
1

Introductory Physics: Calculus-Based NAME:

Homework 1: Introduction to Physics, Units, Conversions: Homeworks are due as posted on the
course web site. Multiple-choice questions will NOT be marked, but some of them will appear on exams.
One or more full-answer questions may be marked as time allows for the grader. Hand-in the full-answer
questions on other sheets of paper: i.e., not crammed onto the downloaded question sheets. Make the full-
answer solutions sufficiently detailed that the grader can follow your reasoning, but you do NOT be verbose.
Solutions will be posted eventually after the due date. The solutions are intended to be (but not necessarily
are) super-perfect and often go beyond a fully correct answer.

001 qmult 00010 1 1 1 easy memory: name written down
1. Have you written your name in the name place at the upper right of this paper?

a) Yes. b) No. c) Nope. d) Nein. e) Never.

SUGGESTED ANSWER: (a)

Wrong answers:

e) A nonsense answer—I hope.

Redaction: Jeffery, 2008jan01

001 qmult 00100 1 4 5 easy deducto-memory: physics defined
2. “Let’s play Jeopardy! For $100, the answer is: In shorthand, it is the science of matter and motion,

space and time.”

What is , Alex?

a) biology b) phrenology c) economics d) rocket science e) physics

SUGGESTED ANSWER: (e)

Wrong answers:

a) As Lurch would say AAAARGH.
b) This is head bump reading.

Redaction: Jeffery, 2008jan01

001 qmult 00110 1 1 3 easy memory: theory of everything
3. The ultimate goal of physics—or at least one of the ultimate goals—is a theory of:

a) something (TOS). b) nothing (TON). c) everything (TOE). d) woe (TOW).
e) Fred (TOF).

SUGGESTED ANSWER: (c)

Wrong answers:

b) Now what good would this be.

Fortran-95 Code

Redaction: Jeffery, 2008jan01

000 qmult 00120 1 4 1 easy deducto-memory: Presocratics
4. “Let’s play Jeopardy! For $100, the answer is: The most obvious choice for the first natural philosophers

or physicists. They attempted to explain the natural world from simple general principles: from these
principles complex structures could arise. In mythology on the other hand, usually deities with human-
like personalities are invoked to explain structures. But there is probably no hard line between natural
philosophy and mythology: one shades into the other in the early days.”

Who are , Alex?

a) Presocratic philosophers of ancient Greece b) Babylonian diviners c) Roman augurs
d) Mongolian shamans e) Irish druids

SUGGESTED ANSWER: (a)

Wrong answers:
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b) These guys did do mathematical astronomy, but they didn’t leave us much idea about how
they thought things worked in terms of basic principles.

c) They were into haruspicy.
e) Tree worshippers.

Redaction: Jeffery, 2008jan01

001 qmult 00140 1 1 2 easy memory: mathematical physics origin
5. Mathematical physics in a sense began with the ancient Babylonian astronomers. Later the ancient

Greeks added a bit to mathematical physics, particularly Archimedes (circa 287–212 BCE) with his
work on statics and hydrostatics. But idea of physics as a largely mathematical science is largely
attributable to , , and their contemporaries in the 17th century.

a) William Shakespeare (1564–1616); John Milton (1608–1674)
b) Galileo (1564–1642); Isaac Newton (1643–1727)
c) Bernini (1598–1680); Borromini (1599–1667)
d) Caravaggio (1571–1610); Poussin (1594–1665)
e) Wallenstein (1583–1634); Turenne (1611-1675)

SUGGESTED ANSWER: (b)

Before the 17th century, much of physics in Europe and elsewhere was qualitative and
descriptive. In the European/Islamic worlds, Aristotelian physics (which was all/mainly qualitative)
held sway.

Wrong answers:

a) Poets.
c) Architects.
d) Painters.
e) Generals.

Redaction: Jeffery, 2008jan01

001 qmult 00150 1 1 4 easy memory: true exact emergent theory
6. Because there are no doubts about its validity in the classical limit (scales larger than microscopic, but

smaller than cosmic, speeds much less than that of light, gravity much less strong than near a black
hole) and because it is the exact limit of more general theories, Newtonian physics can be regarded as
a/an:

a) utterly false theory. b) negligible theory c) useless theory.
d) true exact emergent theory. e) phantasm

SUGGESTED ANSWER: (d)

Wrong answers:

e) A nonsense answer.

Redaction: Jeffery, 2008jan01

001 qmult 00192 1 1 5 easy memory: clearly in physics, a joke question
7. In physics jargon, the word “clearly” means:

a) clearly. b) unclearly. c) after 4 pages of algebra. d) wrongly. e) all of the above.

SUGGESTED ANSWER: (e) It seems to me that this is the right answer. When someone says
“clearly” in a physics argument, one needs to reflect on their character.

Wrong answers:

a) Only sometimes.
b) Frequently.
c) Pretty often.
d) Pretty often too.

Redaction: Jeffery, 2001jan01
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001 qmult 00194 1 1 5 easy memory: must be in physics, a joke question
Extra keywords: Not a serious question.

8. In physics jargon, the phrase “must be” means:

a) is. b) just accept it that. c) not necessarily so. d) can’t be. e) all of the above.

SUGGESTED ANSWER: (e)

It seems to me that this is the right answer. When someone says “must be” in a physics
argument, what they mean depends on their stage of desperation.

In fact, it “must be” must generally be interpreted from the emphasis of expression. If someone
says casually the “door must be closed”, it probably is closed and it probably doesn’t matter much
either way. But if someone says “door must be closed” emphatically, you know darn well the door
is open—and disaster is about to ensue.

Wrong answers:

a) Only sometimes.
b) Frequently.
c) Pretty often.
d) Pretty often too.

Redaction: Jeffery, 2001jan01

001 qmult 00260 1 4 2 easy deducto-memory: scientific idealization
9. “Let’s play Jeopardy! For $100, the answer is: In scientific theorizing and model building, it is the

elimination/neglect of complicating secondary factors in order to understand the main factors. In
reality, the secondary factors may or may not be eliminated/neglected to one degree or another. If they
cannot be eliminated/neglected, they have to be modeled in order to test the understanding of the main
factors.”

What is , Alex?

a) Platonic idealization b) scientific idealization c) the scientific method d) experiment
e) observation

SUGGESTED ANSWER: (b) In history, Galileo is cited as a pioneer of scientific idealization
(Wikipedia: Idealization (philosophy of science: Early use).

Wrong answers:

a) Certainly a related concept and an ingredient the origin of scientific idealization.
c) Scientific idealization is part of the usual practice of the scientific method.
d) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

001 qmult 00300 1 4 2 easy deducto-memory: scientific notation defined
Extra keywords: physci

10. “Let’s play Jeopardy! For $100, the answer is: It is a notation in which one expresses a number by a
coefficient decimal number multiplied explicitly by 10 to the appropriate power. If the coefficient is in
the range 1 to 10, but not including 10, the notation is called normalized.”

What is , Alex?

a) British notation b) scientific notation c) metric notation d) tensy notation
e) Irish notation

SUGGESTED ANSWER: (b)

Wrong answers:

e) Tis yourself that does not know that scientific notation was invented by St. Patrick who, alas,
was actually British.

Redaction: Jeffery, 2001jan01

001 qmult 00310 1 3 4 easy math: hundred million billion in sci. not.
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Extra keywords: physci
11. Write a hundred million billion miles in scientific notation.

a) 102 mi. b) 106 mi. c) 109 mi. d) 1017 mi. e) 10−9 mi.

SUGGESTED ANSWER: (d)

As Andy Rooney says (or used to say), don’t you just hate it when newspapers use expressions
like hundred million billion miles—as if you were just going there to drop the kids off for soccer.
We all know scientific notation or should nowadays.

Behold:
102 × 106 × 109 = 1017 mi .

Wrong answers:

e) Seems unlikely.

Redaction: Jeffery, 2001jan01

001 qmult 00320 1 3 1 easy math: show in scientific notation
12. Express 4011 and 0.052 in normalized scientific notation form.

a) 4.011× 103 and 5.2 × 10−2. b) 40.11 × 103 and 52. × 10−2.
c) 40.11 × 102 and 52.× 10−3. d) 4.011× 10−2 and 5.2 × 103. e) 4011 and 0.052.

SUGGESTED ANSWER: (a)

Wrong answers:

c) The numbers are, of course, equal to the numbers in the problem and are in scientific notation,
but not the most conventional form as most people would say.

d) The same remark as for answer (c) applies.

Redaction: Jeffery, 2008jan01

001 qmult 00410 1 4 5 easy deducto-memory: units needed
Extra keywords: physci

13. “Let’s play Jeopardy! For $100, the answer is: In any measurements of quantities, they are conventionally
agreed upon standard things.”

What are , Alex?

a) unities b) dualities c) duplicities d) quantons e) units

SUGGESTED ANSWER: (e)

Wrong answers:

d) I think this is a pretty good alternative to units.

Redaction: Jeffery, 2001jan01

001 qmult 00420 1 1 3 easy memory: SI or metric units
Extra keywords: physci

14. The modern standard set of units for science, most engineering, and much of everyday life (except in
the 2nd largest country in North America) is the International System of Units (Système International
d’Unités or SI) which is often called the:

a) English units. b) Mesopotamian system. c) metric system. d) Paraguayan system.
e) United States customary units.

SUGGESTED ANSWER: (c)

Wrong answers:

a) More or less exactly wrong.
b) In timekeeping and angular measurement, we still use a lot of the sexagesimal system of the

ancient Mesopotamians.
e) What the U.S. uses for many non-scientific purposes.

Redaction: Jeffery, 2001jan01
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001 qmult 00422 1 5 3 easy thinking: US Customary Unit System 1

Extra keywords: the horror, the horror

15. Why is the US Customary Units system (loosely called English Units) hard to use in calculations in
comparison with the metric system?

a) The US Customary Units system has no unit of mass. Consequently, when you need to use mass,
you have to mentally work around the lack of a unit.

b) The US Customary Units system is completely unknown by scientists and engineers, and so, of
course, can scarcely be used.

c) The US Customary Units system has units in a host of irregular sizes: 16 ounces to the pound, 8
pints in a gallon, 12 inches to the foot, and 45 inches to the ell (fact!). This makes calculations and
conversions tortuous. In particular, it is awkward that cubic units of length (e.g., cubic inches, feet,
etc.) are not simply related to standard volume units (e.g., a U.S. gallon is defined as 231 cubic
inches). In everyday life the irregularities of the US Customary Units system don’t cause much of
a problem and maybe even have mnemonic value. But that hardly helps people who want to send
probes to Mars.

d) The complete regularity of the US Customary Units system means that you never know if a number
is 10, 100, 1000, etc., except by context.

e) It’s the revenge for Bunker Hill.

SUGGESTED ANSWER: (c)

In late 1999, NASA lost the Mars Climate Orbiter before its mission could begin by crashing
it on Mars due to confusion between English and metric units.

Wrong answers:

a) There is a unit of mass: the slug: a slug weighs about 32.2 pounds, and if acted upon by a one
pound force will have an acceleration of 1 foot/s**2. But I don’t think a slug has ever been
acted by any force at all.

d) Actually the ancient Mesopotamians in math and astronomy used a sexagesimal system (base
60). But they didn’t specify absolute values (no ”decimal” point) leaving the absolute size to
context which often hard to know 4000 years later.

e) Not an answer. However, still usings essentially English units is probably one of the
disadvantages of the American Revolution.

Redaction: Jeffery, 2008jan01

001 qmult 00430 1 4 3 easy deducto-memory: basic quantities

16. Three quantities usually adopted as basic (i.e., not reducible to other kinds of quantities by convention)
are:

a) length, area, volume. b) mass, weight, heft. c) length, mass, time.
d) time, duration, age. e) length, mass, density.

SUGGESTED ANSWER: (c)

People should just know that (c) is the right answer. Of course, which quantities are taken as
basci is to a degree arbitrary. One could take length, density, and time as basic and define mass
from length and density. But the simple way we think of things suggests length, mass, time as
fundamental.

Wrong answers:

a) Area and volume can be formed from length and so arn’t usually considered fundamental.

b) heft can mean weight or heaviness or to lift or heave.

e) Density isn’t independent of length and mass in the way we usually think of things, and a
time-relating quantity is needed.

Redaction: Jeffery, 2001jan01

001 qmult 00432 1 1 1 easy memory: the 7 base units

17. The 7 base units are meter, kilogram (gram would have been more logical), second, ampere,
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a) kelvin, mole, and candela. b) calvin, mold, and candeleria.
c) kelvin, mouse, and candace. d) melvin, moose, and cantrip.
e) kludge, moor, and mountain.

SUGGESTED ANSWER: (a)

Wrong answers:

d) A cantrip is a magical spell.

Redaction: Jeffery, 2008jan01

001 qmult 00450 1 4 3 easy deducto-memory: MKS acronym for what?
18. MKS stands for:

a) meters, kilometers, centimeters. b) meters, kilometers, seconds.
c) meters, kilograms, seconds. d) millimeters, kilometers, seconds.
e) millimeters, kilograms, seconds.

SUGGESTED ANSWER: (c)

Wrong answers:

a) Does this seem likely?

Redaction: Jeffery, 2008jan01

001 qmult 00452 1 5 3 easy thinking: consistent MKS units in calculations
19. If one used ONLY MKS units (i.e., units of meters, kilograms, seconds, coulombs, amperes, kelvins,

moles, etc., plus MKS units derived from these) in calculations, then one will get answers in:

a) CGS units only. b) MKS or CGS units. c) MKS units only. d) English units only.
e) any old units.

SUGGESTED ANSWER: (c)

An easy thinking question. All physical quantities can be expressed in the 7 fundamental MKS
units plus the MKS units derived from them. Any calculation in pure MKS units can only generate
results in pure MKS units.

Wrong answers:

a) Not possible.
b) Still not possible.
d) This is delusional.

Redaction: Jeffery, 2008jan01

001 qmult 00454 1 5 5 easy thinking: consistent and convenient units, natural units
20. In scientific calculations, it is best to stick to one complete, consistent set of units (MKS or CGS):

a) always. b) half the time. c) never. d) whenever. e) except when its not
convenient. In most specialized fields, there are natural units that are convenient in actual
calculations, but overwhelmingly most often only in human readable outputs. Natural units are
most useful for understanding not calculation. Astronomers, for example often use the solar mass
(1.9891× 1030 kg) as a unit for the masses of stars since the Sun for Earthlings is basic standard of
reference for stars.

SUGGESTED ANSWER: (e)

Wrong answers:

d) A nonsense answer.

Redaction: Jeffery, 2008jan01

001 qmult 00460 1 1 1 easy memory: metric kilo and centi
Extra keywords: physci

21. In SI, the prefixes kilo and centi indicate, respectively, multiplication by:

a) 1000 and 0.01. b) 0.01 and 1000. c) 1000 and 100. d) 60 and 0.01. e) π and e.
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SUGGESTED ANSWER: (a)

Wrong answers:

e) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

001 qmult 00462 1 4 2 easy deducto-memory: SI prefix symbols M- and m-
22. The metric or SI unit prefix symbols M- and m- stand for:

a) mega (factor of 106) and milli (factor of 10−6). b) mega (factor of 106) and milli (factor of
10−3). c) kilo (factor of 106) and milli (factor of 10−3). d) kilo (factor of 106) and milli
(factor of 10−6). e) merger (factor of 109) and melba (factor of 10−6).

SUGGESTED ANSWER: (b)

Wrong answers:

a) This is the tough one to rule out since reason suggests a symmetry between M and m.
c) kilo is for thousand.
d) kilo is for thousand.
e) Moore?

Redaction: Jeffery, 2001jan01

001 qmult 00500 1 1 1 easy memory: conversion in general, factors of unity
Extra keywords: physci

23. In conversions, one can just treat units as variables whose values are never specified. One can do
algebra with them and cancel them. One also knows a set of equalities relating units, and so can write
down factors of unity or conversion factors. For example, 1000 m = 1 km, and so a factor of unity (or
conversion factor) is

1 =
1000 m

1 km
.

This factor would be used to convert an amount in kilometers to meters by:

a) multiplication. b) division. c) addition. d) subtraction. e) squaring.

SUGGESTED ANSWER: (a)

Wrong answers:

b) An amount in meters could be converted to kilometers by division.
e) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

001 qmult 00510 1 4 1 easy deducto-memory: conversion factor=unity factor
Extra keywords: physci

24. A units conversion factor is sometimes called a factor of:

a) unity. b) 2. c) a few. d) 10. e) fact.

SUGGESTED ANSWER: (a) This isn’t a real common expression, but yours truly uses it along
with the more common conversion factor. Note, since conversion doesn’t change physical size, factor
of unity makes sense.

Wrong answers:

b) All too often the size of astronomical uncertainty or error.
c) Same as (b).
d) Same as (b).
e) A nonsense answer.

Redaction: Jeffery, 2001jan01

001 qmult 00520 1 5 1 easy thinking: meter to centimeters
25. Using compact one-number conversion factors is often trickier than just using explicit factors of unity

in doing calculations. But if one has to do repeated conversions, it is convenient to have them. Some
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are straightforward to find. For example, what is the conversion factor for converting meters TO

centimeters?

a) 100 cm/m. b) (1/100) cm/m. c) (1/10) cm/m. d) 10 cm/m. e) 10 m/cm.

SUGGESTED ANSWER: (a)

Wrong answers:

b) Exactly wrong.

Redaction: Jeffery, 2008jan01

001 qmult 00540 1 4 1 easy deducto-memory: kilogram to grams
Extra keywords: physci

26. A kilogram is:

a) 1000 grams. b) 1 × 10−3 grams. c) 3.1416 grams. d) 2 grams. e) 0 grams.

SUGGESTED ANSWER: (a)

Wrong answers:

b) kilograms just sound bigger than grams. Even before this course, everyone should know this
is wrong.

c) Not π grams.
d) C’mon, metric is a decimal system.
e) A nonsense answer.

Redaction: Jeffery, 2001jan01

001 qmult 00550 1 4 4 easy deducto-memory: conversion of an inch to cm
Extra keywords: physci

27. One inch is:

a) 1 m. b) 1 km. c) 1 cm. d) 2.54 cm. e) 1 ft.

SUGGESTED ANSWER: (d)

You can deduce the answer.
In modern times, the yard is defined to be exactly 0.9144 m. Thus,

1 inch =
91.44 cm

36
=

(

2.5 +
1.44

36

)

cm = 2.54 cm exactly.

Wrong answers:

a) A meter is about a yard=36 inches.
b) A kilometer is about 0.6215 miles and a mile is 1.609 kilometers.
c) Doesn’t seem likely given generally offset between SI and British units.
e) Oh c’mon.

Redaction: Jeffery, 2001jan01

001 qmult 00560 1 4 3 easy deducto-memory: conversion mile to km
28. 1 mile is nearly exactly:

a) 1 m. b) 1 km. c) 1.609 km. d) 2.54 cm. e) 1 ft.

SUGGESTED ANSWER: (c)

You can deduce the answer. How likely is it that 1 mi would nearly exactly 1 km?
Actually, the modern mile is defined to be exactly 1.609344 km

(http://en.wikipedia.org/wiki/Mile).

Wrong answers:

a) A meter is about a yard=36 inches.
b) Doesn’t seem likely given generally offset between SI and British units.
d) Not too likely
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e) Oh c’mon.

Redaction: Jeffery, 2001jan01

001 qmult 00570 2 4 4 moderate deducto-memory: 10 m/s to mph
Extra keywords: physci

29. A human (a very speedy human) can run 10 m/s. What is this speed in miles per hour (mi/h)? HINT:

You do not need to do any explicit calculation (although that will work too). Just think about everyday
reality. Can you outrun a car? Yes/no/maybe?

a) 100 mi/h. b) 1 mi/h. c) 11.2 km/s. d) 22.37 mi/h. e) 22.37 miles.

SUGGESTED ANSWER: (d)

One should be able to deduce the only reasonable answer. But if one wants to do the calculation,
then behold:

10 m/s×
(

1mi

1609 m

)

×
(

3600 s

1 h

)

= 22.37 mi/h .

Fortran-95 Code
print*

speed=10.*(1./1609.)*(3600./1.)

print*,’speed in mi/h’

print*,speed

! 22.374146

Wrong answers:

a) Not even Donovan Bailey. (A long ago Canadian sprint hero. Not the one who used steroids.)
b) Your kid sibling could do this.
c) Wrong units. Also this is the escape speed from the surface of the Earth (Fr-454). Humans

arn’t constantly just about launching themselves into orbit.
e) Wrong units.

Redaction: Jeffery, 2001jan01

001 qmult 00580 1 3 4 easy math: seconds in a day
Extra keywords: physci

30. Exactly how many seconds are there in a day? How many seconds are there in a day to order of
magnitude? HINT: “To order of magnitude” means that the number is rounded off to the nearest
power of 10. There is no universal rule about the dividing line between rounding down and rounding
up. However, using

√
10 ≈ 3.162 is a reasonable choice. Thus, the prefix number in normalized scientific

notation is rounded down to 1 if it is less than
√

10, rounded up to 10 if it is larger than
√

10, and
rounded to make an even power of 10 if it is exactly

√
10. For example, 2.2 rounds off to 100 = 1, 991

rounds off to 103, and
√

10000 =
√

10 × 102 rounds off to 102.

a) 86400 s and 104 s. b) 1440 s and 104 s. c) 1440 s and 105 s. d) 86400 s and 105 s.
e) π × 107 s.

SUGGESTED ANSWER: (d)

Wrong answers:

e) This curiously enough is the number of seconds in a year (Julian or tropical) to better than
0.5 % accuracy. This is a simple coincidence, but its a useful mnemonic.

Redaction: Jeffery, 2001jan01

001 qmult 00582 1 3 4 easy math: convert hundred million billion miles to km
31. CONVERT a hundred million billion miles into kilometers.

a) 1.6 × 102 km. b) 1.6 × 106 km. c) 1.6 × 109 km. d) 1.6 × 1017 km.
e) 1.6 × 10−9 km.

SUGGESTED ANSWER: (d) As Andy Rooney says (or used to say), don’t you just hate it
when newspapers quote numbers as hundred million billion miles. We all know scientific notation
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or should nowadays. 102 × 106 × 109 = 1017. A kilometer is about 0.6215 miles and a mile is about
1.609 kilometers.

Wrong answers:

e) Seems unlikely.

Redaction: Jeffery, 2001jan01

001 qfull 00510 1 3 0 easy math: acre-foot conversion
Extra keywords: an exercise in conversion only: there is no useful purpose

32. American hydraulic engineers often use acre-feet to measure volume of water. An acre-foot is the amount
of water that will cover an acre of flat land to 1 foot.

a) Say 3.00 in of rain fell on a plain of 30.0 km2. How many acre-feet of water fell? Note 1 square
mile equals 640 acres and 1 mi = 1.609344 km exactly by the mile definition. HINTS: First, find
the volume in the hybrid units of inch-km2 and then use a separate factor of unity for each unit
conversion: divide and conquer.

b) Now do a perhaps more useful calculation. Find the conversion factor from acre-feet to cubic
meters. Note that 1 in = 2.54 cm exactly by the modern inch definition.

SUGGESTED ANSWER:

a) Behold:

3.0 in × 30 km2 = 3.0 in× 30 km2 ×
(

1 ft

12 in

)

×
(

1 mi

1.609344 km

)2

×
(

640 acres

1 mi2

)

= 1853 acre ft .

b) Behold:

1 acre ft = 1 acre ft×
(

1 mi2

640 acre

) (

1.609344 km

1 mi

)2 (

1000 m

1 km

)2 (

12 in

1 ft

) (

2.540 cm

1 in

) (

1 m

100 cm

)

= 1233.5 m3 .

Thus the conversion factor is
1233.5 m3/(acre ft) .

Wikipedia gives 1233.5 m3/(acre ft), and so Wik and I agree at last.

Fortran-95 Code
print*

volume=3.d0*30.d0*(1.d0/12.d0)*(1.d0/1.609344d0)**2*(640.d0/1.d0)

conv=(1.d0/640.d0)*(1.609344d0/1.d0)**2*(1000.d0/1.d0)**2

&

& *(12.d0/1.d0)*(2.54d0/1.d0)*(1.d0/100.d0)

print*,’volume in acre-feet,conv’

print*,volume,conv

! 1853.29036100374 1233.4818375475203 ! new, improved way

! 1853.4622079999996 1233.3674731176392 ! old way

Redaction: Jeffery, 2001jan01

001 qfull 00520 1 3 0 easy math: Fermi on lectures and the micro-century
Extra keywords: Fermi, micro-century, microcentury

33. Italian-American physicist Enrico Fermi once noted that a standard 50 minute university lecture was
nearly a micro-century. NOTE: A Julian year, which is exactly 365.25 days, is exactly 3.15576 × 107

seconds. Actually, a convenient mnemonic is that a Julian year is π × 107 s which is too small by only
0.5 %. It just a coincidence that the Julian year is almost this number of seconds. More exactly a Julian
year is 1.0045096π × 107 s.

a) How long is a micro-century in minutes actually?
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b) What is the percentage difference between a standard lecture period and a micro-century.

SUGGESTED ANSWER: HRW-9 gives this factoid.

a) Behold:

1 micro-century = 1 micro-century ×
(

10−6 centuries

1 micro-century

) (

100 Jy

1 century

) (

3.15576× 107 s

1 Jy

) (

1 min

60 s

)

= 52.5960 minutes

which is indeed nearly a lecture. As said Marilyn Monroe (1926–1962) on the flight of time in
Some Like it Hot: “It makes a girl think.”

b) Behold:
(

52.596− 50

50

)

× 100 = 5.192 % = 5 % .

Fortran-95 Code
print*

xmucen=1.d0

r1=1.d-6

r2=100.d0

r3=3.15576d7

r4=1.d0/60.d0

xmin=xmucen*r1*r2*r3*r4

pi1=acos(-1.d0)

yearmult=r3/(pi1*1.d7)

diff=(xmin-50.d0)/50.d0

print*,’yearmult,xmin,diff’

print*,yearmult,xmin,diff

! 1.00450960642336 52.5960000000000 5.191999999999993E-002

Redaction: Jeffery, 2001jan01

001 qfull 00930 1 3 0 easy math: light travel time to Sun, amount rate problem
34. The mean Sun-Earth distance, 1.496×1013 cm, is a convenient natural unit in astronomy. (All astronomy

is CGS, not MKS by the by.) This unit is called the astronomical unit. Given the speed of light is
approximately 3.00 × 108 m/s, what is the light travel time from the Sun in minutes?

SUGGESTED ANSWER:

This problem belong to the general class of amount-rate problems. You are given an amount
A to be accumulated and a constant rate of accumulation R. The time t to accumulate the amount
satisfies

A = Rt ,

and so the time is given by

t =
A

R
.

In resource economics such accumulation times are called R/P -radios: R being the resource amount
(and not rate) and P being the production rate.

In the present case, the mean Sun-Earth distance r is the amount and the speed of light c is
the rate. Thus, we have

r

c
=

1.5 × 1013

3 × 1010
= 0.5 × 103 s = 8.3 min

to about 2-digit accuracy.

Redaction: Jeffery, 2001jan01

001 qfull 00950 2 3 0 moderate math: leap seconds, amount rate problem
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35. The mean solar day is known to increase secularly (i.e., in a long-term way) by about 1.70×10−3 seconds
per century due mainly to the tidal interaction of the Moon and Sun (Wikipedia: Tidal acceleration;
Wikipedia: Leap second: Rationale). Currently, the mean solar day is about 86400.002 seconds long
(Wikipedia: Solar time). HINT: Both parts (a) and (b) are questions of how long at a given rate does
a given amount take to accumulate.

a) About how often does a leap second need to be introduced in standard time in order to keep
standard and solar time synchronized?

b) If the current rate of increase in the day continues, about how long in years will it take before a
leap second is needed daily: i.e., how long until the mean solar day is about 86401.0 seconds?

SUGGESTED ANSWER:

a) The trouble is that the modern standard time clock runs fast in comparison to actual
astronomical mean solar time. If they start synchronized, the standard clock completes a day
in less time than solar time: about 0.002 s. So if the two clocks (standard and astronomical)
are synchronized at the start of day 1, then as each day goes by there is an accumulating time
difference between them. At some point the standard clock completes a day 1 s before the
astronomical mean solar clock.

The problem is essentially an amount-rate problem. You have an amount A = 1 s and a
rate R = 0.002 s/day. The time t to accumulate the amount satisfies A = Rt. Thus,

t =
A

R
=

1 s

0.002 s/day
= 500 days .

This simple calculation illustrates a vital, but simple, skill: calculating time needed from a
rate and an amount. Learn it. Actually leap seconds are introduced at midnight on December
31 and June 30 as needed. For more on leap seconds see Wikpedia: Leap second.

Actually, there is a proposal to abolish leap seconds. It’s a bother to keep adjusting for
them. They are added every 18 months or so. So we need 2 every 3 years, 20 every 30 years,
and 200 every 300 years. But 200 s is just 3.3 minutes. This amount of desychronization is
not noticeable for most human purposes. It wouldn’t be that 12 pm would being occuring at
solar dawn or anything like that. So maybe we should have leap minutes when needed: i.e.,
every 100 years or so. Much less bother—and remember “don’t do today what you can put off
till tomorrow since tomorrow may never come”.

b) This is another amount-rage problem—er amount-rate problem. In this case, A = 1 s again
and R = 1.7 × 10−5 s/year. So the time to accumulate the amount is

t =
A

R
=

1 s

1.7 × 10−5 s/year
≈ 6 × 104 years

or about 60 millennia. And it was such an effort to get the 2nd millennium over with. The
rate of increase in the day will likely not stay constant.

FINAL NOTE: You may wonder, but probably not, how the discrepancy solar time and standard
time grows if one accounts for the fact that that length of the day is growing too. It’s turns out to
be very tricky to do it exactly.

Let’s say t′ is solar time measured in solar seconds and t is standard time measured in standard
seconds. Both are clocks and the differential relationship is

dt′ = R dt

where R is a time-dependent scaling factor. So if the standard time clock passes time dt, then the
solar time clock passes R dt. It’s not that more or less time in a classical sense has passed for the
solar clock: it’s just recorded more or fewer ticks: it’s running fast or slow. Say we model R by

R = R0 + 2R1t ,

where R0 is the time zero scaling factor and 2R1 is the time zero derivative of the scaling factor.
The explicit 2 is inserted for a reason. For a finite standard time, one obtains by integration

t′ = R0t + R1t
2 .
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One sees that the explicit 2 vanishes and that simplifies the appearance of the equation.
So one could evaluate t′ for any t if one knew the parameters R0 and R1. One can obtain the

them from two time measurements. These two time measurements give two equations

t′1 = R0t1 + R1t
2
1 and t′2 = R0t2 + R1t

2
2

which can be solved for the unknown parameters. The solution can be found exactly. But let’s say
we take t1 to be so small that the term R1t

2
1 is negligible. Then the solution for R0 is just

R0 =
t′1
t1

.

If t1 is one day, then

R0 =
t1 − x

t1
,

where x is the amount by which solar time lags from standard time which is about 0.002 s.
What of R1? Well dividing by t1 and t2, we get

t′1
t1

= R0 + R1t1 and
t′2
t1

= R0 + R1t2

and then substracting the latter from the former and dividing by t2 − t1, we get

R1 =
t′2/t2 − t′1/t1

t2 − t1
.

If we could evaluate this from the results we know, it would be great. But what we know is that the
increase in the length of the solar day 1.70 × 10−5 s/year. Well by considering four times, two day
intervals far apart, we could evaluate the R1 and verify that it has negligible effect for the length
of day which confirms our approximation for evaluating R0. Then we could use

t′ = R0t + R1t
2

to evaluate any discrepancy assuming our model was right and find out how long before the second
term has an effect on the discrepancy. But I’ve lost patience with this issue.

Redaction: Jeffery, 2001jan01

001 qfull 01130 2 3 0 moderate math: Taylor’s series
36. Some have seen Taylor’s series, some have not. We won’t prove it: we’ll just write it down. Any

sufficiently differentiable function in the neighborhood of a point x0 can be approximated by a Taylor’s
series expansion about x0 for a sufficiently small neighborhood. The general formula is

f(x) =

∞
∑

ℓ=0

(x − x0)
ℓ

ℓ!
f (ℓ)(x0) ,

where f (ℓ)(x0) is the ℓth derivative of f evaluated at x0. The terms in the series are labeled by their
power of (x−x0): (x−x0)

0 is 0th (zeroth) order, (x−x0)
1 is 1st order, (x−x0)

2 is 2nd order, and so on.
The Taylor’s series is convergent (i.e., doesn’t explode to infinity) for sufficiently small (x − x0). The
smaller (x−x0) is, the less important the higher order terms. In physics (and other fields no doubt), one
is often interested in the behavior near some important point x0, and so truncates the Taylor’s series to
find an simple approximate expression for the neighborhood of x0. For example

f(x) =



































f(x0) , 0th order or
constant approximation;

f(x0) + (x − x0)f
′(x0) , 1st order or

linear approximation;

f(x0) + (x − x0)f
′(x0) +

(x − x0)
2

2
f ′′(x0) , 2nd order or

quadratic approximation.
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The 0th order expansion, approximates the function as a constant which is the function value at x0; the
1st order expansion approximates the function by a line that is tangent to the function at x0; the 2nd
order expansion approximates the function by a quadratic that is tangent to the function x0.

a) Draw a general function on the Cartesian plane and at a general point x0 schematically show how
the 0th, 1st, and 2nd order approximations to the function behave.

b) Taylor expand

f(x) =
1

1 + x

to 2nd order about x0 = 0. (Here x − x0 is just x, of course.)

c) Taylor expand
f(x) =

√
1 + x

to 2nd order about x = 0.

d) Taylor expand

f(x) =
1√

1 + x

to 2nd order about x = 0.

e) Taylor expand
f(x) = sin(x)

to 3rd order about x = 0. Note that x must be in radians for the Taylor’s expansion to work for
the trigonometric functions. This is because the derivatives of these functions are derived using
radians.

f) Taylor expand
f(x) = cos(x)

to 2nd order about x = 0.

SUGGESTED ANSWER:

a) You’ll have to use your imagination.

b) Behold:

f(x) =
1

1 + x
= 1 − x + x2 + . . . .

Actually the complete expansion can be done in this case:

f(x) =
1

1 + x
=

∞
∑

ℓ=0

(−1)ℓxℓ .

This expansion is convergent for |x| < 1. Note the usual power series is a Taylors expansion of
1/(1 − x): i.e.,

1

1 − x
=

∞
∑

ℓ=0

xℓ

(Ar-238).

c) Behold:

f(x) =
√

1 + x = 1 +
1

2
x − 1

8
x2 + . . . .

d) Behold:

f(x) =
1√

1 + x
= 1 − 1

2
x +

3

8
x2 + . . . .

e) Behold:

f(x) = sin(x) = x − 1

6
x3 + . . . .
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f) Behold:

f(x) = cos(x) = 1 − 1

2
x2 + . . . .

Redaction: Jeffery, 2001jan01
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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Numerically robust solution (Press-178):

q = −1

2

[

b + sgn(b)
√

b2 − 4ac
]

x1 =
q

a
x2 =

c

q

6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =
∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2
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Five 1-dimensional equations of kinematics

Equation No. Equation Unwanted variable
1 v = at + v0 ∆x

2 ∆x =
1

2
at2 + v0t v

3 (timeless eqn) v2 − v2
0 = 2a∆x t

4 ∆x =
1

2
(v + v0)t a

5 ∆x = vt − 1

2
at2 v1

Fiducial acceleration due to gravity (AKA little g) g = 9.8 m/s2

xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1
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12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω

13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V
ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work
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dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum

~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .
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180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics

~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0
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0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant

REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2
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P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max

y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v

24 Thermodynamics

dE = dQ − dW = T dS − p dV

TK = TC + 273.15 K TF = 1.8 × TC + 32◦F

Q = mC∆T Q = mL

PV = NkT P =
2

3

N

V
KEavg =

2

3

N

V

(

1

2
mv2

RMS

)

vRMS =

√

3kT

m
= 2735.51 . . .×

√

T/300

A
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PV γ = constant 1 < γ ≤ 5

3
vsound =

√

B

ρ
=

√

−V (∂P/∂V )S

m(N/V )
=

√

γkT

m

ε =
W

QH
=

QH − QC

W
= 1 − QC

QH
ηheating =

QH

W
=

QH

QH − QC
=

1

1 − QC/QH
=

1

ε

ηcooling =
QC

W
=

QH − W

W
=

1

ε
− 1 = ηheating − 1

εCarnot = 1 − TC

TH
ηheating,Carnot =

1

1 − TC/TH
ηcooling,Carnot =

TC/TH

1 − TC/TH


