Intro Physics Semester 1 Name:

Homework 6a: Newtonian Physics: More of the Same: Problems Explicated in Class Homeworks
are due as posted on the course web site. Multiple-choice questions will NOT be marked, but some of them
will appear on exams. One or more full-answer questions may be marked as time allows for the grader.
Hand-in the full-answer questions on other sheets of paper: i.e., not crammed onto the downloaded question
sheets. Make the full-answer solutions sufficiently detailed that the grader can follow your reasoning, but
you do NOT be verbose. Solutions will be posted eventually after the due date. The solutions are intended
to be (but not necessarily are) super-perfect and often go beyond a fully correct answer.

006 gfull 01010 1 3 0 easy math: generalized Newton’s 2nd law
1. Newton’s 2nd law in ordinary form is .
Fnct = mdcm )
where Fi; is the net force on a system (AKA object, AKA body), the system mass is m, and the sytem
acceleration is @e. Newton’s 2nd law is the basis for determining the motion of the system center
of mass: i.e., as a functions of time acceleration @, velocity ¥Uenm, and position 7en,. Like all general
physical laws, Newton’s 2nd law is what is eternally true everywhere: i.e, eternally true everywhere in
the classical limit. Other features of the system and its environment are contingent on the physical
history.

In fact, Newton’s 2nd law has to be generalized to allow for inflow (which is outflow if negative) of
mass which can change the (system) acceleration d.,, without a net external force because it changes the
(system) momentum. Note, we drop the center-of-mass subscript cm hereafter for formula simplicity.
Now momentum (i.e., linear momentum, not angular momentum) for a system is defined

— —

p=muv .
The generalized Newton’s 2nd law is
_ L dm dp dv  _dm L _.dm
Fnct+vﬂow_ = —=m—+V— =ma+v— s

dt dt dt dt dt

where dm/dt is the mass inflow rate which can be positive (i.e., actual inflow) or negative (i.e., actual
outflow) and Tney is the velocity of inflowing mass. Note, we have assumed there is a single oy for
simplicity in our discussion. The inflow can change the momentum, and therefore accelerate the system
without exerting any net external force. The inflow when not part of the system can exert an external
force, but it cannot by definition when part of the system since then it can only exert internal forces.
In fact, it may be an analysis choice when to consider the inflow as part of the system.

In this problem, we consider the generalized Newton’s 2nd law.

a) If ﬁnct and dm/dt are zero, what can one say about the system momentum and acceleration?

b) If Fo is zero, dm/dt # 0, and Ugow = U, what can one say about the system momentum and
acceleration?

c¢) What is the explicit formula for acceleration?

d) An interesting special case for the generalized Newton’s 2nd law is the (Tsiolkovsky) rocket problem
(Wikipedia: Tsiolkovsky rocket equation). Say you have a rocket in empty space with ﬁnet =0. It
can still be accelerated by thrust: ejecting burnt exhaust fuel opposite the direction of motion. The
speed of the exhausted fuel relative to the rocket is called the exhaust speed vex which is a parameter
of the rocket. The rate of mass flow (i.e., the rate of ejection of exhausted fuel) dm/dt < 0 is also a
parameter of the rocket. For our analysis of the rocket problem, we will consider only 1-dimensional
motion. Specialize the generalized Newton’s second law for the 1-dimentional case of the rocket
problem.

e) What is the velocity of the ejected exhausted fuel in terms of the generalized Newton’s 2nd law.
What is this velocity in the outside inertial frame the rocket is traveling in, not relative to the
rocket? What does it mean if the velocity is positive?

f) Making use of the part (e) result, write down the formula for the acceleration of the rocket simplified
as much as possible.

g) Solve the part (f) equation (which is a differential equation) for velocity as a function of mass by
integration recalling a = dv/dt. Assume the initial mass mg and the intial velocity is vg. What



happens to velocity as m — 07 Why must the velocity formula actually fail to be physically real if
the velocity gets too large? Why is this failure unlikely in practice.

g) Invert formula found in part (g) to find the amount of fuel my,e needed to achieve a given change
in velocity Av = v — vy.

SUGGESTED ANSWER:

a) In this case, dp/dt = 0, and thus p'is a constant and we have conservation of momentum. The
system also has @ = 0, and so is unaccelerated.

b) In this case, dp/dt # 0, and thus p is not constant and we do not have conservation of
momentum. However, since the inflow has the same velocity as the system, the acceleration is
zero: i.e., a = 0.

¢) Behold:
o F_:nct (17ﬂow - U) dm
= + m dt -
d) Behold:
dm dp dv+ dm +dm
Viow g = ~ "ar T e T T a0

e) The exhausted fuel is the inflow mass, but it is negative since dm/dt < 0. So its velocity is the
inflow velocity which is
Vflow = U — Vex -

If vaow > 0, the exhausted fuel is moving in the direction of the rocket, but at a lower velocity.

f) Behold:

_ _Vexdm
T oomodt
g) Behold:
dv Vex A _ dm
1) E__HE 2) d’U— Vex m
3) v—1vg=—vexIn (ﬁ) 4) v =10+ VexIn (@) .
mo m

As m — 0, the velocity v — oco. If the velocity gets too high, the formula will fail since
relativistic effects will arise which our classical calculation does include. This failure is not
likely to happen in practice because a rocket can only have so much of its mass in fuel.

h) Behold:

1) v:vo—l-vcxln(%) 2) ﬂzln(@)

Vex m

m Vex

3) 0= eAvlve ) mfue1=mo—m=m<Av—1>.

Redaction: Jeffery, 2008jan01



Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

¢ =2.99792458 x 10%m/s ~ 2.998 x 10°m/s ~ 3 x 103 m/s ~ 1lyr/yr ~ 1ft/ns  exact by definition
e = 1.602176487(40) x 107 C

G = 6.67384(80) x 107" Nm?/kg® (2012, CODATA)

g =98m/s’ fiducial value

1
k= T = 8987551787 x 10° ~ 8.99 x 10° =~ 10'® Nm?/C?exact by definition

TED
EBoltzmann = 1.3806504(24) x 10723 J/K = 0.8617343(15) x 107 *eV/K ~ 107*eV /K
me = 9.10938215(45) x 1073 kg = 0.510998910(13) MeV
m, = 1.672621637(83) x 10~%" kg = 938.272013(23), MeV

1
€0 = v = 8.8541878176...x 1072 C?/(Nm?) ~ 10~ vacuum permittivity (exact by definition)

o = 41 x 1077 N/A? exact by definition

2 Geometrical Formulae

4
Ceir = 271 Agiy = 712 Agph = dgr? Viph = gﬂ'r?’

Qgphere = 47 dQ = sinfdf do

3 Trigonometry Formulae

in 0
— =cosf = =sginf —=tan9:sm cos?f +sin?0 =1
cosf
1 1
cscl = — secl = cotf =
sin cosf tan @

ind, in 6 inf,
¢ =a®+ b ¢ =+/a? + b2 — 2abcos, S :SH;) b_ S
a c

f(8) = f(0+360°)

sin(f 4+ 180°) = —sin(6) cos(f + 180°) = — cos(6) tan(f + 180°) = tan(6)

sin(—0) = —sin(6) cos(—0) = cos(0) tan(—0) = — tan(6)



sin(6 4 90°) = cos(h) cos(f 4+ 90°) = —sin(6) tan(f + 90°) = — tan(d)
sin(180° — 6) = sin(h) cos(180° — ) = — cos(6) tan(180° — #) = — tan(h)

sin(90° — ) = cos(h) cos(90° — ) = sin(h) tan(90° — ) = tai(@) = cot(6)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b)  cos(a + b) = cos(a) cos(b) — sin(a) sin(b)
sin(2a) = 2sin(a) cos(a) cos(2a) = cos*(a) — sin?(a)
sin(a) sin(b) = % [cos(a — b) — cos(a + b)) cos(a) cos(b) = % [cos(a — b) + cos(a + b)]
sin(a) cos(b) = % [sin(a — b) + sin(a + b)]

sin? @ = %[1 — cos(26)] cos? @ = —[1 + cos(26)] sin(a) cos(a) = % sin(2a)

N =

cos(z) — cos(y) = —2sin (%ﬂ) . (:v - y)

cos(x) + cos(y) = 2 cos (
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sin(z) + sin(y) = 2sin (
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4 Approximation Formulae

Af df 1 .

1
sinf ~ 0 tanf ~ 0 cosﬁzl—ié’z all for § <<'1

5 Quadratic Formula

_ b=V —dac b <b>2 c

If 0=az?+bx+c, then x -
2a 2a



Numerically robust solution (Press-178):

qg= _% [b + sgn(b)M} T =

Xro =

ISEES]
QO

6 Vector Formulae

a=ld = /a2 +a2 Gztan_l(Z—y>+w? @+ b= (ag + bs,ay +by)
7 = 2 2 2 a1 %y a1 (G2
a=ldl = /a2 + a2 + a2 ¢ = tan — ) +x? 0 =cos™ (=
ay a

§+g:(aw+bm,ay+by,az+bz)

@-b=abcost = azb, + ayb, + a.b.

Z=axb=absin(0)é = (ayb. — byaz,a.b, — bay, azb, — byay)

7 Differentiation and Integration Formulae

d(zP)
dx

d(z®) 1
dx dx T

=paP~!  except for p = 0;

Taylor’s series flx) = i (I_n#f(") (o)
n=0 :

_ (1) (z — xo)®

= flwo) + (z —20) [+ (x0) +

(x — x0)?
3!

o1 f(Q)(CCo) +

dF (z)
dx

b
/ f(z)dx = F(z)|° = F(b) — F(a) where = f(x)

zntl 1
/x" dx = except for n = —1; /— dx = In |z|
n+1 T

8 One-Dimensional Kinematics

Az dx Av dv  d*z
Vavg = 7 = — Aave — —— a = — -
£ At dt £ At dt — dt2

f(g) (,To) + ...



Five 1-dimensional equations of kinematics

Equation No. Equation
1 v =at+ vy
2 Ar = %at2 + vgt
3 (timeless eqn) v? — 02 = 2aAx
4 Ax = %(v + o)t
5 Ax = vt — %atQ

Unwanted variable
Az

v
t

a

U1

Fiducial acceleration due to gravity (AKA little g) g=98m/s’

Trel = T2 — X1 Urel = V2 — U1 Gre]l = G2 — A1

/ /
T = T — Uframel U =V — Vframe a =a

9 Two- and Three-Dimensional Kinematics: General

L A7 L dr . AT Hidﬁidzf’
R L il v I e T
10 Projectile Motion
1 5 .
T = Vg ot Yy = —Egt + vy.0t + Yo Vg0 = Vg cos f Uy,0 = vosinf
; T T 4 rtand z2g
= = = rtanf — ————
Vg0  Upcosd y="4 203 cos? 0
vg sinf cos 0 vg sin” @
Lfor y max — — Ymax = Yo + —F—
9 29
202sinfcosf  v2sin(20 ™ V2
(E(y = yO) = ! g =2 g( ) efor max — Z :Emax(y = yO) = ;O

2(yo — y) Ho = 0) = 2(yo — y)

z(0 =0)=+v
( ) 0 . .

11 Relative Motion




12 Polar Coordinate Motion and Uniform Circular Motion

do dw  d%0
o dt S dt dt?
S P S (R PN RPC Y
T =7rF T=—=—7T4+1w a= = rw* | T ro —w
dt dt dt? dt? dt
U = rwb V= Tw Atan = T
~ v? 24 v? 2
Gcentripetal = _7T = —rwr Qcentripetal = — = TW = VW
13 Very Basic Newtonian Physics
o Zl mTy _ Zsub MsubTem sub I Zl m;T; -~ ZZ m;d;
Tem = - VUem = — ey = ————
Mtotal Mtotal Mtotal Mtotal
L Jyp(F)rdv
cm —
Mtotal
- - - 9
FLet = ma Fy1 = —Fi» Fy=mg g=9.8m/s
Fnormal = _Fapplied Einear = —kz
T="T,

T = TO - Fparallcl(s)

fnormal -

Ff static = min(Fappliedu Ff static max)

F¥ static max = ,U*statiCFN

F¥ \inetic = MkineticPN

do dw  d*0
Utangential = TW = TE Qtangential = TQt = TE = ’I’ﬁ
S v? . 02
Qcentripetal = — T Fccntripctal =—m—r
r r
mg vT m —t
Farag,tin = bv UT:T TZ?Z? v=uvr(l—e /T)
F, = b0? = 2CpAv? =/
drag,quad = 0V = 5 pAv v = ;

14 Energy and Work



. -, 1
dW =F-ds Wz/F-d§ KE = §mv2 Erechanical = KE + PE

AW dw "
Py = —— pP="- P=F
& At dt

<y

AKE = Wnet A‘P-Eof a conservative force —

_Wby a conservative force AE = Wnonconservative

dPFE —» 1
F=— F=-VPE PE=—kz* PE=mgy
dx 2
15 Momentum
F_:nct = mdcm AI(chm = net,external Achm = not
L = dp = dptotal
p=mv Fnet = E Fnet = Ctl(;:d
. 7 + (@ . )dm - i dm
MAem = - v — VUem ) ——— = - Vol ——
cm net non-flux Aux cm dt net non-flux rel dt
V= Vg + Vex I (@) rocket in free space
m
16 Collisions
. . I .
I = F(t) dt deg = K AP = Inet
At t
o o ., . R p1 + P
P1i + D2i = D1y + D2y Uem = TP
Mtotal

KFEiotal f = KFEiotal i 1-d Elastic Collision Expression

— 2
vy = (ma —ma)vs + 2mavs 1-d Elastic Collision Expression
mi 4+ mo

ver — vy = —(vg — v1) Urel’ = —Urel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2m = 6.2831853. .. 2i = 0.15915494 . ..
T



180°

T
= 57.295779 ...~ 60° —— =0.017453292. ..~
180° 60°
s dd v A’ dw a w 1 2r
9 = — = — = — = ———— =" — = — = — P = —_- = —
r YTaw T CTwE T A / 2m f  w

1
w = at + wy Af = §at2—|—w0t w? :w§+2o¢A9

Af = %(wo—i—w)t Af = —%atQ—i—wt

18 Rotational Dynamics

Ny

I
3
X
Dy
!l
I
=
X
M,

L, = RP,,sinp, T, = RE,, siny, L,=1w Temnet = lav
I= Z mzR? I= /RQP av Iparallel axis = lem + ngm I =1+ Iy

1 1
Teyl shell thin = M R? Iy = §MR2 Tey shell thick = = M (R? + R3)

2
1 2 2 2 2 2
Trod thin,em = EML Lsph,sotia = EMR Isph shell thin = gMR
gsinf
Q= —
1+ 1I/(mr?)
1 dW
KE o = 51& dW =1,d9 P= =T

AI(Ejrot = Wnct = /Tz,nct do Ajt)Ewrot =-W= _/Tz,con do

AElrot = KErot + A‘P-Elrot = Wnon,rot AE =AKFE + KErot +APE = Wnon + Wrot

19 Static Equilibrium

= — — / .
cht,nct =0 Text,net = 0 Text,net = Text,net if cht,nct =0



O:Fnetm:ZFw OZFnety:ZFy O:Tnet:ZT

10

20 Gravity
. M .
Flonz——szlmzf’u §:—G2 T ?(ﬁ-dAz—M’GM
75y r
PE — Gm1m2 V=_ GM _ 2GM GM

472 2m dA 1 L
2 _ 3 - 3/2 == =
P (G ) r P ( = ) r il U v Constant

REarth,mean = 6371.0km REarth,equatorial = 6378.1km Mgarth = 5.9736 x 1024 kg

REarth mean orbital radius = 1.495978875 x 10 m = 1.0000001124 AU ~ 1.5 x 10" m ~ 1 AU

RSun,cquatorial = 6.955 x 108 ~ 109 x REarth,cquatorial MSun = 1.9891 x 1030 kg

21 Fluids

F
P= AV P=7 P = pPo + pgddepth

Pascal’s principle p = pext — pg(Y — Yext) Ap = Apeyt

Archimedes principle  Fiuoy = Mfuid dis§ = Viuid disPAiuidg

equation of continuity for ideal fluid Ry = Av = Constant

1
Bernoulli’s equation p + 3 pv? + pgy = Constant

22 Oscillation

1 1
2 2 2 2
Emnec total = 5 Minax = Ekxmax = -—mv” + —kx



1
P =27 P=2r r
mgr g
23 Waves
d?y 1 d?y Fr
@2 gz U\ v EEe)

= Ymax SIN[K(Z F vt)] = Ymax sin(kzr F wt)

Y
1 2
Period:? k:% UZf)\ZE P X Yphax
L 2L
Y = 2Ymax sin(kx) cos(wt) n= 32 L= n% A= - f=n—

v = <‘?9_];>S nA = dsin(6) <n+ %) A = dsin(6)

P 8 = (10dB) x log <£>
Iy

Jo

:n=13,5,... fmedium:
1- UO/'Umcdium

, v’ _f
f_f(l_;) f_l—v’/v

24 Thermodynamics

dE = dQ —dW =TdS — pdV

Tx =Toc +273.15K Ty = 1.8 x To + 32°F

Q =mCAT Q=mL

2N 2N (1
PV = NET P = EVKEavg = gv (imU%{MS)

| 3kT /T'/300
VRMS = A/ —— = 2735.51... X —/
m A



12

5 /B —V(9P/dV)g
PV?Y =constant 1<~ <= sound = {] — = —
constan < vYS 3 , d P m(N/V)
EZK:QH—QCZI_@ et _Qu__ Qu 1 1
Qu w Qu TEETW O Qu-Qc 1-Qc/Qu ¢
. 7@7QH—W71_17 B
7’](:oohng - W - W — c - nhcatmg
Te 1 Tc /Ty

€Carnot = 1 — =/ Theating,Carnot = 7 7 77 Tlcooling,Carnot = T v /v
Tu ’ 1 —Tc/Tn ’ 1 —Tc/Tn



