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Introductory Physics: Calculus-Based Name:

Homework 14: Fluids: Homeworks are due as posted on the course web site. Multiple-choice questions
will NOT be marked, but some of them will appear on exams. One or more full-answer questions may be
marked as time allows for the grader. Hand-in the full-answer questions on other sheets of paper: i.e., not
crammed onto the downloaded question sheets. Make the full-answer solutions sufficiently detailed that the
grader can follow your reasoning, but you do NOT be verbose. Solutions will be posted eventually after the
due date. The solutions are intended to be (but not necessarily are) super-perfect and often go beyond a
fully correct answer.

Multiple Choice Questions:

015 qmult 00100 1 1 3 easy memory: fluid defined
1. A is a substance that continuously deforms under an applied shear stress. In other words

a can’t resist a shear stress. At least ideally, it can’t. In reality, some small resistance
does exist for those s that are liquids. A shear stress is a force per unit area applied
tangentially to material surface or layer. A normal stress, on the other hand, is applied perpendicularly
(or normal) to a surface or layer.

a) rope b) crystal c) fluid d) solid e) ice

SUGGESTED ANSWER: (c)

Wrong answers:

a) An ideal rope can’t resist any deforming force except one that tries to extend it. But a rope is
not a substance.

Redaction: Jeffery, 2001jan01

015 qmult 00110 1 1 3 easy memory: liquids and gases
2. Fluids are either:

a) solids or liquids. b) solids or gases. c) liquids or gases. d) crystals or gases.
e) ices or metals.

SUGGESTED ANSWER: (c)

Wrong answers:

a) A nonsense answer.

Redaction: Jeffery, 2008jan01

015 qmult 00120 1 4 5 easy deducto-memory: solids defined
3. “Let’s play Jeopardy! For $100, the answer is: They are materials in which the atoms or molecules are

rigidly (but not perfectly rigidly) bonded together by chemical bonds. They resist shear and normal
stresses. The atoms or molecules are essentially touching in these materials. Of course, atoms and
molecules have no hard edges, but they do have regions of strong interaction and it is these regions that
touch. Atoms and molecules strongly resist compression, and so compressing these materials from their
zero-pressure state takes relatively large amounts of force for relatively small compression.”

What is , Alex?

a) ices b) crystals c) gases d) liquids e) solids

SUGGESTED ANSWER: (e)

Wrong answers:

a) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

015 qmult 00130 1 4 4 easy deducto-memory: liquids defined
4. “Let’s play Jeopardy! For $100, the answer is: They are materials in which the atoms or molecules

are bonded together by chemical bonds, but the bonds are not rigid and are interchangeable. They
have very weak resistance to shear stresses. The atoms or molecules are essentially touching in these
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materials. Of course, atoms and molecules have no hard edges, but they do have regions of strong
interaction and it is these regions that touch. Atoms and molecules strongly resist compression, and
so compressing these materials from their zero-pressure state takes relatively large amounts of force for
relatively small compression. But actually these materials usually do not exist in zero-pressure state
since they usually rapidly evaporate if the pressure gets too low.

What is , Alex?

a) ices b) crystals c) gases d) liquids e) solids

SUGGESTED ANSWER: (d)

Wrong answers:

a) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

015 qmult 00200 1 1 1 easy memory: density defined
Extra keywords: physci

5. Density (with standard physics symbol the Greek rho ρ) unqualified is conventionally take to be the
ratio of:

a) mass over volume. b) volume over mass. c) weight over volume.
d) weight over mass. e) mass over weight.

SUGGESTED ANSWER: (a)

Wrong answers:

e) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

015 qmult 00202 1 1 2 easy memory: density symbol
6. The virtually universal symbol for density is:

a) α (the small Greek alpha). b) ρ (the small Greek rho). c) ω (the small Greek omega).
d) ζ (the small Greek zeta). e) β (the small Greek beta).

SUGGESTED ANSWER: (b)

Wrong answers:

c) This symbol is used for angular velocity and angular frequency usually.

Redaction: Jeffery, 2008jan01

015 qmult 00210 1 3 3 easy math: g/cm**3 to kg/m**3
Extra keywords: physci

7. The MKS unit of density is the kg/m3, but this unit is often inconveniently small for many ordinary
terrestrial densities. Thus, these terrestrial densities in kg/m3 are inconveniently and unmemorably
large numbers. Consequently, the CGS unit of density is often used for convenience: g/cm3 (grams per
cubic centimeter). Many common terrestrial substances are of order a few g/cm3. Now 1 g/cm3 equals:

a) 1 kg/m3. b) 0.001 kg/m3. c) 1000 kg/m3. d) 106 kg/m3. e) 0.5 kg/m3.

SUGGESTED ANSWER: (c) The conversion calculation is

1 g/cm3 = 1 g/cm3

(

1 kg

1000 g

) (

102 g

1 m

)3

= 1000 kg/m3 .

Wrong answers:

e) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

015 qmult 00410 1 4 1 easy deducto-memory: Earth atmosphere pressure
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Extra keywords: physci KB-129-3
8. The pressure of the Earth’s atmosphere at any level is caused by:

a) the weight of the overlying air mass. b) respiration by living things.
c) evaporation of sea water. d) glaciers. e) squid.

SUGGESTED ANSWER: (a)

Wrong answers:

e) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

001 qmult 00420 1 1 2 easy memory: constant air pressure
9. Because of its low density, pressure varies slowly with height and can usually can be

taken as a constant over changes of height of a few meters or even hundreds of meters depending on
how accurate you want to be.

a) water b) air c) mercury d) iron e) lead

SUGGESTED ANSWER: (b)

Wrong answers:

e) Now is this likely?

Redaction: Jeffery, 2008jan01

015 qmult 00510 2 4 2 moderate deducto-memory: pressure with depth
Extra keywords: physci?

10. The expression for pressure of an incompressible fluid (of density ρ) as a function of depth y (measured
positive downward) below a surface is:

a) P = Psurface + y. b) P = Psurface + ρgy. c) P =
1

2
Psurface + ρgy.

d) P = ρgy/Psurface. e) P = Psurface.

SUGGESTED ANSWER: (b)

Wrong answers:

d) The left hand side is dimensionless.
e) Everyone knows pressure increases somehow with depth.

Redaction: Jeffery, 2001jan01

015 qmult 00520 2 3 5 moderate math: pressure at depth 25 m
Extra keywords: physci

11. The expression for the pressure of an incompressible fluid with depth is

P = Psurface + ρgy ,

where is Psurface is surface pressure, ρ is fluid density, g = 9.8N/kg is the force per unit mass due to
gravity near the Earth’s surface, and y is depth measured downward from the surface. Air pressure and
water density near the Earth’s surface are to good approximation, respectively, 105 Pa (almost 1 atm)
and 1000 kg/m3. The pressure in atmospheres at 25 m in depth is about:

a) 3.5 × 105 atm. b) 105 atm. c) 1 atm. d) 2.5 atm. e) 3.5 atm.

SUGGESTED ANSWER: (e) Behold

P = Psurface + ρgy ≈ 105 + 103 × 10 × 25 = 3.5 × 105 Pa ≈ 3.5 atm .

Wrong answers:

a) You forgot to convert to atmospheres.

Redaction: Jeffery, 2001jan01



4

015 qmult 00700 1 1 4 easy memory: Archimedes’s principle

Extra keywords: physci
12. Archimedes’s principle is that buoyant force on an object surrounded by a fluid is upward and equal in

magnitude to the:

a) weight of the object.
b) weight of the object submerged beneath the surface of the fluid.
c) weight of the fluid inside the object.
d) weight of the fluid displaced by the object.
e) ratio of the density of the fluid to that of the object.

SUGGESTED ANSWER: (d)

Wrong answers:

e) A ratio has no units and cannot be a force.

Redaction: Jeffery, 2001jan01

015 qmult 00710 1 1 4 easy memory: buoyant force magnitude
13. The formula for the magnitude of the buoyant force is:

a) Fbuoy = mdis/g. b) Fbuoy = g/mdis. c) Fbuoy = 1/(mdisg). d) Fbuoy = mdisg.
e) Fbuoy = m2

disg.

SUGGESTED ANSWER: (d)

Redaction: Jeffery, 2008jan01

015 qmult 00950 1 5 5 easy easy thinking: paper and lift

14. Take this quiz and . . .—no, no not that. Take this quiz—or some single sheet of paper if you arn’t in
a quiz mise en scène—in your fingers with your fingers on either side of one of narrow ends. Hold this
end JUST BELOW your lips and blow a strong gust.

a) Nothing happens, because you’ve blown too hard.
b) Nothing happens, because you’ve blown too softly and you’ve never succeeded in blowing up a

balloon in your life.
c) You spit.
d) The instructions are unintelligible.

e) The paper rises because you’ve created a high-speed, low-pressure zone above the paper. This is
the Bernoulli lift which is part of aerodynamic lift by which airplanes fly. Of course, if you put the
paper above your lips and blow the paper rises too. This time the rise is caused by the reaction lift
which is the other part of aerodynamic lift. The blown air is deflected down by the paper, but for
every force there is an equal and opposite force and so the air pushes up on the paper too.

SUGGESTED ANSWER: (e)

The experiment should work and the answer obeys the longest-answer-is-right rule. How can
anyone miss. You only have to be a real blowhard to do it.

The trick is an example of Bernoulli lift. Moving air above the paper is at lower pressure than
stationary air below the paper as the Bernoulli equation suggests. (We derived the Bernoulli
equation for incompressible fluids, but Bernoulli-like behavior for compressible fluids is to be
expected.) The situation is actually pretty complex: the low pressure zone above the paper causes
the high pressure below the paper to push the paper up. But the low pressure zone also causes air
above the low pressure zone to lose pressure support and fall down, but I guess the downfalling air
gets entrained by the blowing air. Oh, well someone probably knows exactly what everything is
doing.

Wrong answers:

a) This seems to be distinctly wrong.
b) This could well be true.
c) It’s been known to happen. Best not to aim at anyone.
d) Well I tried my best, but, as we say in science, one picture is worth 103 words.
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Redaction: Jeffery, 2001jan01

Full Answer Problems:

015 qfull 00310 1 3 0 easy math: surface floating at interface of two fluids
15. This is an Archimedes’ principle question. Consider a body (mass m, mean density ρ, volume V ) surface

floating at the interface of two fluids: lower fluid 1 (mean density ρ1, embedded body component volume
V1; upper fliud 2 (mean density ρ2 (with ρ2 ≤ ρ1, of course), embedded body component volume V2.

a) Write down equation that the body component volumes must satisfy.

b) Write down the formula for the buoyancy force FB on the body.

c) Write down the vertical Newton’s 2nd law that the body must satisfy substituing in the buoyancy
force FB formula.

d) From the equations found in parts (a) and (c) solve for V1/V as a function of the densities Write
down the vertical Newton’s 2nd law that the body must satisfy substituing in the buoyancy force
FB formula.

e) Write down the special cases of V1/V formula from part (d) for ρ2 = 0 or negiligible, ρ = ρ1, ρ = ρ2,
ρ = wρ1 + (1 − w)ρ2 for w ∈ [0, 1], and ρ = wρ1 + (1 − w)ρ2 for w ∈ [0, 1] with ρ1 → ρ2. What do
the cases ρ = ρ1 and ρ = ρ2 imply about the position of the body?

f) Why is the case of ρ1 = ρ2 for the V1/V formula physically meaningless if you hold fixed the value
of the numerator? HINT: There are physical limits on V1, V2, and φ not incorporated in the
equations from which the formula was derived.

SUGGESTED ANSWER:

a) Behold:
V = V1 + V2 .

b) Behold:
FB = (ρ1V1 + ρ2V2)g .

c) Behold:
0 = (ρ1V1 + ρ2V2)g − mg = (ρ1V1 + ρ2V2 − ρV )g .

d) Behold:

1) V2 = V − V1 2) 0 = ρ1V1 + ρ2V2 − ρV 3) 0 = ρ1V1 + ρ2(V − V1) − ρV

4) − (ρ1 − ρ2)V1 = −(ρ − ρ2)V 5)
V1

V
=

ρ − ρ2

ρ1 − ρ2
6)

V2

V
=

ρ1 − ρ

ρ1 − ρ2
.

e) Behold:

V1

V
=


























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








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



























ρ − ρ2

ρ1 − ρ2
in general.

ρ

ρ1
for ρ2 = 0 or negiligible.

1 for ρ = ρ1.

0 for ρ = ρ2.

wρ1 + (1 − w)ρ2 − ρ2

ρ1 − ρ2
= w for ρ = wρ1 + (1 − w)ρ2 for w ∈ [0, 1].

w ρ = wρ1 + (1 − w)ρ2 for w ∈ [0, 1]
with ρ1 → ρ2.

When ρ = ρ1 (ρ = ρ2), the body is embedded in fluid 1 (fluid 2) and is just touching the fluid 2
(fluid 1) assuming the condition of it being at the inferface is maintained: otherwise it could
floating neutrally anywhere in fluid 1 (fluid 2).
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f) The equations from which the V1/V formula was derived do not incorparate the facts that
V1 ≤ V , V2 ≤ V , and ρ ∈ [ρ2, ρ1]. In fact, the numerator of the V1/V will always be less
than the denominator. If you contrain ρ to be a particular average of ρ1 and ρ2 as we did in
part (e), you find that V1/V ≤ 1 including in the limit of ρ2 → ρ1 where, in fact, V1 and V2

are indeterminate. If you look back at part (c), you will see that if ρ1 = ρ2, there is only the
contraint V = V1 + V2 which the same as the part (a) constraint. So with one constraint you
cannot solve for two unknowns. If the two fluids were actually the same fluid, there would be
no meaning to V1 and V2. If the two fluids were different and immisciblle, but just having the
same density, then there would be a meaning to V1 and V2, but that would be determined by
the history of the body and maybe its actual internal properties, not by a simple buoyancy
calculation.

Redaction: Jeffery, 2008jan01

015 qfull 00350 2 5 0 mod thinking: archimedes principle, Tasmanian devil
16. We’ve all heard of Archimedes and King Hieron II’s crown. But modern scientists and technologists are

seldom called on to hallmark crowns. Let’s apply Archimedes’s principle to a real world situation.

a) You wish to accurately determine the density of your Tasmanian devil (Sarcophilus harrisii). You’ve
already determined her mass to be 10.0 kg—between master and pet, what are a few scratches and
one little bite to the bone? (Female Tasmanian devils have an average mass of about 6 kg, and so
your devil is huge.) But now you need to determine her volume. What do you do? HINT: You’ll
need a tank of water with a water-level scale and some persuasion.

b) But Gris-Gris doesn’t submerge, but just floats indignantly. By some miracle, you measure her
unsubmerged volume to be V2 = 0.00100 m3. You know that the air density is ρ2 = 1.204 kg/m3

(at 20◦C and 1 atm) and the water density is ρ1 = 998.29 kg/m3 (at 20◦C and 1 atm). Note,

V2

V
=

ρ1 − ρ

ρ1 − ρ2
,

where ρ is the floater’s density. Solve for her density.

c) Now you say? And Gris-Gris says?

NOTE: To find out about Tasmanian devils including what they really sound like (but not what their
density is) try the Tasmanian devil page:

https://www.youtube.com/watch?v=_Ku_Wd5CFQw

SUGGESTED ANSWER:

a) You her put in a tank of water (in a humane manner) and hope that she submerges fully so
that you can measure her total volume. Her volume is measured from the increase in water
volume of the tank measured off the water-level scale on the tank side.

b) We have two equations:

ρ =
m

V
and

V2

V
=

ρ1 − ρ

ρ1 − ρ2

and two unknowns ρ and V . We can solve for both unknowns, but we only want density.
Behold:

1) ρ =
m

V
2) V =

m

ρ
3)

V2

m/ρ
=

ρ1 − ρ

ρ1 − ρ2
4)

V2(ρ1 − ρ2)

m
=

ρ1

ρ
− 1

5) ρ =
ρ1

V2(ρ1 − ρ2)/m + 1
= (0.90777684 . . .) g/cm3 6) V =

m

ρ
= 11015.923 cm3 .

c) You say Eureka! Gris-Gris says @#$+@!!!

Fortran-95 Code
print*

print*,’Tasmanian devil density’

xm=10.0_np
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v2=0.001_np

rho1=998.29_np !

https://www.vip-ltd.co.uk/Expansion/Density_Of_Water_Tables.pdf

rho2=1.204_np ! https://en.wikipedia.org/wiki/Density_of_air

rho=rho1/(v2*(rho1-rho2)/xm+1.0_np)

v=xm/rho

print*,’rho in g/cm**, v in cm**3’

print*,rho*1.0e-3_np,v*1.0e+6_np

! 0.90777684197431937873 11015.923228721113103

Redaction: Jeffery, 2001jan01

015 qfull 00410 2 3 0 moderate thinking: Guericke, hemispheres, horses
Extra keywords: Clydesdales. For calculus-based courses only until reevaluated.

17. Otto von Guericke (1602–1686) invented the air pump and wrote a book describing his invention and
experiments that could be done with it: Experimenta nova Magdeburgica de vacuo spatio (1672). A
famous illustration shows two teams of eight horses trying to separate a pair of joined brass hemispheres.
Let the line through the horses and hemispheres be the x-axis. The hemispheres had been evacuated
and external air pressure held them together. The hemispheres were about a foot in diameter. The total
horse force needed TO JUST SEPARATE separate the hemispheres was about 7500 N. NOTE: The
diameter and total horse force values are very approximate, and so any values calculated using them will
be likewise approximate. Also uncertainties tend to be large for the difference of nearly equal values.

a) Consider the x-direction forces on one hemisphere (the one that’s roundy in the positive x-direction).
Four forces act: the external air force, the internal air force (the vacuum’s not complete), the normal
force of the rim of the other hemisphere, and the pull force of the horses. For equilibrium

0 = Fint + Fext + FN + Fhorse .

Note that the internal pressure force in the x-direction on a differential bit of sphere area dA is

dFint = Pint dAn̂ · x̂ ,

where n̂ is the normal to the surface area. A bit of insight shows that

Fint = PintπR2 ,

where R is the radius of the hemisphere. What is the expression for Fext in terms of external
pressure? Get the sign of Fext right.

b) Given R = 0.5 ft (ft is foots, foots), Pext = 1.01×105 Pa, and Fhorse = 7500 N, what is Pint? Assume
the hemispheres have negligible thickness.

c) Would the horse force have to be any different to pull a hemisphere off a wall if the internal pressure
were the same as in the two hemisphere experiment? Explain.

d) Von Guericke’s horses couldn’t separate the hemispheres. As natural-born cowgirls and cowboys
what would you say: did he use Clydesdales or ponies? Explain.

NOTE: My sources for this question are Cardwell (p. 98 and 117), HRW, p. 341, and the Clydesdale
page:

http://www.imh.org/imh/bw/clyde.html

SUGGESTED ANSWER:

a) Clearly,
dFext = Pext dAn̂ · (−x̂) ,

and so
Fext = −PextπR2 .

b) When the hemispheres are just on the verge of separation FN = 0. Thus

Pint = Pext −
Fhorse

πR2
≈ 105 − 7500

π × 0.023
≈ 105 − 1.1 × 105 ≈ 0 Pa .
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I’ve used the fact that there’s no such thing as negative pressure. My values for the input
parameters are of only low accuracy, so a slightly negative result isn’t a worry. The actual
internal pressure was just small compared to external pressure.

c) Nope. The force situation for one hemisphere on a wall is exactly the same as it is for one
hemisphere in the two hemisphere situation. In the wall case, the wall provides the normal force
on the rim. But just trying to pull a hemisphere off a wall wouldn’t have been so dramatic.

d) Well 7500 N divided by 8 horses is about 940 newtons per horse or about 200 pounds per
horse. A typical Clydesdale stands 17 hands (5’8” at the withers) and weighs 2000 , or so the
Clydesdale page tells me. I think von Guericke’s horses were closer to ponies.

Redaction: Jeffery, 2001jan01

015 qfull 00610 1 3 0 easy math: Pascal’s principle, lifting a car
Extra keywords: Doesn’t use Pascal’s principle really, but conventional with it.

18. You have a static water-based hydraulic system with two circular pistons. Piston 1 is 1.0 cm in
DIAMETER and you push on it with 2.0 N of force with your finger. Piston 2 is vertical and supporting
a car of mass 2.0× 103 kg against gravity. The piston 2 bottom is 2.0 m above the location of the piston
1 bottom. Air pressure can be considered constant with height.

a) What expression for the pressure of the 2nd piston as a function of the pressure of the 1st piston.

d) What is the DIAMETER of the 2nd piston?

SUGGESTED ANSWER:

a) The pressure difference between the two levels is only due to the height of water (which can
also be called the head of water). Piston 2 is higher and so its pressure is reduced by the
pressure caused by the head of water. Thus

P2 = P1 − ρgy ,

where we measure y upward from a zero level set at the 1st piston height and ρ is water density.

b) Since
P2 = P1 − ρgy ,

we find
F2

(π/4)d2
2

+ Pair =
F1

(π/4)d2
1

+ Pair − ρgy ,

where F1 is the finger force exerted on piston 1, F2 is the force exerted on piston 2 by the
weight of the car, d1 is the diameter of piston 1, d2 is the diameter of piston 2, and pair is the
air pressure approximated as a constant.

Notice I’m thinking of the pressure caused by the finger and the weight of the car as
not including air pressure. This is usually the best way to think of things. To understand
this let us consider things very generally. Say a static system is embedded in an ambient
medium of constant pressure. By Pascal’s principle, the ambient pressure is communicated
everywhere throughout the system in some way and canceled. The cancellation is usually by
some increased internal pressure in the system that results from the compression by the ambient
medium. This does not mean the system is necessarily at constant pressure at the ambient
medium pressure. Pockets in the system encased in material that doesn not respond much to
ambient pressure can have very different pressures. Nevertheless, anything not perfectly rigid
or enclosed by an effectively perfectly rigid casing responds to ambient pressure. The ambient
pressure can be neglected insofar as the internal changes to the system caused by the ambient
pressure are negligible or just considered givens. For instance a lump of steel in an ambient
medium is compressed a bit by the ambient medium pressure. But for ordinary Earth surface
pressures, this compression is usually negligible for many purposes. But the compression creates
a compensating pressure that holds the steel up under the ambient pressure. We can often
just neglect ambient pressure, compression, and compensating pressure. If the system changes,
then the effect of the ambient medium pressure is usually still canceled through the change as
long as the change is slow on the time scale needed for sound waves to cancel local pressure
variations that the change causes.
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Now one complication to the above picture is the change in ambient pressure with height.
(We are limiting our discussion to the Earth’s surface.) As long as these changes are small
relative to other effects in the system, they can be neglected. If the ambient medium is air,
then for most human purposes air pressure variation can be neglected. The scale height for
change of an amount p in air pressure near the Earth’s surface is

P

|dP/dr| =
p

ρg
≈ 105

1.21 × 9.8
≈ 8000 m .

Thus, only a 1 % change in pressure can be expected over 80 m. The first-order way to account
for the ambient medium pressure change with height is by introducing the buoyant force which
gives the net force on a system due to this change. In the case, of air the buoyant force of air
is of order a thousand or less than the weight of a solid or liquid object because their density is
of order a thousand for more denser. Thus, the buoyant force of air can be neglected in many
cases.

To turn to our present case, we exclude pressure force from the finger force. This is because
most means for measuring the finger force will not include pressure force pushing on it. Say
you press the finger on a spring scale and measure a force. Does that measured force include
the air pressure force? No. The scale zero-point already accounts for the pressure force of
air. Usually because the spring scale has air inside its casing the air pressure force is partially
canceled no matter what it is. Actually, the extension of the spring must vary a little with air
pressure because of compression, but this is probably so tiny for normal Earth surface pressure
variations that no correction for the varying zero-point of the scale is needed for ordinary scales
which are not used for high-precision work. Similarly almost all measures of force don’t include
air pressure or ambient pressure of any kind explicitly since this pressure usually cancels out
nearly exactly.

We note that the air pressure forces do act on the two pistons even if no air directly touches
them. The air pressure is communicated through the finger and car body. This is because this
must force must be communicated through the finger and car according to Pascal’s principle.
Of course, as we just argued above such pressure forces can usually be neglected since they
just cancel out. They do, in fact, cancel out in the present case because we can neglect the
variation in air pressure over the small height changes in our hydraulic system.

Now we finally complete the calculation. After canceling out the air pressure and
rearranging, we find

d2 =

√

F2

F1/d2
1 − ρgyπ/4

=

√

mg

F1/d2
1 − ρgyπ/4

≈
√

20000

2/10−4 − 103 × 15
≈

√

20000

5 × 103
≈

√
4

≈ 2.0 m ,

to about 2-digit accuracy

Redaction: Jeffery, 2001jan01
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67430(15)× 10−11 Nm2/kg2 circa 2025)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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Numerically robust solution (Press-178):

q = −1

2

[

b + sgn(b)
√

b2 − 4ac
]

x1 =
q

a
x2 =

c

q

6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =
∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2
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Five 1-dimensional equations of kinematics

Equation No. Equation Unwanted variable
1 v = at + v0 ∆x

2 ∆x =
1

2
at2 + v0t v

3 (timeless eqn) v2 − v2
0 = 2a∆x t

4 ∆x =
1

2
(v + v0)t a

5 ∆x = vt − 1

2
at2 v1

Fiducial acceleration due to gravity (AKA little g) g = 9.8 m/s2

xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1
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12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω

13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V
ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work
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dW = ~F · d~s W =

∫

~F · d~s K =
1

2
mv2 Emechanical = K + U

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆K = Wnet ∆Uof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dU

dx
~F = −∇U U =

1

2
kx2 U = mgy

15 Momentum

~Fnet = m~acm ∆Kcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

Ktotal f = Ktotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .
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180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics

~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

Krot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆Krot = Wnet =

∫

τz,net dθ ∆Urot = −W = −
∫

τz,con dθ

∆Erot = Krot + ∆Urot = Wnon,rot ∆E = ∆K + Krot + ∆U = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0
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0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

U = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant

REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx U =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2
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P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max

y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v

24 Thermodynamics

dE = dQ − dW = T dS − p dV

TK = TC + 273.15 K TF = 1.8 × TC + 32◦F

Q = mC∆T Q = mL

PV = NkT P =
2

3

N

V
Kavg =

2

3

N

V

(

1

2
mv2

RMS

)

vRMS =

√

3kT

m
= 2735.51 . . .×

√

T/300

A
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PV γ = constant 1 < γ ≤ 5

3
vsound =

√

B

ρ
=

√

−V (∂P/∂V )S

m(N/V )
=

√

γkT

m

ε =
W

QH
=

QH − QC

W
= 1 − QC

QH
ηheating =

QH

W
=

QH

QH − QC
=

1

1 − QC/QH
=

1

ε

ηcooling =
QC

W
=

QH − W

W
=

1

ε
− 1 = ηheating − 1

εCarnot = 1 − TC

TH
ηheating,Carnot =

1

1 − TC/TH
ηcooling,Carnot =

TC/TH

1 − TC/TH


