
1

Intro Physics Semester I Name:

Homework 6: Newtonian Physics: More of the Same: Homeworks are due as posted on the course
web site. Multiple-choice questions will NOT be marked, but some of them will appear on exams. One or
more full-answer questions may be marked as time allows for the grader. Hand-in the full-answer questions on
other sheets of paper: i.e., not crammed onto the downloaded question sheets. Make the full-answer solutions
sufficiently detailed that the grader can follow your reasoning, but you do NOT be verbose. Solutions will be
posted eventually after the due date. The solutions are intended to be (but not necessarily are) super-perfect
and often go beyond a fully correct answer.

1. “Let’s play Jeopardy! For $100, the answer is: The macroscopic binding force between smooth surfaces
that is parallel to the surfaces.”

What is , Alex?

a) the linear restoring force b) the spring force c) the tension force
d) the normal force e) friction

2. The magnitude of the kinetic friction force between a body and a surface equals a coefficient of friction
times:

a) the area of macroscopic contact between the body and the surface.
b) the magnitude of the normal force acting on the body.

c) the mass of the body.

d) the density of the body.
e) the density of the air surrounding the body.

3. Which is larger: the coefficient of static or kinetic friction?

a) They are always equal.

b) Neither. The larger depends on the materials involved and its about a 50-50 split on which is larger.

c) The kinetic coefficient is always larger.
d) The kinetic coefficient is usually larger.

e) The static coefficient is almost always (always?) larger.

4. The friction between sliding surfaces tends to change macroscopic kinetic energy into:

a) potential energy. b) rest mass energy. c) thermal or heat energy.
d) magnetic energy. e) nothing.

5. You are pushing a coffee cup across a table (just an ordinary table, not an imaginary frictionless table)
at a CONSTANT velocity. The magnitudes of the push force and frictional force are |Fp| and |Ff |,
respectively.

a) |Ff | > |Fp| and this is why the cup does not accelerate.

b) The |Ff | < |Fp|, but nevertheless the frictional force prevents any acceleration.
c) There is no frictional force when you push the cup at a constant velocity. Thus, |Ff | = 0 and clearly

then |Fp| > |Ff |.
d) The |Ff | must EQUAL |Fp| in order for there to be no acceleration.
e) The |Ff | must be TWICE |Fp| in order for there to be no acceleration.

6. Will will now determine the coefficient of static friction µst from an empirical measurement using an
ajustable incline. The adjustable angle of incline from the horizontal is θ.

a) Write down Newton’s 2nd law for a block sitting at rest on the incline for two directions:
perpendicular to the incline and parallel to it. The only forces are the gravity, the normal force,
and friction.

b) The angle of adjustable incline is increased just to the slipping point for the block. Give the parallel
2nd law equation just before slipping occurs.

c) Solve for the µst.

7. The formula

Fr,netr̂ + Fθ,netθ̂ = m

[(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

]
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is:

a) Newton’s 2nd law in spherical polar coordinates. b) Newton’s 2nd law in polar coordinates.
c) the centripetal force formula. d) the centripetal acceleration formula.
e) the simple harmonic oscillator formula.

8. Uniform circular motion is motion in a/an:

a) circle at a constant VELOCITY. b) oval at a constant VELOCITY.
c) oval at a constant SPEED. d) circle at a constant SPEED.
e) circle at a nonconstant SPEED.

9. The formula for the magnitude of centripetal acceleration is:

acentripetal =
v2

r
,

where v is the speed of a uniform circular motion and r is the radius of the motion. Say v = 10 m/s and
r = 5 m, what is acentripetal?

a) 20 m/s2. b) 10 m/s2. c) 5 m/s2. d) 100 m/s2. e) 15 m/s2.

10. The centripetal force is:

a) a mysterious force that APPEARS whenever an object goes into uniform circular motion.
b) a mysterious force that tries to throw you OFF playground merry-go-rounds.

c) in fact m~a of ~Fnet = m~a when this equation is specialized to the case of uniform circular motion. It
is NOT a mysterious force that appears whenever you have uniform circular motion: it is a force
requirement to be satisfied for uniform circular motion. Particular physical forces (e.g., gravity,
tension force, and normal force) must act (sometimes in combination) to give a centripetal force
which then causes uniform circular motion.

d) in fact m~a of ~Fnet = m~a when this equation is specialized to the case of uniform circular motion.
The force itself is ALWAYS a field force emanating from the center of motion that pulls on the
circling object atom by atom.

e) a mysterious force that DISAPPEARS whenever an object goes into circular motion.

11. There is a hump on the road with a cylindrical shape. The radius of the hump is 14.7 m. In an idealized
picture, above about what horizontal speed must a car at the top of the hump lift from the hump?

a) 12 m/s. b) 14.7 m/s. c) 144 m/s. d) 10 m/s. e) 10.4 m/s.

12. The banking angle formula is . HINT: Use dimensional analysis. Ask yourself what
formula has reasonable limiting behavior when input values go to extremes. Or just derive it using the
centripetal force formula and the 2nd law.

a) θ = tan−1

(

v

rg

)

b) θ = tan−1
(rg

v2

)

c) θ = tan−1

(

v2r

g

)

d) θ = tan−1

(

v2

rg

)

e) θ = tan−1
( g

v2r

)

13. The drag force (the resistive force of a fluid: e.g., air drag) is an example of a/an:

a) linear (or Hooke’s law) force in all cases. b) gravitational force. c) tension force.
d) contact force. e) animal force.

14. In general the drag force on an object moving through a fluid is complex, but there are two well-known
drag force laws that have wide application in different physical regimes: the drag equation law and the
Stokes law. They both depend linearly on a power of the relative velocity opposite the direction of the
motion of the object (i.e., the flow speed). The powers for the drag equation law and the Stokes law
are, respectively:

a) 1 and 2. b) 2 and 1. c) 2 and 3. d) 1 and 3. e) 3/2 and 5/2

15. In what situations, if any, can a body move in a circular path at constant speed without a centripetal
force?

a) None. b) In certain special non-inertial frames. c) In all non-inertial frames.
d) In all inertial frames. e) Always.
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16. Is-Hilda the ladybug is on a vinyl record spinning at 78 rpm. She starts at the center and six-leggedly
walks radially outward. Her radial velocity (caused by her walking) is negligible compared to her
tangential velocity (caused by the record motion). At 6 cm from the center, Is-Hilda suddenly slides off
the record. The record counterfactually is a smooth surface—and isn’t corrugated—and Is-Hilda is an
ideal ladybug without sticky feet. What is the static friction coefficient between her and the record?
What is the kinetic friction coefficient if you can determine it?

17. There is a conical pendulum of length ℓ with point mass bob of mass m. The bob is executing uniform
circular motion with velocity v and radius r (which is measured from the axis of rotation not along
the length of the pendulum). The pendulum has an ideal rope with tension T . Note, an ideal rope is
massless and can only exert a tension force which is uniform along the rope and only turns on when
the rope is taut. There is no friction, no drag, and no dissipation forces in general. Thus the moition is
perpetual. The rope sweeps out a cone and the opening angle of the cone from the vertical is θ.

a) Write down Newon’s 2nd law for the horizontal direction (taking inward to the axis of rotation as
positive) and vertical direction (taking upward as positive). Make use of the centripetal acceleration
formula. Remember, the rope sweeps out a cone and the opening angle of the cone from the vertical
is θ. HINT: Draw diagram.

b) Solve for θ as a function of g, r and v and for T as a functions of m, g and θ.

c) For a person just swinging a conical pendulum by hand, one can set m and ℓ directly and with
some skill period p = 2πr/v. So those variables are the obvious control parameters of the system.
Determine in order formulae for θ, T , r, and v in terms of m, ℓ, and p.

d) Determine pmax, the maximum period for the circular motion allowed by the formulae. For what
angle θ does this occur?

e) You swing a crude pendulum with ℓ = 0.5 m such that p ≈ 1 s. What is the angle θ?

18. Consider an ordinary road corner that is level ground. Such corners are usually not banked very much,
in fact.

a) What force supplies the centripetal force that allows a vehichle to make the corner?

b) For a corner turn with radius of curvature r and a vehicle of mass m, derive the formula for the
maximum turn speed v before slipping occurs.

c) Say r = 10 m (which seems reasonable for ordinary corners) and µst = 1.0 (as for rubber on
concrete in dry conditions approximately), what is the maximum turn speed before slipping? Now
say µst = 0.30 (as for rubber on concrete in dry conditions approximately), what is the maximum
turn speed before slipping? Convert the answers to miles per hour.

19. The drag equation drag law is

FDE =
1

2
ρv2CDA = bv2

where v is flow speed, ρ is fluid density, (1/2)ρv2 is the relative kinetic energy density of the fluid, CD is
the drag coefficient (which depends on many factors in general, but the always depends on the shape of
the object and probably is often determined empirically), and A is the reference area (for many objects
just projected frontal area of the object), and b is a combined coefficient introduced for simplicity.

a) Taking downward as positive, write down Newton’s 2nd law for an object of mass m falling under
gravity with drag acting. Determine the formula for acceleration in the form a = g[1 − . . .] with
v/vter as one for the terms with vter defined appropriately.

b) Now define z = v/vter and reformulate the formula for acceleration a as a formula with differential
dt = (vter/g) dz/(. . .).

c) Integrate the dt expression from part (b) to obtain t = t(v) assuming initial time and velocity are
zero. You will need the table integral

∫

dz

1 − z2
= artanh(z) for z < 1 .

where artanh is the inverse hyperbolic tangent function.
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d) Invert the expression from part (c) to obtain the function v(t). Note the hyperbolic tangent function
is defined

tanh(x) =
ex − e−x

ex + e−x
.

It is an odd function (i.e., tanh(−x) = − tanh(x) and limx→±∞ tanh(x) = ±1. What is the terminal
velocity (i.e., the velocity as t → ∞)? What is the scale time (i.e, the time when hyperbolic tangent
argument is 1)? What is v at the scale time? What is the meaning of the scale time?

20. There is a block of mass m on an incline with inclination angle θ. The incline has static friction coefficient
µs and kinetic friction coefficient µk.

a) The block is not sliding. Determine the gravity component along the incline taking downward as
positive. Determine the normal force taking outward from the incline as postive. Determine the
friction force. HINT: Draw a diagram

b) Determine for the angle formula at which the block is reaches the upper limit of the static friction
force. What is the angle for µs = 0.5?

c) Determine for the acceleration formula of the block when sliding. What is the accleration for
µk = 0.2 and θ = 60◦?

21. Newton’s 2nd law in ordinary form is
~Fnet = m~acm ,

where ~Fnet is the net force on a system (AKA object, AKA body), the system mass is m, and the sytem
acceleration is ~acm. Newton’s 2nd law is the basis for determining the motion of the system center
of mass: i.e., as a functions of time acceleration ~acm, velocity ~vcm, and position ~rcm. Like all general
physical laws, Newton’s 2nd law is what is eternally true everywhere: i.e, eternally true everywhere in
the classical limit. Other features of the system and its environment are contingent on the physical
history.

In fact, Newton’s 2nd law has to be generalized to allow for inflow (which is outflow if negative) of
mass which can change the (system) acceleration ~acm without a net external force because it changes the
(system) momentum. Note, we drop the center-of-mass subscript cm hereafter for formula simplicity.
Now momentum (i.e., linear momentum, not angular momentum) for a system is defined

~p = m~v .

The generalized Newton’s 2nd law is

~Fnet + ~vflow
dm

dt
=

d~p

dt
= m

d~v

dt
+ ~v

dm

dt
= m~a + ~v

dm

dt
,

where dm/dt is the mass inflow rate which can be positive (i.e., actual inflow) or negative (i.e., actual
outflow) and ~vflow is the velocity of inflowing mass. Note, we have assumed there is a single ~vflow for
simplicity in our discussion. The inflow can change the momentum, and therefore accelerate the system
without exerting any net external force. The inflow when not part of the system can exert an external
force, but it cannot by definition when part of the system since then it can only exert internal forces.
In fact, it may be an analysis choice when to consider the inflow as part of the system.

In this problem, we consider the generalized Newton’s 2nd law.

a) If ~Fnet and dm/dt are zero, what can one say about the system momentum and acceleration?

b) If ~Fnet is zero, dm/dt 6= 0, and ~vflow = ~v, what can one say about the system momentum and
acceleration?

c) What is the explicit formula for acceleration?

d) An interesting special case for the generalized Newton’s 2nd law is the (Tsiolkovsky) rocket problem

(Wikipedia: Tsiolkovsky rocket equation). Say you have a rocket in empty space with ~Fnet = 0. It
can still be accelerated by thrust: ejecting burnt exhaust fuel opposite the direction of motion. The
speed of the exhausted fuel relative to the rocket is called the exhaust speed vex which is a parameter
of the rocket. The rate of mass flow (i.e., the rate of ejection of exhausted fuel) dm/dt < 0 is also a
parameter of the rocket. For our analysis of the rocket problem, we will consider only 1-dimensional
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motion. Specialize the generalized Newton’s second law for the 1-dimentional case of the rocket
problem.

e) What is the velocity of the ejected exhausted fuel in terms of the generalized Newton’s 2nd law.
What is this velocity in the outside inertial frame the rocket is traveling in, not relative to the
rocket? What does it mean if the velocity is positive?

f) Making use of the part (e) result, write down the formula for the acceleration of the rocket simplified
as much as possible.

g) Solve the part (f) equation (which is a differential equation) for velocity as a function of mass by
integration recalling a = dv/dt. Assume the initial mass m0 and the intial velocity is v0. What
happens to velocity as m → 0? Why must the velocity formula actually fail to be physically real if
the velocity gets too large? Why is this failure unlikely in practice.

g) Invert formula found in part (g) to find the amount of fuel mfuel needed to achieve a given change
in velocity ∆v = v − v0.
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)



7

sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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Numerically robust solution (Press-178):

q = −1

2

[

b + sgn(b)
√

b2 − 4ac
]

x1 =
q

a
x2 =

c

q

6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =
∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2
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Five 1-dimensional equations of kinematics

Equation No. Equation Unwanted variable
1 v = at + v0 ∆x

2 ∆x =
1

2
at2 + v0t v

3 (timeless eqn) v2 − v2
0 = 2a∆x t

4 ∆x =
1

2
(v + v0)t a

5 ∆x = vt − 1

2
at2 v1

Fiducial acceleration due to gravity (AKA little g) g = 9.8 m/s2

xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1
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12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω

13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V
ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work
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dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum

~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .
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180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics

~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0
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0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant

REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2



14

P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max

y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v

24 Thermodynamics

dE = dQ − dW = T dS − p dV

TK = TC + 273.15 K TF = 1.8 × TC + 32◦F

Q = mC∆T Q = mL

PV = NkT P =
2

3

N

V
KEavg =

2

3

N

V

(

1

2
mv2

RMS

)

vRMS =

√

3kT

m
= 2735.51 . . .×

√

T/300

A
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PV γ = constant 1 < γ ≤ 5

3
vsound =

√

B

ρ
=

√

−V (∂P/∂V )S

m(N/V )
=

√

γkT

m

ε =
W

QH
=

QH − QC

W
= 1 − QC

QH
ηheating =

QH

W
=

QH

QH − QC
=

1

1 − QC/QH
=

1

ε

ηcooling =
QC

W
=

QH − W

W
=

1

ε
− 1 = ηheating − 1

εCarnot = 1 − TC

TH
ηheating,Carnot =

1

1 − TC/TH
ηcooling,Carnot =

TC/TH

1 − TC/TH


