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Intro Physics Semester I Name:

Homework 5: Classical Mechanics I: Homeworks are due as posted on the course web site. Multiple-
choice questions will NOT be marked, but some of them will appear on exams. One or more full-answer
questions may be marked as time allows for the grader. Hand-in the full-answer questions on other sheets of
paper: i.e., not crammed onto the downloaded question sheets. Make the full-answer solutions sufficiently
detailed that the grader can follow your reasoning, but you do NOT be verbose. Solutions will be posted
eventually after the due date. The solutions are intended to be (but not necessarily are) super-perfect and
often go beyond a fully correct answer.

1. “Let’s play Jeopardy. For $100, the answer is: The branch of physics that explains motion and
acceleration in terms of forces and masses.”

What is , Alex?

a) kinematics b) dynamics c) statics d) economics e) cinematics

2. Dynamics is that branch of physics that:

a) explains motion and acceleration in terms of the kinematic equations.

b) explains motion and acceleration in terms of error analysis.

c) treats dynamos.

d) treats electricity and magnetism or electromagnetism.

e) explains motion and acceleration in terms of forces and masses.

3. The area of physics dealing with ONLY cases of balanced forces (or equilibrium) is called:

a) statics. b) dynamics. c) kinematics. d) kinesiology. e) cinema.

4. Forces can cause accelerations relative to inertial frames or cancel other forces. Another manifestation
(which actually follows from their property of causing acceleration) is that they can cause:

a) velocity (without causing acceleration).

b) mass.

c) bodies to distort: i.e., flex, compress, stretch, etc.

d) bodies to live

e) bodies to rule.

5. Accelerations with respect to —which we will call natural frames for the nonce—though
no one calls them that—and only they require forces as causes as prescribed by Newton’s 2nd law
(~Fnet = m~a ) in the classical limit. What are natural frames? They have been elusive historically.
Newton hypothesized that a primary natural frame defined by the mean position of the fixed stars—
absolute space as he called it. But the fixed stars move—as Newton knew himself—and revolve around
the center of the Milky Way in complex orbits—as Newton did not know himself. The Milky Way and
other galaxies are also in complex orbits in galaxy clusters or otherwise in complex relative motions.
In modern cosmological theory, natural frames are frames of reference attached to points in space that
participate in the mean expansion of the universe. Space is growing—just accept it. Not all space—not
space within bound systems like you, me, and the Milky Way—but the space in between bound systems
like galaxy clusters. To every point participating in the mean expansion of the universe attach the origin
of a local pimary natural frame. It is called local because sufficiently close to the origin, the frame has
the behavior given above. As you move away from the origin, there is a progressive departure from the
behavior, but you have to move over distance scales larger than a galaxy cluster for that to become
very noticeable. Now any frame in uniform motion (i.e., unaccelerated) with respect to a local primary
natural frame is also a local natural frame. Say the pimary frame is unprimed and the non-primary is
primed. Then we have

~r ′ = ~r − ~rprime ,

where is ~rprime is the position of the primed frame in the unprimed frame. Differentiate twice and
you get ~a ′ = ~a. So accelerations in the unprimed frame are exactly those of the primed frame. So
Newton’s 2nd law (~Fnet = m~a ) must be obeyed for accelerations relative to non-primary local frames.
Forces themselves are frame-independent in classical mechanics. If you need relativistic physics the story
changes.



2

Actually, Newton’s 2nd law can be generalized to non-natural frames by introducing what are called
inertial forces which are not real forces, but force-like terms that account for using non-natural frames.
In fact, using inertial forces is usually the best approach to non-natural frames.

By the by, we can actually identify natural frames in the universe and our own local one very
precisely using astronomical measurements. However, for many purposes we can find non-natural frames
that are sufficiently close to being natural frames that they can be used as natural frames to some degree
of approximation. The local Earth surface (i.e., the ground) is natural enough for many purposes: not
long-range gunnery or large-scale weather phenomena. If you need a more natural natural frame, you can
use the fixed stars. For highest accuracy, we can use the local primary natural frame using cosmological
knowledge.

a) rotating frames. b) accelerated frames. c) non-inertial frames. d) inertial frames.
e) picture frames.

6. How many laws of motion did Newton posit?

a) 1. b) 2. c) 3. d) 4. e) 5.

7. Newton’s 1st law is.

a) PHYSICALLY INDEPENDENT of the other two laws of motion and CANNOT be dispensed
with as an axiom of Newtonian physics.

b) PHYSICALLY INDEPENDENT of the other two laws of motion, but nonetheless it CAN be
dispensed with as an axiom of Newtonian physics.

c) actually a SPECIAL CASE of the 2ND LAW. The case when the net force is zero. Therefore
logically we need only two laws of motion. Perhaps for clarity Newton formulated his explicit 1st
law and perhaps for the same reason physicists have retained it.

d) actually a SPECIAL CASE of the 3RD LAW. The case when the net force is zero. Therefore
logically we need only two laws of motion. Perhaps for clarity Newton formulated his explicit 1st
law and perhaps for the same reason physicists have retained it.

e) is INCORRECT, but is kept in the books for historical reasons.

8. Newton’s 2nd law is:

a) m = ~Fnet~a.

b) ~a = m~Fnet.

c) ~Fnet = m~a.

d) For every force there is an equal and opposite force.

e) For every acceleration there is an equal and opposite acceleration.

9. From here on in this course, a key thing to remember (to recite to yourself) when faced with any force

problem is that Newton’s 2nd law (~Fnet = m~a) is:

a) ALWAYS VALID. And it is a VECTOR equation, and so is always VALID component by

component. And ~Fnet is the VECTOR sum of all forces acting on the body of mass m. It is not
any particular force. If all the forces sum to zero vectorially, ~Fnet = m~a = 0. If you are given the
acceleration, then you can often use ~Fnet = m~a to solve for an unknown force.

b) ALWAYS VALID. And it is a SCALAR equation. And ~Fnet is the SCALAR sum of all
forces acting on the body of mass m. It is not any particular force. If all the forces sum to zero,
~Fnet = m~a = 0. If you are given the acceleration, then you can often use ~Fnet = m~a to solve for an
unknown force.

c) ONLY VALID when there is a NON-ZERO net force. Because the 2nd law is a VECTOR

equation, it is valid (when it is valid) component by component. And ~Fnet is the VECTOR sum
of all forces acting on the body of mass m. It is not any particular force. If you are given the
acceleration, then you can often use ~Fnet = m~a to solve for an unknown force.

d) ALWAYS INVALID.

d) NEVER VALID.

10. If Newton’s 3rd law is true, why then does anything accelerate at all?

a) The equal and opposite forces DO NOT have to be on the same body.

b) The equal and opposite forces DO have to be on the same body.
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c) Nothing moves at all as Parmenides argued in the 5th century BC. Motion is but seeming. Anyway
Parmenides seems to have been a pretty smart guy since he’s credited with the spherical Earth
theory and the discovery that the Moon shines by reflected light.

d) Acceleration has nothing do with forces.

e) Forces have nothing do with acceleration.

11. “Let’s play Jeopardy! For $100, the answer is: Laws that prescribe forces for physical systems. They
must exist independent of Newton’s 3 laws of motion in order for Newtonian physics to be useful.”

What are , Alex?

a) Newton’s 3 laws b) accelerations c) velocities d) force inequalities e) force laws

12. The base SI unit of force is the:

a) farad (F); 1 F = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.
b) henry (H); 1 H = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.
c) watt (W); 1 W = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.
d) joule (J); 1 J = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.
e) newton (N); 1 N = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.

13. A bicycle-rider system has a mass of 80 kg. The bike is traveling on level and has initial velocity 6 m/s
north. What is the constant force needed to stop the bike in 4 s?

a) 80 N south. b) 80 N north. c) 80 N east. d) 100 N south. e) 120 N south.

14. The magnitude of the gravitational force on an object of mass m for a uniform gravitational field (such
as the gravitational field near the Earth’s surface for human-size and somewhat larger objects) is given
by the formula:

a) F = mg. b) F = m/g. c) F = g/m. d) F = ma. e) F = m/a.

15. Newton’s 2nd law applied to the vertical direction with only the gravity force acting and down defined
as positive leads to the scalar equation of motion:

a) g = m/a. b) g = ma. c) mg = a. d) mg = ma. e) m/g = m/a.

16. If you have a mass of 60 kg and g = 9.8 m/s2, you weigh about:

a) 10 N. b) 60 N. c) 600 N. d) 500 N. e) 20 N.

17. The force of gravity reaches out across space and pulls on each bit of your body independently of every
other bit. We call a force like this a FIELD FORCE or a BODY FORCE. Why don’t you accelerate
downward, except when off the ground.

a) The GROUND FORCE reaches out across space and pushes upward on each bit of your body
independently of every other bit. The ground force is also a FIELD FORCE.

b) The ground exerts a force on the soles of your feet and the soles of your feet on the next layer
of your body and the next layer of your body on the next layer of your body and so on until the
top of your head. Each layer pushes up with only enough force to balance the gravity force on the
mass above. The ground force and the forces exerted by the layers of our bodies are CONTACT

FORCES. A CONTACT FORCE acts over a very short range: so short that if the distance
between the two objects exerting equal and opposite contact forces on each other is more than
microscopic there is no contact force at all.

c) Since you are always off the ground, the question has no answer.

d) Since you are always off the ground, the question is hypothetical and the answer, speculative.

e) In orbit, you don’t accelerate downward and you are certainly off the ground. So being on the
ground may have nothing to do with why you don’t accelerate downward.

18. “Let’s play Jeopardy! For $100, the answer is: they are, respectively, the resistance of a body to
acceleration and the magnitude of the force of gravity on a body.”

What are and , Alex?

a) acceleration; normal force b) mass; normal force c) force; weight d) mass; weight
e) gravity; momentum
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19. What is the approximate mass of a woman who weighs 500 N? What is gravitational force that Earth
exerts on her. After she jumps UPWARD from a diving board, what is her acceleration in the absence
of air drag?

a) About 50 kg, 500 N, and 9.8 m/s2 downward once she starts moving downward, but ZERO before
that.

b) About 50 kg, 50 N, and 9.8 m/s2 downward once she starts moving downward, but ZERO before
that.

c) About 50 kg, 50 N, and 9.8 m/s2 downward at ALL times.

d) About 50 kg, 500 N, and 9.8 m/s2 downward at ALL times.

e) None of these questions can be answered with the given information.

20. The normal force is:

a) a repulsive contact force exerted by a surface that points perpendicularly outward from that surface.
The force turns out to resist compression. In principle, the force can be calculated from the
compressional displacement of the surface from equilibrium, but in elementary problems one usually
calculates it from Newton’s 2nd or 3rd law assuming the surface to be completely rigid.

b) ~Fnet in ~Fnet = m~a.

c) the tension force in a rope.

d) the tension force in a rope that allows you to push on a rope.

e) an ordinary, run-of-the-mill force, a pedestrian force, a force without pretensions or airs, a downright
force, a regular-guy force, just a plain salt-of-the-earth force.

21. An object of mass m is on a rigid, frictionless slope of angle θ from the horizontal. What is the
magnitude of normal force on the object? What is the component of the gravitational force in the
positive x direction which is down the slope? What is the expression for the position x of the object as
a function of time t when it starts from rest at t = 0 and x = 0?

a) mg cos θ; mg cos θ; x = (1/2)(g cos θ)t2. b) mg cos θ; mg sin θ; x = (1/2)(g sin θ)t2.
c) mg sin θ; mg sin θ; x = (1/2)(g sin θ)t2. d) mg sin θ; mg sin θ; x = (1/2)(g cos θ)t2.
e) mg sin θ; mg sin θ; x = (g cos θ)t.

22. A book sits at rest on a table. The reaction force that follows from Newton’s 3rd law to the gravitational
force of the Earth on the book is the:

a) gravitational force of the book on the Earth.

b) normal (i.e., perpendicular upward) force of the table on the book.

c) table friction force on the book.

d) book friction force on the table.

e) book normal force on the table.

23. A woman who has a mass of 50 kg is in an elevator that is accelerating downward at 2 m/s2. What is
the force the floor exerts on her? What is the force she exerts on the floor?

a) 390 N upward; 390 N downward. b) 390 N downward; 390 N upward.
c) 490 N downward; 490 N upward. d) 490 N upward; 490 N downward.
e) 100 N upward; 100 N downward.

24. Tension is the magnitude of the force in an object that resists:

a) extension. b) compression.
c) shearing (i.e., the deformation of the object without change in volume).
d) creaking (i.e., the deformation of the object with noise). e) concession.

25. “Let’s play Jeopardy! For $100, the answer is: It has zero thickness and only resists extension along its
length. In fact, resists extension completely. Usually, but not always, it is assumed to have zero mass
and be unbreakable”

What is a/an , Alex?

a) ideal monkey b) ideal rigid rod c) ideal surface d) ideal rope e) real rope

26. The normal force magnitude per unit length exerted by the curved surface on an at any
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general point s is

fnor =
T

r
,

where s is measured from the start of the , T is the tension at point s r is the radius of
curvature at s, and the normal force per unit length points radially outward from the center of curvature.
The center of curvature is the center of a circle that approximates the curve at s to first order. The
normal force per unit length exerted by the rope on the curved surface is equal in magnitude to fnor,
but points radially inward by the 3rd law.

a) ideal rigid rod b) ideal rope c) unreal rigid rod d) uaenrl riigd rod e) ideal door

27. A taut ideal, massless rope should have tension (i.e., constant magnitude of tension
force) between two endpoints provided no external forces parallel to the rope act on it BETWEEN

the endpoints: there will in general be external applied forces to hold it taut at the endpoints. The rope
does not have to be straight. It can be wrapped around constraints as long as their surfaces exert no
parallel forces on it.

a) wildly varying b) constant c) complexly varying d) zero e) 9.8 N/kg

28. A MOTIONLESS mass of 10 kg is suspended from a rope. What is the tension force that the rope
exerts on the mass?

a) 100 N downward. b) 200 N downward. c) 200 N upward. d) 100 N upward.
e) 200 N horizontally.

29. A MOTIONLESS mass of 10 kg is suspended from a rope. What is the NET force on the mass? It
is:

a) about 100 N downward. b) 0 N. c) about 200 N upward. d) about 100 N upward.
e) about 200 N horizontally.

30. An elevator just starts moving upward.

a) You feel slightly heavy for a moment.
b) You feel slightly light for a moment.
c) You feel slightly light and carefree for a moment.
d) You feel totally carefree and ethereal.
e) You come to understand that there are no forces in foxholes.

31. As this is (or was within living memory) 2001, let’s say you are David Bowman and you’ve just arrived
at Jupiter. Before going off to investigate that monolith (and go beyond humankind), you decide on
a little excursion to Callisto, one of Jupiter’s 4 major moons. Assume you are so close to Callisto’s
surface throughout the maneuvers of this question the gravitational field gCal can be approximated as
a constant.

a) As your landing pod descends straight down to the Callisto surface and when your are relatively
close to touchdown, your rocket thrust is 3260 N and your descent velocity is CONSTANT. What
is the gravitational force on your pod? Take the upward direction as the positive direction.

b) Say you reduce thrust to 2200 N and find that the pod has a downward acceleration of 0.39 m/s2.
What is the mass of your pod including yourself?

c) What’s the free-fall acceleration magnitude due to gravity near the Callisto surface (i.e., gCal, the
analog to g for gravity near Earth’s surface)? The free-fall acceleration acceleration magnitude is
also the gravitational field magnitude.

d) Say you have a mass of 70 kg. What’s your WEIGHT on Callisto and what is your Callisto weight
divided by your Earth weight (i.e., what is the weight RATIO)?

e) Now the hard part. After finishing your excursion on the icy surface, you launch and go into uniform
circular motion, low-Callisto orbit. The gravitational acceleration is approximately the same as the
surface gravitational acceleration and the radius of the orbit is approximately just Callisto’s radius
of 2400 km. Calculate the ORBITAL SPEED. Then find the ORBITAL PERIOD P (i.e.,
the time to orbit once) in seconds and in hours. HINT: Remember centripetal acceleration and
~Fnet = m~a.
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32. There is a 2 kg block on a frictionless incline that is at θ = 30◦ from the horizontal.

a) What is the normal force on the block? HINTS: Draw a free body diagram and remember the

class mantra: “ ~Fnet = m~a is always true and it’s true component by component”.

b) What is the net force down the slope?

c) What is the acceleration down the slope?

d) Starting from rest how far does the block slide in 10 s?

33. Physics students frequently flub analyzing forces and accelerations on an inclined plane. Let’s get it
straight.

a) A Cairn terrier named Bit has dog-rolled to a point on an inclined plane. The plane has an angle
from the horizontal of θ. Bit’s mass is m. What is the component of gravitational force on Bit
parallel to the inclined plane? What is the normal force on Bit? HINT: Draw a diagram.

b) Fun-loving pig Waldo Pepper (mass m) is sliding down a frictionless incline (with angle θ form
the horizontal). What is his acceleration? What is the normal force on Waldo? HINT: Draw a
diagram.

c) Underdog has just alighted on an inclined plane from which the Wonder Woofer surveys the world
with a flint-hard gaze. The inclined plane has an angle of θ from the horizontal. What is the
gravitational force component parallel to the inclined plane on the Caring Canine (mass m)? What
is the normal force on the Magnificent Mutt? HINT: Draw a diagram.

d) A 1992 GM Geo Metro (mass m) is sliding down a frictionless incline (with angle θ form the
horizontal) which is sort of like a hill in Moscow, Idaho in January. What is Baby’s acceleration?
What is the normal force on Baby? HINT: Draw a diagram.

34. You have block just sitting on horizontal flat ground. HINT: This is a problem for rumination—or
perhaps ruminants.

a) Draw a free body diagram for the block. Indicate all the forces acting on the block. What is the
cause of these forces and are they contact or field forces?

b) Now by the 3rd law, what forces does the block exert and on what and where exactly does it exert
them?

35. You are in a car accelerating at a constant 10 m/s2 in a constant direction. The car is on level ground.
A pair of fuzzy dice is hanging by a cord from the mirror at an angle θ from the vertical. The dice
cord is a (massless) ideal rope. Assuming the dice are a point mass, what is this angle? HINT: Draw

a free body diagram for the dice. Remember the class mantra: “~Fnet = m~a is always true and it’s true
component by component”.

36. You have a FRICTIONLESS triangular block which gives you two inclines: i.e., double incline.
Incline 1 is at θ1 to the horizontal and incline 2 at θ2. You have an ideal massless pulley (or altneratively
and equivalently, a friction-free bend) at the apex and a taut ideal rope connecting two blocks, one on
each slope. The rope is parallel to both inclines. The incline 1 block has mass m1 and the incline 2,
mass m2. The masses of the blocks and the incline angles are the formal knowns of the problem.

a) Write down Newton’s 2nd law for each block for the direction along the inclines. Take up as positive
for incline 1 and down as positive for incline 2. HINT: Draw two free body diagrams on a diagram
of the double incline.

b) Derive the explicit formula for acceleration of the two blocks along their respective inclines and
the explicit formula for the tension in the rope? NOTE: By “explicit” in this context, we mean
formulae with a = . . . and T = . . . with no a’s or T ’s on the right-hand sides.

c) Specialize the formulae from the part (b) answer for the case of θ1 = θ2 = π/2. This case is
Atwood’s machine.

d) Specialize the formulae from the part (b) answer for the case of θ1 = 0 and θ2 = π/2.

e) Specialize the formulae from the part (b) answer for the case of θ2 = π/2.
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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Numerically robust solution (Press-178):

q = −1

2

[

b + sgn(b)
√

b2 − 4ac
]

x1 =
q

a
x2 =

c

q

6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =
∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2
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Five 1-dimensional equations of kinematics

Equation No. Equation Unwanted variable
1 v = at + v0 ∆x

2 ∆x =
1

2
at2 + v0t v

3 (timeless eqn) v2 − v2
0 = 2a∆x t

4 ∆x =
1

2
(v + v0)t a

5 ∆x = vt − 1

2
at2 v1

Fiducial acceleration due to gravity (AKA little g) g = 9.8 m/s2

xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1
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12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω

13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V
ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work
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dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum

~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .
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180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics

~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0
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0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant

REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2
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P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max

y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v

24 Thermodynamics

dE = dQ − dW = T dS − p dV

TK = TC + 273.15 K TF = 1.8 × TC + 32◦F

Q = mC∆T Q = mL

PV = NkT P =
2

3

N

V
KEavg =

2

3

N

V

(

1

2
mv2

RMS

)

vRMS =

√

3kT

m
= 2735.51 . . .×

√

T/300

A
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PV γ = constant 1 < γ ≤ 5

3
vsound =

√

B

ρ
=

√

−V (∂P/∂V )S

m(N/V )
=

√

γkT

m

ε =
W

QH
=

QH − QC

W
= 1 − QC

QH
ηheating =

QH

W
=

QH

QH − QC
=

1

1 − QC/QH
=

1

ε

ηcooling =
QC

W
=

QH − W

W
=

1

ε
− 1 = ηheating − 1

εCarnot = 1 − TC

TH
ηheating,Carnot =

1

1 − TC/TH
ηcooling,Carnot =

TC/TH

1 − TC/TH


