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Introductory Physics: Calculus-Based NAME:

Homework 1: Introduction to Physics, Units, Conversions: Homeworks are due as posted on the
course web site. Multiple-choice questions will NOT be marked, but some of them will appear on exams.
One or more full-answer questions may be marked as time allows for the grader. Hand-in the full-answer
questions on other sheets of paper: i.e., not crammed onto the downloaded question sheets. Make the full-
answer solutions sufficiently detailed that the grader can follow your reasoning, but you do NOT be verbose.
Solutions will be posted eventually after the due date. The solutions are intended to be (but not necessarily
are) super-perfect and often go beyond a fully correct answer.

1. Have you written your name in the name place at the upper right of this paper?

a) Yes. b) No. c) Nope. d) Nein. e) Never.

2. “Let’s play Jeopardy! For $100, the answer is: In shorthand, it is the science of matter and motion,
space and time.”

What is , Alex?

a) biology b) phrenology c) economics d) rocket science e) physics

3. The ultimate goal of physics—or at least one of the ultimate goals—is a theory of:

a) something (TOS). b) nothing (TON). c) everything (TOE). d) woe (TOW).
e) Fred (TOF).

4. “Let’s play Jeopardy! For $100, the answer is: The most obvious choice for the first natural philosophers
or physicists. They attempted to explain the natural world from simple general principles: from these
principles complex structures could arise. In mythology on the other hand, usually deities with human-
like personalities are invoked to explain structures. But there is probably no hard line between natural
philosophy and mythology: one shades into the other in the early days.”

Who are , Alex?

a) Presocratic philosophers of ancient Greece b) Babylonian diviners c) Roman augurs
d) Mongolian shamans e) Irish druids

5. Mathematical physics in a sense began with the ancient Babylonian astronomers. Later the ancient
Greeks added a bit to mathematical physics, particularly Archimedes (circa 287–212 BCE) with his
work on statics and hydrostatics. But idea of physics as a largely mathematical science is largely
attributable to , , and their contemporaries in the 17th century.

a) William Shakespeare (1564–1616); John Milton (1608–1674)
b) Galileo (1564–1642); Isaac Newton (1643–1727)
c) Bernini (1598–1680); Borromini (1599–1667)
d) Caravaggio (1571–1610); Poussin (1594–1665)
e) Wallenstein (1583–1634); Turenne (1611-1675)

6. Because there are no doubts about its validity in the classical limit (scales larger than microscopic, but
smaller than cosmic, speeds much less than that of light, gravity much less strong than near a black
hole) and because it is the exact limit of more general theories, Newtonian physics can be regarded as
a/an:

a) utterly false theory. b) negligible theory c) useless theory.
d) true exact emergent theory. e) phantasm

7. In physics jargon, the word “clearly” means:

a) clearly. b) unclearly. c) after 4 pages of algebra. d) wrongly. e) all of the above.

8. In physics jargon, the phrase “must be” means:

a) is. b) just accept it that. c) not necessarily so. d) can’t be. e) all of the above.

9. “Let’s play Jeopardy! For $100, the answer is: In scientific theorizing and model building, it is the
elimination/neglect of complicating secondary factors in order to understand the main factors. In
reality, the secondary factors may or may not be eliminated/neglected to one degree or another. If they
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cannot be eliminated/neglected, they have to be modeled in order to test the understanding of the main
factors.”

What is , Alex?

a) Platonic idealization b) scientific idealization c) the scientific method d) experiment
e) observation

10. “Let’s play Jeopardy! For $100, the answer is: It is a notation in which one expresses a number by a
coefficient decimal number multiplied explicitly by 10 to the appropriate power. If the coefficient is in
the range 1 to 10, but not including 10, the notation is called normalized.”

What is , Alex?

a) British notation b) scientific notation c) metric notation d) tensy notation
e) Irish notation

11. Write a hundred million billion miles in scientific notation.

a) 102 mi. b) 106 mi. c) 109 mi. d) 1017 mi. e) 10−9 mi.

12. Express 4011 and 0.052 in normalized scientific notation form.

a) 4.011× 103 and 5.2 × 10−2. b) 40.11 × 103 and 52. × 10−2.
c) 40.11 × 102 and 52.× 10−3. d) 4.011× 10−2 and 5.2 × 103. e) 4011 and 0.052.

13. “Let’s play Jeopardy! For $100, the answer is: In any measurements of quantities, they are conventionally
agreed upon standard things.”

What are , Alex?

a) unities b) dualities c) duplicities d) quantons e) units

14. The modern standard set of units for science, most engineering, and much of everyday life (except in
the 2nd largest country in North America) is the International System of Units (Système International
d’Unités or SI) which is often called the:

a) English units. b) Mesopotamian system. c) metric system. d) Paraguayan system.
e) United States customary units.

15. Why is the US Customary Units system (loosely called English Units) hard to use in calculations in
comparison with the metric system?

a) The US Customary Units system has no unit of mass. Consequently, when you need to use mass,
you have to mentally work around the lack of a unit.

b) The US Customary Units system is completely unknown by scientists and engineers, and so, of
course, can scarcely be used.

c) The US Customary Units system has units in a host of irregular sizes: 16 ounces to the pound, 8
pints in a gallon, 12 inches to the foot, and 45 inches to the ell (fact!). This makes calculations and
conversions tortuous. In particular, it is awkward that cubic units of length (e.g., cubic inches, feet,
etc.) are not simply related to standard volume units (e.g., a U.S. gallon is defined as 231 cubic
inches). In everyday life the irregularities of the US Customary Units system don’t cause much of
a problem and maybe even have mnemonic value. But that hardly helps people who want to send
probes to Mars.

d) The complete regularity of the US Customary Units system means that you never know if a number
is 10, 100, 1000, etc., except by context.

e) It’s the revenge for Bunker Hill.

16. Three quantities usually adopted as basic (i.e., not reducible to other kinds of quantities by convention)
are:

a) length, area, volume. b) mass, weight, heft. c) length, mass, time.
d) time, duration, age. e) length, mass, density.

17. The 7 base units are meter, kilogram (gram would have been more logical), second, ampere,

a) kelvin, mole, and candela. b) calvin, mold, and candeleria.
c) kelvin, mouse, and candace. d) melvin, moose, and cantrip.
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e) kludge, moor, and mountain.

18. MKS stands for:

a) meters, kilometers, centimeters. b) meters, kilometers, seconds.
c) meters, kilograms, seconds. d) millimeters, kilometers, seconds.
e) millimeters, kilograms, seconds.

19. If one used ONLY MKS units (i.e., units of meters, kilograms, seconds, coulombs, amperes, kelvins,
moles, etc., plus MKS units derived from these) in calculations, then one will get answers in:

a) CGS units only. b) MKS or CGS units. c) MKS units only. d) English units only.
e) any old units.

20. In scientific calculations, it is best to stick to one complete, consistent set of units (MKS or CGS):

a) always. b) half the time. c) never. d) whenever. e) except when its not
convenient. In most specialized fields, there are natural units that are convenient in actual
calculations, but overwhelmingly most often only in human readable outputs. Natural units are
most useful for understanding not calculation. Astronomers, for example often use the solar mass
(1.9891× 1030 kg) as a unit for the masses of stars since the Sun for Earthlings is basic standard of
reference for stars.

21. In SI, the prefixes kilo and centi indicate, respectively, multiplication by:

a) 1000 and 0.01. b) 0.01 and 1000. c) 1000 and 100. d) 60 and 0.01. e) π and e.

22. The metric or SI unit prefix symbols M- and m- stand for:

a) mega (factor of 106) and milli (factor of 10−6). b) mega (factor of 106) and milli (factor of
10−3). c) kilo (factor of 106) and milli (factor of 10−3). d) kilo (factor of 106) and milli
(factor of 10−6). e) merger (factor of 109) and melba (factor of 10−6).

23. In conversions, one can just treat units as variables whose values are never specified. One can do
algebra with them and cancel them. One also knows a set of equalities relating units, and so can write
down factors of unity or conversion factors. For example, 1000 m = 1 km, and so a factor of unity (or
conversion factor) is

1 =
1000 m

1 km
.

This factor would be used to convert an amount in kilometers to meters by:

a) multiplication. b) division. c) addition. d) subtraction. e) squaring.

24. A units conversion factor is sometimes called a factor of:

a) unity. b) 2. c) a few. d) 10. e) fact.

25. Using compact one-number conversion factors is often trickier than just using explicit factors of unity
in doing calculations. But if one has to do repeated conversions, it is convenient to have them. Some
are straightforward to find. For example, what is the conversion factor for converting meters TO

centimeters?

a) 100 cm/m. b) (1/100) cm/m. c) (1/10) cm/m. d) 10 cm/m. e) 10 m/cm.

26. A kilogram is:

a) 1000 grams. b) 1 × 10−3 grams. c) 3.1416 grams. d) 2 grams. e) 0 grams.

27. One inch is:

a) 1 m. b) 1 km. c) 1 cm. d) 2.54 cm. e) 1 ft.

28. 1 mile is nearly exactly:

a) 1 m. b) 1 km. c) 1.609 km. d) 2.54 cm. e) 1 ft.

29. A human (a very speedy human) can run 10 m/s. What is this speed in miles per hour (mi/h)? HINT:

You do not need to do any explicit calculation (although that will work too). Just think about everyday
reality. Can you outrun a car? Yes/no/maybe?
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a) 100 mi/h. b) 1 mi/h. c) 11.2 km/s. d) 22.37 mi/h. e) 22.37 miles.

30. Exactly how many seconds are there in a day? How many seconds are there in a day to order of
magnitude? HINT: “To order of magnitude” means that the number is rounded off to the nearest
power of 10. There is no universal rule about the dividing line between rounding down and rounding
up. However, using

√
10 ≈ 3.162 is a reasonable choice. Thus, the prefix number in normalized scientific

notation is rounded down to 1 if it is less than
√

10, rounded up to 10 if it is larger than
√

10, and
rounded to make an even power of 10 if it is exactly

√
10. For example, 2.2 rounds off to 100 = 1, 991

rounds off to 103, and
√

10000 =
√

10 × 102 rounds off to 102.

a) 86400 s and 104 s. b) 1440 s and 104 s. c) 1440 s and 105 s. d) 86400 s and 105 s.
e) π × 107 s.

31. CONVERT a hundred million billion miles into kilometers.

a) 1.6 × 102 km. b) 1.6 × 106 km. c) 1.6 × 109 km. d) 1.6 × 1017 km.
e) 1.6 × 10−9 km.

32. American hydraulic engineers often use acre-feet to measure volume of water. An acre-foot is the amount
of water that will cover an acre of flat land to 1 foot.

a) Say 3.00 in of rain fell on a plain of 30.0 km2. How many acre-feet of water fell? Note 1 square
mile equals 640 acres and 1 mi = 1.609344 km exactly by the mile definition. HINTS: First, find
the volume in the hybrid units of inch-km2 and then use a separate factor of unity for each unit
conversion: divide and conquer.

b) Now do a perhaps more useful calculation. Find the conversion factor from acre-feet to cubic
meters. Note that 1 in = 2.54 cm exactly by the modern inch definition.

33. Italian-American physicist Enrico Fermi once noted that a standard 50 minute university lecture was
nearly a micro-century. NOTE: A Julian year, which is exactly 365.25 days, is exactly 3.15576 × 107

seconds. Actually, a convenient mnemonic is that a Julian year is π × 107 s which is too small by only
0.5 %. It just a coincidence that the Julian year is almost this number of seconds. More exactly a Julian
year is 1.0045096π × 107 s.

a) How long is a micro-century in minutes actually?

b) What is the percentage difference between a standard lecture period and a micro-century.

34. The mean Sun-Earth distance, 1.496×1013 cm, is a convenient natural unit in astronomy. (All astronomy
is CGS, not MKS by the by.) This unit is called the astronomical unit. Given the speed of light is
approximately 3.00 × 108 m/s, what is the light travel time from the Sun in minutes?

35. The mean solar day is known to increase secularly (i.e., in a long-term way) by about 1.70×10−3 seconds
per century due mainly to the tidal interaction of the Moon and Sun (Wikipedia: Tidal acceleration;
Wikipedia: Leap second: Rationale). Currently, the mean solar day is about 86400.002 seconds long
(Wikipedia: Solar time). HINT: Both parts (a) and (b) are questions of how long at a given rate does
a given amount take to accumulate.

a) About how often does a leap second need to be introduced in standard time in order to keep
standard and solar time synchronized?

b) If the current rate of increase in the day continues, about how long in years will it take before a
leap second is needed daily: i.e., how long until the mean solar day is about 86401.0 seconds?

36. Some have seen Taylor’s series, some have not. We won’t prove it: we’ll just write it down. Any
sufficiently differentiable function in the neighborhood of a point x0 can be approximated by a Taylor’s
series expansion about x0 for a sufficiently small neighborhood. The general formula is

f(x) =

∞
∑

ℓ=0

(x − x0)
ℓ

ℓ!
f (ℓ)(x0) ,

where f (ℓ)(x0) is the ℓth derivative of f evaluated at x0. The terms in the series are labeled by their
power of (x−x0): (x−x0)

0 is 0th (zeroth) order, (x−x0)
1 is 1st order, (x−x0)

2 is 2nd order, and so on.
The Taylor’s series is convergent (i.e., doesn’t explode to infinity) for sufficiently small (x − x0). The
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smaller (x−x0) is, the less important the higher order terms. In physics (and other fields no doubt), one
is often interested in the behavior near some important point x0, and so truncates the Taylor’s series to
find an simple approximate expression for the neighborhood of x0. For example

f(x) =



































f(x0) , 0th order or
constant approximation;

f(x0) + (x − x0)f
′(x0) , 1st order or

linear approximation;

f(x0) + (x − x0)f
′(x0) +

(x − x0)
2

2
f ′′(x0) , 2nd order or

quadratic approximation.

The 0th order expansion, approximates the function as a constant which is the function value at x0; the
1st order expansion approximates the function by a line that is tangent to the function at x0; the 2nd
order expansion approximates the function by a quadratic that is tangent to the function x0.

a) Draw a general function on the Cartesian plane and at a general point x0 schematically show how
the 0th, 1st, and 2nd order approximations to the function behave.

b) Taylor expand

f(x) =
1

1 + x

to 2nd order about x0 = 0. (Here x − x0 is just x, of course.)

c) Taylor expand
f(x) =

√
1 + x

to 2nd order about x = 0.

d) Taylor expand

f(x) =
1√

1 + x

to 2nd order about x = 0.

e) Taylor expand
f(x) = sin(x)

to 3rd order about x = 0. Note that x must be in radians for the Taylor’s expansion to work for
the trigonometric functions. This is because the derivatives of these functions are derived using
radians.

f) Taylor expand
f(x) = cos(x)

to 2nd order about x = 0.
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2



9

xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics
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~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant
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REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2

P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max
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y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v

24 Thermodynamics

dE = dQ − dW = T dS − p dV

TK = TC + 273.15 K TF = 1.8 × TC + 32◦F

Q = mC∆T Q = mL

PV = NkT P =
2

3

N

V
KEavg =

2

3

N

V

(

1

2
mv2

RMS

)

vRMS =

√

3kT

m
= 2735.51 . . .×

√

T/300

A

PV γ = constant 1 < γ ≤ 5

3
vsound =

√

B

ρ
=

√

−V (∂P/∂V )S

m(N/V )
=

√

γkT

m

ε =
W

QH
=

QH − QC

W
= 1 − QC

QH
ηheating =

QH

W
=

QH

QH − QC
=

1

1 − QC/QH
=

1

ε

ηcooling =
QC

W
=

QH − W

W
=

1

ε
− 1 = ηheating − 1

εCarnot = 1 − TC

TH
ηheating,Carnot =

1

1 − TC/TH
ηcooling,Carnot =

TC/TH

1 − TC/TH


