute value and opposite in sign in one
interpretation. The negative energy solution can, in fact, be interpreted as a positive energy
solution for:

a) a helium atom.
b) an antiparticle.
c) a wavicle.
d) an anti-wavicle.
e) an anti-wastrel.

026 qmult 00400 1 1 4 easy memory: KG density and current density
Extra keywords: See Ba-503 and BJ-343

4. The density and current density that one obtains from the Klein-Gordon wave function are
interpreted, respectively, as:

a) anti-density and anti-current density.

178
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b) improbability density and current density.
c) current density and density in a relativistic reversal.
d) expectation value charge density and charge current density.
e) probability density and probability current density.

Full-Answer Problems

026 qfull 00300 2 5 0 moderate thinking: Lorentz transf. of KG eqn
Extra keywords: See Ba-502

1. One form of the free-particle Klein-Gordon (KG) equation is

KopΨ(~r, t) =

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0 ,

where Kop is here just an abbreviation for the Klein-Gordon equation operator and m is rest
mass (Ba-501). This equation is supposed to be relativistically correct. This means that it must
be the correct physics to apply to the particle in any inertial frame. But how does the solution
Ψ(~r, t) change on transformation from one inertial frame to another?

To find out, consider the special case of a transformation between frames S and S′, where
the S′ is moving at velocity β (in units of c) along the mutual x-axis of the two frames. The
origins of the two frames were coincident at τ = τ ′ = 0 (where τ = ct: i.e., time in units of
distance). The special Lorentz transformations in this case are

x′ = γ(x− βτ) , τ ′ = γ(τ − βx) , y′ = y , and z′ = z ,

where the Lorentz factor

γ =
1

√

1 − β2
.

Now transform KopΨ(~r, t) = 0 to the primed system (i.e., write it terms of the ~r ′ and t′

variables). Does the transformed equation K ′
opΨ[~r = f(~r ′, t′), t = f(~r ′, t′)] = 0 have the same

form as the untransformed equation: i.e., does it look like

[

1

c2
∂2

∂t′2
−∇′2 +

(

mc

h−

)2
]

Ψ(~r ′, t′)′ = 0

when Ψ[~r = f(~r ′, t′), t = f(~r ′, t′)] is identified as Ψ(~r ′, t′)′? What kind of object is Ψ(~r, t): i.e.,
scalar, vector, tensor? HINT: Recall the chain rule.

Multiple-Choice Problems

Full-Answer Problems

030 qfull 00100 2 5 0 moderate thinking: eph Bose-Einstein condensate
Extra keywords: Greiner et al. 2002, 415, 39 with Stoof review on p. 25
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1. Go to the library 2nd floor reading room and find the 20002jan03 issue of Nature (it may have
been placed under the display shelf) and read the commentary article by Stoof on page 25 about
a quantum phase transition from a Bose-Einstein condensate to a Mott insulator. What do you
think Stoof really means when he says in the superfluid state “atoms still move freely from one
valley to the next”? NOTE: The instructor disavows any ability to completely elucidate this
commentary or the research article by Greiner et al. it comments on.

030 qfull 00200 2 3 0 moderate thinking: eph quantum gravity well

Extra keywords: reference: Nesvizhevsky et al. 2002, Nature, 413, 297

2. Is the gravity subject to quantum mechanical laws or is it somehow totally decoupled? Everyone
really assumes that gravity is subject to quantum mechanical laws, but the assumption is not
well verified experimentally: in fact it may never have been verified at all until now—not that
I would know. The lack of experimental verification is because gravity is so infernally weak
compared to other forces in microscopic experiments that it is usually completely negligible.
Recently Nesviszhevsky et al. (2002, Nature, 413, 297) have reported from an experiment that
a gravity well (at least part of the constraining potential is gravitational) does have quantized
energy states. This appears to be the first time that such an experimental result has been
achieved. It’s a wonderful result. Of course, if they hadn’t found quantization, it would have
been a shock and most people would have concluded that the experiment was wrong somehow.
Experiment may be the ultimate judge of theory, but experiment can certainly tell fibs for
awhile.

Go read Nesviszhevsky et al. in the 2nd floor reading room of the library: the relevant
issue may be under the shelf. If a neutron in the theoretically predicted gravity well made a
transition from the 1st excited state to the ground state and emitted a photon, what would be
the wavelength of the photon? Could such a photon be measured? What classically does such
a transition correspond to?

030 qfull 00300 1 5 0 easy thinking: eph quantum computing

Extra keywords: Reference Seife, C. 2001, Science, 293, 2026

3. Read the article on quantum computing by Seife (2001, Science, 293, 2026) and make an estimate
of how long it will be before for there is a quantum computer that solves a computational
problem not solvable by a classical computer: I’m excepting, of course, any problems concerning
quantum computer operation itself. Give your reasoning. All answers are right—and wrong—or
in a superposition of those two states. My answer is 1 year. HINT: You can probably find the
issue in the library, but there’s one in the physics lounge near the Britney issue. Primers on
quantum computing can be found by going to

http://www.physics.unlv.edu/~jeffery/images/science

and clicking down through quantum mechanics and quantum computing.

030 qfull 00400 2 5 0 moderate thinking: eph C-70 diffraction

Extra keywords: Reference Nairz et al. 2001, quant-ph/0105061

4. On the web go to the Los Alamos eprint archive:

http://xxx.lanl.gov/ .

There click on search and then on search for articles by Zeilinger under the quant-ph topic.
Locate Nairz, Arndt, & Zeilinger 2001, quant-ph/0105061 and download it. This is article
reports the particle diffraction for C70 (a fullerene). There should be great pictures on the web
of fullerenes, but the best I could find were at

http://www.sussex.ac.uk/Users/kroto/fullgallery.html

and

http://cnst.rice.edu/pics.html
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and these don’t have descriptions. Fullerenes are the largest particles ever shown to diffract:
their size scale must be order-of a nanometer: 10 times ordinary atomic size. The article calls
itself a verification of the Heisenberg uncertainty principle. In a general sense this is absolutely
true since they verify the wave nature of particle propagation. But it isn’t a direct test of the
formal uncertainty relation

σxσpx
≥ h−

2
,

where σx and σpx
are standard deviations of x-direction position and momentum, respectively,

for the wave function (e.g., Gr-18, Gr-108–110). Explain why it isn’t a direct test. HINTS:
You should all have studied physical optics at some point. Essentially what formula are they
testing?

030 qfull 00500 1 5 0 easy thinking: bulk and branes
Extra keywords: Reference Arkani-Hamed, N., et al. 2002, Physics Today, February, 35

5. Go the library basement and read the article by Arkani-Hamed et al. (Physics Today, February,
p. 35). Perhaps a 2nd reading would help or a course in particle physics. Anyway what is the
bulk (not Hulk, bulk) and the brane (not Brain, brane)?

030 qfull 00600 1 5 0 easy thinking: sympathetic cooling
Extra keywords: O’Hara & Thomas, 2001, Science, March 30, 291, 2556

6. Go to the library or the physics lounge and read O’Hara & Thomas ( 2001, Science, March 30,
291, p. 2556) on degenerate gases of bosons and fermions. What is sympathetic cooling?
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Multiple-Choice Problems

Full-Answer Problems

031 qfull 00100 2 3 0 moderate math: Gauss summations
1. Gauss at the age of two proved various useful summation formulae. Now we can do this too

maybe.

a) Prove

S0(n) =

n
∑

ℓ=1

1 = n .

HINT: This is really very easy.

b) Prove

S1(n) =

n
∑

ℓ=1

ℓ =
n(n+ 1)

2
.

HINT: The trick is to add to every term in the sum its “complement” and then sum those
2-sums and divide by 2 to account for double counting.

c) Prove

S2(n) =

n
∑

ℓ=1

ℓ2 =
n(n+ 1)(2n+ 1)

6
.

HINT: A proof by induction works, but for that proof you need to know the result first
and that’s the weak way. The stronger way is to reduce the problem to an already solved
problem. Consider the general summation formula

Sk(n) =

n
∑

ℓ=1

ℓk .

For each ℓ, you can construct a column of ℓk−1’s that is ℓ in height. Can you add up the
values in the table that is made up of these columns in some way to get Sk(n).

d) Prove

S3(n) =
n
∑

ℓ=1

ℓ3 =
n2(n+ 1)2

4
.

HINT: This formula can be proven using the “complement” trick and the formulae of
parts (b) and (c). It can also more tediously be solved by the procedure hinted at in
part (c). Or, of course, induction will work.

182
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031 qfull 00200 1 3 0 easy math: uniqueness of power series
2. Power series are unique.

a) Prove that coefficients ak of the power series

P (x) =

∞
∑

k=0

akx
k

are unique choices given that the series is convergent of course. HINT: The mth derivative
of P (x) evaluated at x = 0 can have only one value.

b) Prove that coefficients akℓ of the double power series

P (x, y) =

∞,∞
∑

k=0,ℓ=0

akℓx
kyℓ

are unique choices given that the series is convergent of course. HINT: Mutatis mutandis.

031 qfull 00300 2 5 0 moderate thinking: Leibniz’s formula (Ar-558) proof
3. Prove Leibniz’s formula (Ar-558)

dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

by induction.

031 qfull 00400 2 5 0 moderate thinking: integrals of type xe**-2
4. In evaluating anything that depends on a Gaussian distribution (e.g., the Maxwell-Boltzmann

distribution of classical statistical mechanics), one frequently has to evaluate integrals of the
type

In =

∫ ∞

0

xne−λx2

dx ,

where n is an odd positive integer.

a) Solve for I1.

b) Obtaining the general formula for In is now trivial with a magic trick. Act on I1 with the
operator

(

− d

dλ

)(n−1)/2

.

c) From the general formula evaluate I1 I3, I5, and I7.

031 qfull 01000 2 5 0 moderate thinking:
5. In understanding determinants some permutation results must be proven. The proofs are

expected to be cogent and memorable rather than mathematical rigorous.

a) Given n objects, prove that there are n! permutations for ordering them in a line.

b) If you interchange any two particles in a given permutation, you get another permutation.
Let’s call that action an exchange. If you exchange nearest nearest neighbors, let’s call that
a nearest neighbor or NN exchange. Prove that any exchange requires an odd number of
NN exchanges.
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c) Permutations have definite parity. This means that going from one definite permutation to
another definite permutation by any possible series of NN exchanges (i.e., by any possible
path) will always involve either an even number of NN exchanges or an odd number: i.e., if
one path is even/odd, then any other path is even/odd. Given that definite parity is true
prove that any path of NN exchanges from a permutation that brings you back to that
permutation (i.e., a closed path) has an even number of NN exchanges.

d) Now we have to prove definite parity exists. Say there is a fiducial permutation which by
definition we say has even parity. If definite parity exists, then every other permutation is
definitely even or odd relative to the fiducial permutation. If n = 1, does definite parity
hold in this trivial case? For n ≥ 2, prove that definite parity holds. HINTS: It suffices to
prove that going from the fiducial permutation to any other permutation always involves
a definite even or odd path since the fiducial permutation is arbitrary. Proof by induction
might be the best route. I can’t see how brief word arguments can be avoided.

e) Now prove for n ≥ 2 that there are an equal number of even and odd permutations. HINT:
Consider starting with an even permutation and systematically by an NN exchange path
going through all possible permutations. Then start with an odd permutation and follow
the same NN exchange path.
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Note: This equation sheet is intended for students writing tests or reviewing material. Therefore
it neither intended to be complete nor completely explicit. There are fewer symbols than variables,
and so some symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

185
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Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉

4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ
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β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ

H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)
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[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities

σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials
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〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)
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σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉

eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)

∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =

m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =

∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0
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Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx

Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′
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|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n

N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−



Appendix 3 Multiple-Choice Problem Answer Tables

Note: For those who find scantrons frequently inaccurate and prefer to have their own table and
marking template, the following are provided. I got the template trick from Neil Huffacker at
University of Oklahoma. One just punches out the right answer places on an answer table and
overlays it on student answer tables and quickly identifies and marks the wrong answers

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 6. O O O O O

2. O O O O O 7. O O O O O

3. O O O O O 8. O O O O O

4. O O O O O 9. O O O O O

5. O O O O O 10. O O O O O
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Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 11. O O O O O

2. O O O O O 12. O O O O O

3. O O O O O 13. O O O O O

4. O O O O O 14. O O O O O

5. O O O O O 15. O O O O O

6. O O O O O 16. O O O O O

7. O O O O O 17. O O O O O

8. O O O O O 18. O O O O O

9. O O O O O 19. O O O O O

10. O O O O O 20. O O O O O
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Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 16. O O O O O

2. O O O O O 17. O O O O O

3. O O O O O 18. O O O O O

4. O O O O O 19. O O O O O

5. O O O O O 20. O O O O O

6. O O O O O 21. O O O O O

7. O O O O O 22. O O O O O

8. O O O O O 23. O O O O O

9. O O O O O 24. O O O O O

10. O O O O O 25. O O O O O

11. O O O O O 26. O O O O O

12. O O O O O 27. O O O O O

13. O O O O O 28. O O O O O

14. O O O O O 29. O O O O O

15. O O O O O 30. O O O O O
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NAME:

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 21. O O O O O

2. O O O O O 22. O O O O O

3. O O O O O 23. O O O O O

4. O O O O O 24. O O O O O

5. O O O O O 25. O O O O O

6. O O O O O 26. O O O O O

7. O O O O O 27. O O O O O

8. O O O O O 28. O O O O O

9. O O O O O 29. O O O O O

10. O O O O O 30. O O O O O

11. O O O O O 31. O O O O O

12. O O O O O 32. O O O O O

13. O O O O O 33. O O O O O

14. O O O O O 34. O O O O O

15. O O O O O 35. O O O O O

16. O O O O O 36. O O O O O

17. O O O O O 37. O O O O O

18. O O O O O 38. O O O O O

19. O O O O O 39. O O O O O

20. O O O O O 40. O O O O O
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Answer Table Name:
a b c d e a b c d e

1. O O O O O 31. O O O O O

2. O O O O O 32. O O O O O

3. O O O O O 33. O O O O O

4. O O O O O 34. O O O O O

5. O O O O O 35. O O O O O

6. O O O O O 36. O O O O O

7. O O O O O 37. O O O O O

8. O O O O O 38. O O O O O

9. O O O O O 39. O O O O O

10. O O O O O 40. O O O O O

11. O O O O O 41. O O O O O

12. O O O O O 42. O O O O O

13. O O O O O 43. O O O O O

14. O O O O O 44. O O O O O

15. O O O O O 45. O O O O O

16. O O O O O 46. O O O O O

17. O O O O O 47. O O O O O

18. O O O O O 48. O O O O O

19. O O O O O 49. O O O O O

20. O O O O O 50. O O O O O

21. O O O O O 51. O O O O O

22. O O O O O 52. O O O O O

23. O O O O O 53. O O O O O

24. O O O O O 54. O O O O O

25. O O O O O 55. O O O O O

26. O O O O O 56. O O O O O

27. O O O O O 57. O O O O O

28. O O O O O 58. O O O O O

29. O O O O O 59. O O O O O

30. O O O O O 60. O O O O O


