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Quantum Mechanics

Exam 1 2011 March 7, Monday

NAME: SIGNATURE:
Instructions: There are 10 multiple-choice questions each worth 2 marks for a total
of 20 marks altogether. Choose the BEST answer, completion, etc., and darken fully the
appropriate circle on the table provided below. Read all responses carefully. NOTE long
detailed preambles and responses won’t depend on hidden keywords: keywords in such
preambles and responses are bold-faced capitalized.

There are THREE full answer questions each worth 10 marks for a total of 30 marks
altogether. Answer them all on the paper provided. It is important that you SHOW
(SHOW, SHOW, SHOW) how you got the answer.

This is a CLOSED-BOOK exam. NO cheat sheets allowed. An equation sheet is
provided. Calculators are permitted for calculations. Cell phones MUST be turned off.
The test is out of 50 marks altogether.

This a 50-minute test. Remember your name (and write it down on the exam too).

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 6. O O O O O

2. O O O O O 7. O O O O O

3. O O O O O 8. O O O O O

4. O O O O O 9. O O O O O

5. O O O O O 10. O O O O O
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011 qmult 00100 1 4 3 easy deducto-memory: central force
1. A central force is one which always points radially inward or outward from a fixed

point which is the center of the central force. The magnitude of central force depends
only on:

a) the angle of the particle.
b) the vector ~r from the center to the particle.
c) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e) the uncertainty principle.

SUGGESTED ANSWER: (c)

Wikipedia confirms this definition of a central force. Mathemetically, one
can write the force

~F (~r ) = F (r)r̂ .

But what would a force like

~F (~r ) = F (~r )r̂

be called. It’s not officially a central force since the magnitude depends on
direction. But its torque about the center is also zero, and so it conserves angular
momentum. Perhaps, such forces are rare, and therefore not much studied.

Wrong Answers:
a) Nah.
b) Exactly wrong.

Redaction: Jeffery, 2001jan01

011 qmult 00212 1 1 3 easy memory: separation of variables 3
2. Say you have a partial differential equation with independent variables xi and you

want to look for solutions that can be factorized thusly

f({xi}) =
∏

fi(xi) .

Now you substitute the factored form into the differential equation and find that it is
possible to reorder differential equation into the form

g =
∑

j

gj(xj) = 0 ,

where gj(xj) is some formula depending for fj(xj) only out of the set of functions
fi(xi). If we differentiate g with respect to general xi, we find

∂g

∂xi
=
∑

j

∂gj(xj)

∂xi
=
∂gi(xi)

∂xi
= 0 ,

where we have used the fact that the variables are independent. Since xi was general,
we conclude that gi(xi) is actually independent of xi as well as all other independent
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variables. So all the gi(xi) expressions in fact equal to constants. These constants are
called constants of separation. Thus, we have the set of ordinary differential equations

gi(xi) = Ci ,

where Ci is the constant of separation for variable i. The solutions for all fi(xi) can
now be looked for. The solutions f({xi}) that cannot be factorized are not obtained,
of course, by the described procedured. However, if one obtains complete sets of
solutions for each of the ordinary differential equation, then any solution f({xi}) can
be constructed at least to within some approximation (Arf-443). Thus, the described
procedure is very general and powerful. It is called:

a) separation of the g’s. b) partitioning. c) separation of the variables.
d) the solution factorization. e) the King Lear method.

SUGGESTED ANSWER: (c)

In quantum mechanics, it is a postulate that a complete set of eigenstates
exists for any observable and that any physical state defined for the same space
as the observable can be expanded exactly in those eigenstates in principle. The
whole paradigm of quantum mechanics relies on this postulate—and quantum
mechanics has never failed. Thus, separation of the variables when it can be
applied to quantum mechanics is a very important procedure.

Wrong answers:
d) Seems reasonable.
e) Metaphorical names due turn up in physics like the Monte Carlo method

(named after a famous casino in Monaco) and the Urca process (named after
a casino in Rio de Janeiro). One sometimes gets the feeling that theoretical
physicists spend a lot of time in casinos. I used to wander through them all
the time in my Vegas years.

Redaction: Jeffery, 2008jan01

011 qmult 00300 1 4 2 easy deducto-memory: relative/cm reduction
3. “Let’s play Jeopardy! For $100, the answer is: By writing the two-body Schrödinger

equation in relative/center-of-mass coordinates.”

How do you , Alex?

a) reduce a ONE-BODY problem to a TWO-BODY problem
b) reduce a TWO-BODY problem to a ONE-BODY problem
c) solve a one-dimensional infinite square well problem
d) solve for the simple harmonic oscillator eigenvalues
e) reduce a TWO-BODY problem to a TWO-BODY problem

SUGGESTED ANSWER: (b)

Wrong answers:
e) Seems a bit pointless.

Redaction: Jeffery, 2001jan01
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011 qmult 00310 1 4 4 easy deducto-memory: reduced mass
4. The formula for the reduced massm for two-body system (with bodies labeled 1 and 2)

is:

a) m = m1m2. b) m =
1

m1m2
. c) m =

m1 +m2

m1m2
. d) m =

m1m2

m1 +m2
.

e) m =
1

m1
.

SUGGESTED ANSWER: (d)

Wrong Answers:
a) Dimensionally wrong.
b) Dimensionally wrong.
c) Dimensionally wrong.
e) Dimensionally wrong and it only refers to one mass.

Redaction: Jeffery, 2001jan01

011 qmult 00410 1 4 4 easy deducto-memory: spherical harmonics 2
Extra keywords: mathematical physics

5. “Let’s play Jeopardy! For $100, the answer is: They form a basis or complete set
for the 2-dimensional space of the surface a sphere which is usually described by the
angular coordinates of spherical polar coordinates.”

What are the , Alex?

a) Hermite polynomials b) Laguerre polynomials
c) associated Laguerre polynomials d) spherical harmonics
e) Chebyshev polynomials

SUGGESTED ANSWER: (d)

Wrong answers:
a) These turn up as factors in the solution of the 1-dimensional simple harmonic

oscillator problem.
c) These turn up as factors in the solution of the radial part part of the Coulomb

potential 2-body problem
e) These have uses in numerical computation.

Redaction: Jeffery, 2008jan01

011 qmult 00420 1 4 3 easy deducto memory: spherical harmonic Y00
6. Just about the only spherical harmonic that people remember—and they really should

remember it too—is Y00 =:

a) eimφ. b) r2. c)
1√
4π

. d) θ2. e) 2a−3/2e−r/a.

SUGGESTED ANSWER: (c)

Wrong Answers:
a) This is the general azimuthal component of the spherical harmonics:

m = 0,±1,±2, . . . ,±ℓ.
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b) This is radial and it’s not normalizable.
d) Except for Y00 itself, the spherical harmonics are all combinations of

sinusoidal functions of the θ and φ.
e) This is the R10 hydrogenic radial wave function where a is the scale

radius

a = a0
me

m

1

Z
,

where me is the electron mass, m is the reduced mass, Z is the number
of unit charges of the central particle, and a0 is the Bohr radius (Gr2005-
137). The Bohr radius in MKS units is given by

a0 =
h−2

me[e2/(4πε0)]
=
λC

2π

1

α
= 0.52917720859(36) Å ,

where e is the elementary charge, λC = h−/(mec) is the Compton
wavelength, and α ≈ /137 is the fine structure constant.

Redaction: Jeffery, 2001jan01

011 qmult 00510 1 4 3 easy deducto-memory: s electrons
7. “Let’s play Jeopardy! For $100, the answer is: What the ℓ = 0 electrons (or zero

orbital angular momentum electrons) are called in spectroscopic notation.”

What are , Alex?

a) the Hermitian conjugates b) Herman’s Hermits c) s electrons
d) p electrons e) h electrons

SUGGESTED ANSWER: (c)

Wrong answers:
b) A British rock band of the 1960s: not the Beatles.
d) These are the ℓ = 1 electrons.
e) These are the ℓ = 5 electrons.

Redaction: Jeffery, 2001jan01

019 qmult 00110 1 1 3 easy memory: exchange degeneracy and symmetrization principle
8. As strange as the symmetrization principle seems at first, quantum mechanics would

be inconsistent without it since then you could create infinitely many physically
distinct states by superpositions of the same state. This inconsistency is called the:

a) symmetrization paradox. b) symmetrization degeneracy.
c) exhcange degeneracy. d) baffling degeneracy. e) baffling paradox.

SUGGESTED ANSWER: (c)

Wrong answers:
e) By Gad, Holmes, baffled again.

Redaction: Jeffery, 2008jan01
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020 qmult 00100 1 1 1 easy memory: atom defined
9. An atom is a stable bound system of electrons and:

a) a single nucleus. b) two nuclei. c) three nuclei. d) a single quark.
e) two quarks.

SUGGESTED ANSWER: (a)

Wrong Answers:
b) This is a diatomic molecule.

Redaction: Jeffery, 2001jan01

020 qmult 01000 1 4 1 easy deducto-memory: central potential
10. “Let’s play Jeopardy! For $100, the answer is: A favored approximation in the simpler

solutions for the electronic structure of atoms in quantum mechanics.”

What is the , Alex?

a) central potential approximation b) non-central potential approximation
c) grand central approximation d) atom-approximated-as-molecule method
e) electrons-as-bosons approximation

SUGGESTED ANSWER: (a)

Wrong answers:
d) Doesn’t seem to likely to work.
e) Off hand I can’t think of a poorer approximation.

Redaction: Jeffery, 2001jan01
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019 qfull 02000 2 5 0 moderate thinking: symmetrization of 4 orthonormal single-particle
states
11. Say |ai〉 and |bi〉 are ORTHONORMAL single-particle states, where i is a particle

label. The label can be thought of as labeling the coordinates to be integrated or
summed over in an inner product: see below. The symbolic combination of such
states for two particles, one in a and one in b is

|12〉 = |a1〉|b2〉 ,

where 1 and 2 are particle labels. This combination is actually a tensor product, but
let’s not worry about that now. The inner product of such a combined state is written

〈12|12〉 = 〈a1|a1〉〈b2|b2〉 .

If one expanded the inner product in the position and spinor representation assuming
the wave function and spinor parts can be separated (which in general is not the case),

〈12|12〉 =

[
∫

ψa(x1)
∗ψa(x1) dx1 ( c∗a+ c∗a− )1

(

ca+

ca−

)

1

]

×
[
∫

ψb(x2)
∗ψb(x2) dx2 ( c∗b+ c∗b− )2

(

cb+
cb−

)

2

]

.

A lot of conventions go into the last expression: don’t worry too much about them.

a) Let particles 1 and 2 be distinct particles. What are the two simplest and most
obvious normalized 2-particle states that can be constructed from states a and b?
What happens if a = b (i.e., the two single-particle states are only one state actually)?

b) Say particles 1 and 2 are identical bosons or identical fermions. What is the only
normalized physical 2-particle state that can be constructed in either case allowing
for the possibility that a = b (i.e., the two single-particle states are only one state
actually)? What happens if a = b for fermions and what does it mean?

SUGGESTED ANSWER:

a) Behold:
|12〉 = |a1〉|b2〉 and |21〉 = |a2〉|b1〉

which are just the allowed product states. More complicated states can be
constructed if the particles are in mixtures of the two states just given. If
a = b, then one can construct only one state

|12〉 = |a1〉|a2〉 .

b) Behold:

|12〉 =
1

√

2(1 + δab)
(|a1〉|b2〉 ± |a2〉|b1〉) ,

where the upper case is for bosons and the lower case is for fermions.
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I don’t think there are any other possible physical states that can be
constructed. There are only two mathematical product states obtained by
permuting the permutation of particle labels. But those states are physically
identical since the particles are identical. Thus, there is only one unpermuted
product state which is not an exact physical state since it is not symmetrized.
Product states are useful approximations in some cases. From the one
unpermuted product state, only one symmetrized state can be constructed.

The Kronecker delta allows for the case that a = b for bosons. Obviously,
we never had to symmetrize the product state at all for bosons if a = b. The
product state is already symmetrized. It is

|12〉 = |a1〉|a2〉 .

If a = b for fermions, the state is null, and thus no physical state can be
constructed in this case. The nullness is a manifestation of the Pauli exclusion
principle (a corollary of the symmetrization postulate): two fermions cannot
be in found in the same single-particle state (as specified by a C.S.C.O.: i.e., a
complete set of commuting observables (CT-143)). “Cannot be found” has to
be interpreted as the probability for finding two fermions in the same single-
particle state is zero or, in other words, that the probability of collapsing
the wave function to having two fermions in the same single-particle state is
zero. So if a = b for fermions, then a physical symmetrized state cannot be
created from product states.

Redaction: Jeffery, 2001jan01

020 qfull 00200 1 3 0 easy math: electronic configurations to Ca
12. Write down the ground state electronic configurations of the neutral atoms from

hydrogen (element 1) to calcium (element 20).

SUGGESTED ANSWER:

Ground State Electronic Configurations of Atoms from H to Ca

Atom Electronic Configuration

H1 (1s)
He2 (1s)2

Li3 (He)(2s)
Be4 (He)(2s)2

B5 (He)(2s)2(2p)
C6 (He)(2s)2(2p)2

N7 (He)(2s)2(2p)3

O8 (He)(2s)2(2p)4

F9 (He)(2s)2(2p)5

Ne10 (He)(2s)2(2p)6

Na11 (Ne)(3s)
Mg12 (Ne)(3s)2

Al13 (Ne)(3s)2(3p)
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Si14 (Ne)(3s)2(3p)2

P15 (Ne)(3s)2(3p)3

S16 (Ne)(3s)2(3p)4

Cl17 (Ne)(3s)2(3p)5

Ar18 (Ne)(3s)2(3p)6

K19 (Ar)(4s)
Ca20 (Ar)(4s)2

Redaction: Jeffery, 2008jan01

019 qfull 02500 2 3 0 mod math: coupled simple harmonic oscillator, coupled
SHOs

Extra keywords: On tests going to part f might be sufficient
13. There are two particles subject to separate simple harmonic oscillator (SHO)

potentials. Initially, we assume that they are distinct particles. They are also
coupled by a mutual SHO potential. The full Hamiltonian is:

H =
p2
1

2m1
+

p2
2

2m2
+

1

2
m1ω

2x2
1 +

1

2
m2ω

2x2
2 +

1

2
k(x1 − x2)

2 ,

where k > 0 which in this context means the interaction is attractive. The
problem is 1-dimensional: it is in the x dimension only.

a) Write down the formulae for the center-of-mass (CM) and relative (REL)
coordinate and their inverses (i.e., x1 and x2 expressed in terms of the
CM coordinate X and the relative x).

b) Transform the Hamiltonian to the center-of-mass-relative (CM-REL)
coordinates (showing all the steps).

c) Now show that the time-independent Schrödinger equation for the
Hamiltonian separates into CM and REL time-independent Schrödinger
equations. Define

ω̃ =

√

ω2 +
k

µ
= ω

√

1 +
k

µω2

(where µ is the reduced mass) in order to simplify the REL equation.
Does the overall time-independent Schrödinger equation have an exact
solution?

d) Write down the general expression for the eigen-energies of the total
stationary states in terms of the SHO quantum numbers nCM and nREL

for the respective CM and REL parts.

e) Next write the expression for the eigen-energies in the case that k = 0.
Define a new quantum number n that alone gives the eigen-energy and
the degeneracy of the eigen-energy. What is the degeneracy of an eigen-
energy of quantum number n?
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f) Now assume that k > 0, but that k/(µω2) << 1. Write down a 1st
order correct expression for the energy in terms of n and nREL. Give a
schematic energy-level diagram.

g) Now assume that k/(µω2) >> 1. Give a schematic energy-level diagram
in this case.

h) Now assume that the two particles are identical spin-0 bosons. Note
that identical means they now have the same mass. Given the symmetry
requirement for boson states, which solutions (specified by the nCM and
nREL quantum numbers) are not physically allowed?

i) Now assume that the two particles are identical spin-1/2 fermions. Note
again that identical means they now have the same mass. But also
note they arn’t electrons. Their interactions are determined by the
given Hamiltonian only. Because the particles are spin-1/2 fermions,
the stationary state wave functions for system must be multiplied by
appropriate eigen-spinors to specify the full stationary state. Given the
antisymmetry requirement for fermion states, what restrictions are put
on the wave function and spinor quantum numbers of an eigenstate?

SUGGESTED ANSWER:

a) For the sake of generality, let’s work in three dimensions for awhile
even though the problem is 1-dimensional. We can specialize when
we need to to the 1-dimensional case.

Define the relative radius

~r = ~r2 − ~r1 ,

the total mass
M = m1 +m2

and the CM radius

R =
m1~r1 +m2~r2

M
.

For the inverses, we substitute for ~r2 in the formula for ~R the
expression ~r2 = ~r + ~r1 which gives

~R =
m1~r1 +m2~r2

M
=
m1~r1 +m2(~r + ~r1)

M
= ~r1 +

m2

M
~r = ~r1 +

m2

M
~r .

Thus, we find

~r1 = ~R − m2

M
~r

and

~r2 = ~r + ~r1 = ~r + ~R− m2

M
~r = ~R+

(

1 − m2

M

)

~r = ~R+
m1

M
~r .

The specializations to the 1-dimensional case are obvious.
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b) For the sake of generality, let’s work in three dimensions for awhile
even though the problem is 1-dimensional. We can specialize when
we need to to the 1-dimensional case.

First, we need to transform kinetic energy observables. We find

∂

∂xi
=

∂x

∂xi

∂

∂x
+
∂X

∂xi

∂

∂X
= ∓ ∂

∂x
+
mi

M

∂

∂X
,

where i = 1 for the upper case and i = 2 for the lower case. Next
we find

∂2

∂x2
i

=
∂2

∂x2
+
(mi

M

)2 ∂2

∂X2
∓ 2

mi

M

∂2

∂x∂X
.

Exactly analogous expressions hold for y and z coordinates. Thus,
we find that

1

m1
∇2

1 +
1

m2
∇2

2 =
(m1 +m2)

M2
∇2

CM +

(

1

m1
+

1

m2

)

∇2
REL =

1

M
∇2

CM +
1

µ
∇2

REL ,

where for simplicity here and below we only distinguish the
operators with a subscripts CM and REL when needed and where
we define the reduced mass by

1

µ
=

1

m1
+

1

m2
or µ =

m1m2

M
.

Second, we need to find the conversion relations needed for the
potential terms. We find

1

2
m1ω

2r21 +
1

2
m2ω

2r22 =
1

2
ω
[

m1

(

~R− m2

M
~r
)

·
(

~R− m2

M
~r
)

+m2

(

~R +
m1

M
~r
)

·
(

~R +
m1

M
~r
)]

=
1

2
ω

[

(m1 +m2)R
2 +

(m1m
2
2 +m2m

2
1)

M2
r2 − 2

m1m2

M
~R · ~r + 2

m1m2

M
~R · ~r

]

=
1

2
MωR2 +

1

2
µωr2 .

The corresponding relations for any component are analogous. Note
that the nice separation into a center-of-mass SHO potential and
relative SHO potential would not have been possible if the angular
frequencies had been different.

In the present case, the Hamiltonian is confined to the x
dimension only. We see this Hamiltonian in CM-REL coordinates
must be

H =
P 2

2M
+
p2

2µ
+

1

2
Mω2X2 +

1

2
µω2x2 +

1

2
kx2 .

c) With the transformed Hamiltonian, the time-independent
Schrödinger equation becomes

Hψ(X, x) = HCMψ(X, x) +HRELψ(X, x) = Eψ(X, x) ,
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where we have specialized our transformations to the 1-dimensional
case.

If we separate the wave function

ψ(X, x) = ψ(X)ψ(x)

and divide the Schrödinger equation by the wave function, we obtain

HCMψ(X)

ψ(X)
+
HRELψ(x)

ψ(x)
= E .

Now X and x are independent, and so we can vary one holding
the other constant. If we do that, we see that both terms on the
right-hand side must equal constants which we identify as ECM and
EREL. The total energy is

E = ECM + EREL .

We can now write down the separate Schrödinger equations

HCMψ(X) =

(

P 2

2M
+

1

2
Mω2X2

)

ψ(X) = ECMψ(X) ,

HRELψ(x) =

(

p2

2µ
+

1

2
µω̃2x2

)

ψ(x) = ERELψ(x) ,

where, as suggested, we haved defined

ω̃ =

√

ω2 +
k

µ
= ω

√

1 +
k

µω2
.

Actually, to the experienced, the separate Schrödinger
equations are obvious since the potential is separable for the two
variables. But the question asks for a demonstraion.

Both the CM and REL parts are SHO equations, and thus
have exact solutions. Ergo the total Schrödinger equation also has
an exact solution.

d) The eigen-energies of the total solutions (i.e., the total stationary
states) are given by

E = ECM + EREL =

(

nCM +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω̃ ,

where both the nCM and nREL quantum numbers run 0, 1, 2, 3, . . . .

e) If k = 0, then
E = (nCM + nREL + 1) h−ω .

We can define a new quantum number

n = nCM + nREL
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which labels the distinct energy levels and runs 0, 1, 2, 3, . . . . Thus,

E = (n+ 1)h−ω .

The degenerate states can be labeled by

nREL = n− nCM

which for fixed n runs over 0, 1, 2, 3, . . . , n as nCM runs over
n, n − 1, n − 2, n − 3, . . . , 0. The degeneracy is n + 1. Only the
ground state is not degenerate.

If one made a square array states with nCM and nREL labeling,
respectively, infinite rows and columns, then n runs along the
vertical axis labeling diagonals made of degenerate states and nREL

runs along the diagonal labeling the degenerate states for each n.

f) If k/(µω2) << 1, then

ω̃ ≈ ω

(

1 +
k

2µω2

)

to 1st order. We now see that

E = ECM +EREL =

(

nCM +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω̃

≈
(

nCM +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω
(

k

2µω2

)

= (n+ 1)h−ω +

(

nREL +
1

2

)

h−ω
(

k

2µω2

)

to 1st order. The k term is now a perturbation which splits the
degeneracy of the part (e) case. The n quantum number now labels
a group of closely spaced states that run from low energy when
nREl = 0 to high when nREL + n. The number of states in a group
is n+ 1.

The energy-level diagram should look like a potential well with
walls rising to infinity. For n = 0, one has just one low-lying level.
For n = 1, there are two higher closely spaced levels. For n = 2,
there are three still higher closely spaced levels. And so on. I need
to leave the diagram to your imagination.

g) If k/(µω2) >> 1, then the n quantum number is not useful. In this
case one can only use the original quantum numbers nCM and nREL

and let them run over 0, 1, 2, 3, . . . . However, since nREL accounts
for large energy steps it makes sense to define orders of energy levels
by their nREL quantum number. Thus given nREL, the zeroth level
of the nREL order has nCM = 0, the 1st level has nCM = 1, the
2nd nCM = 2, and so on. Each order nREL will be overlapped by
the high levels of all lower orders. In general the levels of different



14

orders will not be coincident however: they will be scattered about
higgedly-piggedly.

If we do, however, equate to energy levels from different orders
(

nCM +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω̃ =

(

n′
CM +

1

2

)

h−ω +

(

n′
REL +

1

2

)

h−ω̃

and rearrange to get

n′
CM − nCM = (nREL − n′

REL)
ω̃

ω
,

then we only get an acceptable integral solution for n′
CM −nCM for

any nREL − n′
REL if ω̃/ω is an integer. For definiteness, let’s say

that the primes indicate the lower order. Thus nREL − n′
REL ≥ 0

and n′
CM − nCM ≥ 0. This means that any solution of order nREL

is degenerate with an energy solution of each of lower orders n′
REL.

Thus the degeneracy of any energy level is nREL+1 counting orders
0 through nREL itself.

h) The symmetry requirement for spin-0 boson states is that on the
interchange of any pair of particle coordinates, the state function
stay the same. In this case the state function in terms of the
individual coordinates is

ψnCM

(

m1x1 +m2x2

M

)

ψnREL
(x2 − x1) ,

where each component state function is a one-dimensional SHO
wave function. The CM component is, in fact, already symmetric
on pair interchange, and so imposes no new restrictions. Since SHO
wave functions are even for even quantum number and odd for odd,
the REL component is symmetric for nREL even and antisymmetric
for nREL odd. No combination of antisymmetric functions can ever
be symmetric, so we in must exclude all odd nREL solutions: they
arn’t physically realizable for spin-0 bosons. Note the remaining
solutions still constitute a complete set, but only for spin-0 bosons.

i) The standard eigen spinors for a 2 spin-1/2 fermion system are

χ1,1 = α(1)α(2)

χ1,0 =
1√
2
[α(1)β(2) + β(1)α(2)]

χ1,−1 = β(1)β(2)

and

χ0,0 =
1√
2
[α(1)β(2) − β(1)α(2)] ,

where the first three spinors constitute the symmetric triplet state
and the last one the antisymmetric singlet state and where

α =

(

1
0

)

and β =

(

0
1

)
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(e.g., Morrison et al. 1991, p. 188). Since the overall eigenstate
must be antisymmetric, the singlet state requires nREL even and
the triplet state requires nREL odd. This is the only restriction.

Redaction: Jeffery, 2001jan01



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing
material. Therefore it neither intended to be complete nor completely explicit.
There are fewer symbols than variables, and so some symbols must be used for
different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617 × 10−6 eV K−1

= 1.381 × 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eV Å
h−c = 1973.27 eV Å

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

−(x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t16
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Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H|Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H|ψ〉 = E|ψ〉

4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)
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6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ

H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation
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δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A, F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)
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Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz|jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{ x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z
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J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉

eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)



23

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L+ g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)

∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1−δm,0)+H(0)|ψ(m)

n 〉 =

m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =

∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉
∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H|φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H|φj〉 H~c = E~c
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17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx

Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En −E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j] = δij [ai, aj] = 0 [a†i , a

†
j] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps
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[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0|+
∞
∑

n=1

1n

N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )
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22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p, E) = ei(~p·~r−Et)/h− Ψ−(~p, E) = e−i(~p·~r−Et)/h−


