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Intro Physics Semester I Name:

Homework 12: Equilibrium: One or two full answer questions will be marked. There will also be a mark
for completeness. Homeworks are due usually the day after the chapter they are for is finished. Solutions
will be posted soon thereafter. The solutions are intended to be (but not necessarily are) super-perfect and
often go beyond a fully correct answer.
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013 qmult 00100 1 1 3 easy memory: rotational equilibrium
1. To be in rotational equilibrium relative to some origin in an inertial frame, an object must have (relative

to that origin):

a) zero angular momentum. b) non-zero angular momentum.
c) constant angular momentum. d) non-constant angular momentum. e) no hair.

SUGGESTED ANSWER: (c)

Wrong answers:

a) No. It can have non-zero angular momentum.
b) No. It can have zero angular momentum.
d) Exactly wrong.
e) Black holes have no hair.

Redaction: Jeffery, 2001jan01

013 qmult 00200 2 5 3 moderate thinking: static equilibrium
2. In STATIC equilibrium for a rigid body:

a) there is no center-of-mass or rotational acceleration, but there can be NONZERO center-of-mass
velocity and angular velocity.

b) there is no center-of-mass or rotational acceleration, and NO center-of-mass or rotational velocity.
If static equilibrium exists in a specific reference frame, it exists in ALL reference frames no matter
how those reference frames may be moving.

c) there is no center-of-mass or rotational acceleration, and NO center-of-mass or rotational velocity.
If static equilibrium exists in a specific reference frame, it exists ONLY in reference frames NOT

moving with respect to the specific reference frame.
d) there are no forces at all.
e) there are no torques at all.

SUGGESTED ANSWER: (c) The students have to absorb the idea of moving frames of
reference.

Wrong answers:

b) A table in static equilibrium on a train, is not in static equilibrium relative to the ground.
d) There can be no net force.
e) There can be no net torque.

Redaction: Jeffery, 2001jan01

013 qmult 00300 1 4 1 easy deducto-memory: hanging center of mass
3. “Let’s play Jeopardy! For $100, the answer is: The net gravitational torque on an object about any

origin at all is the same as if all the mass of the object were concentrated at the center of mass: i.e.,

~τgrav = ~rcm × mgĝ ,

where ~rcm is measured from the origin and ĝ is a unit vector in the direction of the gravitational force.
Only when ~rcm and ĝ are aligned or when ~rcm = 0 does the gravitational torque vanish. Thus for an
object hanging from a frictionless pivot, equilibrium only exists for the center of mass directly above,
on, or directly below the pivot. Above is unstable because any perturbation causes a gravitational
torque away from the equilibrium. On is a neutral equilibrium since there is no gravitational torque
whatever the orientation of the object. Below is stable since the gravitational torque then tries to pull
the center of mass back to the equilibrium point. With any damping to kill rotational kinetic energy
(but insufficient static friction in the pivot point to oppose any gravitational torque), the object will
come to a static stable equilibrium with the center of mass directly below the pivot.”

a) Why does the center of mass of an object tend to come to rest directly BELOW a freely turning
pivot from which the object is hanging, Alex?

b) Why does the center of mass of an object tend to come to rest directly ABOVE a freely turning
pivot from which the object is hanging, Alex?

c) Why is there a center of mass, Alex?
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d) Why is there a center, Alex?
e) Why is there a universe, Alex?

SUGGESTED ANSWER: (a)

Wrong answers:

b) Above is a point of unstable equilibrium.
e) This is not the question to which the answer applies. The reason for the universe is—no, sorry,

that would be telling.

Redaction: Jeffery, 2001jan01

013 qmult 00400 1 3 5 easy math: simple beam torque calculation
4. An object of mass 1 kg sits on a horizontal beam at 1 m from a point fulcrum. What is the torque about

the fulcrum that the weight of the mass causes?

a) 1 Nm. b) 2 Nm. c) 3 Nm. d) 4 Nm. e) 9.8 Nm.

SUGGESTED ANSWER: (e)

But the student does really have to know how to calculate a torque. Note that the units of
torque are dimensionally the same as energy. But despite this dimensional likeness, torque and
energy are different things.

Wrong answers:

Redaction: Jeffery, 2001jan01

013 qmult 00500 2 3 1 moderate math: torque calculation with a beam
5. Two objects are sitting on a horizontal beam. The beam rests on a point fulrum at its center of mass.

The beam is free to rotate about the fulcrum. Object 1 sits on the left-hand side of the pivot at a
distance ℓ1 from the fulcrum. Object 2 sits on the right-hand side at a distance ℓ2. Given m1 = Nm2,
what is ℓ2 in terms of ℓ1? HINT: Draw a diagram.

a) ℓ2 = Nℓ1. b) ℓ2 = ℓ1/N . c) ℓ2 = ℓ1. d) ℓ2 = 2ℓ1. e) ℓ2 = 0.

SUGGESTED ANSWER: (a)

Sheer common sense and deductions should lead to the right answer. For equilibrium,
τnet = −m1gℓ1 + m2gℓ2 = 0 taking the fulcrum as the origin. Now g cancels out. Masses
determined by balancing are independent of g. Balances really measure mass, not weight. Thus,
ℓ2 = ℓ1m1/m2 = ℓ1N .

Note that the beam gravity force and fulcrum normal force exert no torques since they both
effectively act at the fulcrum point. Also note that the beam does not have to be uniform for it
to have zero torque: it just have to have its center of mass at the fulcrum point. If the masses are
removed the beam stays balance since the torques about the fulcrum point are still zero.

Wrong answers:

e) Not unless N = 0.

Redaction: Jeffery, 2001jan01

013 qmult 00600 1 1 3 easy memory: indeterminate equilibrium cases
6. In a planar or 2-dimensional case of static equilibrium, can you solve for four unknown normal and

static friction forces assuming perfectly rigid objects?

a) No. The system is INDETERMINATE: you only have FOUR equilibrium equations.
b) Yes. The system is DETERMINATE since you have FOUR equilibrium equations.
c) No. The system is INDETERMINATE: you only have THREE equilibrium equations.
d) Yes. The system is DETERMINATE: you have THREE equilibrium equations.
e) No. The system is INDETERMINATE: you only have TWO equilibrium equations.

SUGGESTED ANSWER: (c)

Wrong answers:

e) Nah you have three: the x and y force equations and the z torque equation.
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Redaction: Jeffery, 2001jan01

013 qfull 0110 1 3 0 easy math: origin-independent torque
7. There are some results that are useful to know in studying equilibrium for a rigid body. We will not

specialize to a rigid system initially—we will say when we do so specialize. We only consider inertial
frames in our derivations and discussions. Non-inertial frames can be treated, but they are trickier.

a) The net external torque on a system about a first general origin O in an inertial frame is

~τext =
∑

i

~ri × ~Fi .

The net external force on the system is

~Fext =
∑

i

~Fi .

A second general origin O′ is located at ∆~r relative to the first origin. The vector ∆~r can in
general depend linearly on time, and thus the second origin can define a second inertial frame. The
displacements relative to the second origin are related to displacements relative to the first origin
by

~r ′
i = ~ri − ∆~r

—and yes, the minus sign is right: you should draw a diagram to see this. Derive the expression
for the net external torque ~τ ′

ext about the second origin in terms of the first origin quantities. Note
that forces are frame-invariant quantities in classical mechanics.

b) If ~Fext = 0, what is the relationship of ~τ ′
ext and ~τext. What is the relationship between the two

angular momenta relative to the two origins in this case? HINT: You’ll have to do a trivial integral
to answer the second question.

c) Now we specialize to a rigid body of constant mass m and consider conditions imposed one after
another. Explain what each condition implies about the system and why it does so? First, we
impose ~Fext = 0. Second, we impose that the system is examined in the rest frame of its center of
mass. Third, we impose that τext = 0 using the center of mass as the origin. Fourth, we impose
that system is not rotating in anyway about the center of mass.

d) Are ~Fext = 0 and ~τext = 0 sufficient or necessary conditions for overall equilibrium for a rigid body?
Are they sufficient or necessary conditions for overall static equilibrium? Explain your answers.

SUGGESTED ANSWER:

a) Behold:

~τ ′
ext =

∑

i

~r ′
i × ~Fi =

∑

i

(~ri − ∆~r) × ~Fi =
∑

i

~ri × ~Fi − ∆~r × ~Fext = ~τext − ∆~r × ~Fext .

Thus, we find

~τ ′
ext = ~τext − ∆~r × ~Fext .

b) Clearly, if Fext = 0,

~τ ′
ext = ~τext .

This means that
d~L′

dt
=

d~L

dt

from which it follows by integration that

~L′ = ~L + ~C

where ~C is a constant vector.
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It’s almost obvious that ~C will not be zero in general. But for a proof, consider a particle
of mass m moving on a straight line in the xy plane at constant velocity ~v in some inertial
frame. Its z angular momentum for the two origins at rest in the inertial frame are

Lz = mrv sin θ = dmv L′
z = mr′v sin θ′ = d′mv

where v is the particle speed, r and r′ are the xy plane components of the displacements, θ and
θ′ are the angular coordinates of the velocities relative to the displacement vectors measured
positive in the clockwise direction, and d = r sin θ and d′ = r′ sin θ′ are signed moment arms
(here for momenta rather than force). Since d 6= d′ in general, it’s clear that Lz and L′

z are
not equal in general.

c) Imposing ~Fext = 0, implies (according to Newton’s 2nd law) that the center of mass velocity
is constant (or equivalently that the momentum is constant). Imposing the rest of frame of
the center of mass implies that the center of mass is at rest: it must be at rest in the frame it
defines. Imposing that τext = 0 implies (according to the rotationa 2nd law) that the angular
momentum of the system is constant. From the part (b) result, we know that τext = 0 for any
inertial-frame origin since it is true for the center-of-mass origin. Thus, the angular momentum
is constant for any inertial frame origin.

Imposing that the rigid body is not rotating about the center of mass implies that zero
angular momentum about the center of mass. This would not be true for a non-rigid body
where total angular momentum can be zero, but parts can have non-zero angular momentum.
I do not think there is anyway to have zero angular momentum about the center of mass for a
rigid body and still have some rotation. Now if there is no rotation about the center of mass,
there can be rotation about any other fixed point. If a particle of the system were moving
relative any fixed point, it would be moving relative to the center of mass.

Finally, we conclude that the system is in overall static equalibrium.

d) The conditions ~Fext = 0 and τext = 0 are necessary for overall equilibrium for without them one
or both of momentum and angular momentum are changing and by definition of equilibrium
that is not an equilibrium case. They are also both sufficient, since we define equilibrium for
a rigid body by saying we have them. Note that if angular momentum is not zero, the rigid
body could be rotating and not necessarily, I think, as about a single fixed axis.

The conditions are necessary for overall static equilibrium since it is an equilibrium case.
They are not sufficient since one must also have zero momentum and zero angular momentum.

Redaction: Jeffery, 2008jan01

013 qfull 00200 1 3 0 easy math: general horizontal beam
8. The general formula for the net torque about a z axis is

τz =
∑

i

rxy,iFxy,i sin θi ,

where i indexes the applied forces, rxy,i is the xy component of radial vector from the origin to where a

force is applied, Fxy,i is the xy component of an applied force, and θi is the angular coordinate of ~Fxy,i

relative to rxy,i measured positive in the counterclockwise direction usually.

a) Consider a horizontal beam with a supporting fulcrum and weights of mass mi put along it with
their center of masses at xi. The beam itself is one of the weights. The beam system is aligned
with the x direction and is symmetric about the xy plane through the origin. This means there are
no x and y torques. This is a usual setup for a balance scale with the rotation axis assigned to be
the z axis. Draw a diagram of the horizontal-beam system.

b) Specialize the general formula for the net torque about a z axis to the horizontal-beam system with
the origin taken at the fulcrum point. The fulcrum is ideal and exerts no torque.

c) There are no forces in the x or z directions for the horizontal beam system. What is the general
formula for the force in the y direction? HINT: Do not forget the normal force FN of the fulcrum.

d) What are the conditions for static equilibrium for the horizontal beam system? We assume the
beam and weights act as a rigid body.
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e) Usually, we can only solve for FN from the static equilibrium equations themselves. Thus, we can
only really solve the two equations of equilibrium for one other unknown, either an xj or an mj .
Using

∑

i,i6=j to mean sum over i excluding j, solve for unknowns xj and FN and then for unknowns
mj and FN.

SUGGESTED ANSWER:

a) You will have to imagine the diagram.

b) Behold:

τz = −
∑

i

ximig ,

where the negative sign accounts for the fact that torques on the right of the fulcrum are
clockwise and those on the left counterclockwise. Since the fulcrum is at the origin, it exerts
no torque.

c) Behold:

Fy = FN −
∑

i

mig ,

where FN is the normal force of the fulcrum which must turn out ot be a positive value in this
case.

d) For equilibrium, we require

0 = FN −
∑

i

mig , 0 =
∑

i

ximi .

To be static equilibrium, we also require that at some instant in time nothing is moving. Since
the net force and net torque are zero, nothing will ever move.

e) For the unknown xj and FN case, the solutions by inspection are

xj = −
∑

i,i6=j ximi

mj
FN =

∑

i

mig .

For the unknown mj and FN case, the solutions by inspection are

mj = −
∑

i,i6=j ximi

xj
FN =

∑

i,i6=j

mig −
∑

i,i6=j ximig

xj
.

Redaction: Jeffery, 2008jan01

013 qfull 00210 1 3 0 easy math: horizontal balanced beam calculation
9. A horizontal beam is balanced on a point fulcrum at xfulcrum = 0.20 m. The beam is has mass 0.10 kg

and its center of mass is at xbeam cm = 0.50 m. There is also a single object of mass 2.0 kg on the beam.
Where is its center of mass?

SUGGESTED ANSWER:

The equilibrium torque equation with g canceled and the origin shifted to the fulcrum is:

0 =
∑

i

ℓimi

where ℓ is the displacement from the fulcrum. Solving for ℓj gives

ℓj = −
∑′

i ℓimi

mj
,

where the prime means we exclude j from the summation. In the present case,

ℓj = −0.30 × 0.10

0.50
= −0.015 m .
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In the x coordinate, the object center of mass is at 0.185 m.

Redaction: Jeffery, 2001jan01

013 qfull 00310 2 3 0 moderate math: equilibrium ladder
10. A ladder leans against a wall in static equilibrium. Ladder, wall, and ground are perfectly rigid. The

ladder has mass m, length ℓ, and center of located at ℓcm along its length measuring from its base. The
problem is 2-dimensional: the ladder and wall are seen in the xy plane and a z axis is the only rotation
axis.

a) Draw a good diagram marking on all possible forces: gravity, ground normal force FN1 ground
friction force Ff1 wall normal force FN2 and. wall friction force Ff2. Mark the forces where they
act; in the case of gravity, the center of mass is the appropriate place. Draw the ladder leaning to
the RIGHT so that we are all consistent. The angle between the ladder and the VERTICAL is
θ. Make the diagram large enough to be easily read.

b) Write out all the equations of equilibrium including all possible forces. Just so we are all on the
same wavelength, take the origin for the torque equation to be the contact point between ladder and
ground. Why is this a good choice? HINT: Using moment arms is a convenient way to determine
the torques, but write them out in terms of ℓ, ℓcm, and trigonometric functions of θ. Also, in setting
up the equations you must adopt some conventions about which directions are positive for which
forces and what is the positive torque direction. As long as you are consistent everything works
out the same physically no matter what conventions you adopt.

c) In our idealized system, we have have no general formulae for normal forces or friction forces. We
must must solve for them from the laws of motion or rotational motion. Given only m, g, θ as
knowns, can we solve for all of the for the normal and wall forces? Explain your answer?

d) Assuming the wall is frictionless, derive the formulae for FN1, Ff1 and FN2. Are these general
formulae for these forces? Explain your answer.

e) Given ordinary static friction between the ladder and ground and still zero friction for the wall,
what must happen as θ increases, but before it reaches 90◦? Explain your answer.

f) Again assume the wall is frictionless. Say the ladder is just on the verge of slipping at θslip. Derive
the formula for the static friction coefficient of the ground.

g) Assuming the floor is frictionless, derive the formulae for FN1, FN2, and Ff2. What ordinary friction
rule is violated in this case?

SUGGESTED ANSWER:

a) You will have to imagine the diagram.

b) The three equations of equilibrium are

0 = Ff1 − FN2 ,

0 = FN1 + Ff2 − mg ,

0 = −mgℓcm sin θ + Ff2ℓ sin θ + FN2ℓ cos θ ,

where we have taken the ladder base on the ground as the origin for the torque equation. The
signed moment arms were easily determined geometrically. One could, of course, use the torque
definition and the trigonometric identities

sin(π − θ) = sin θ and sin
(

θ +
π

2

)

= cos θ

to find the torques. In writing down the torque equation, we have taken counterclockwise as
positive.

In principle, we could choose any point in the plane of the problem as the origin for the
torque equation. For equilibrium, clearly the net torque about any origin at all must be zero:
individual torques remain origin dependent, but forces friction and normal forces are, of course,
origin independent. The choice of origin is a good one because the torque of the forces F1 and
Ff1 are zero for this choice. Thus, the choice of origin simplifies the equations to be solved.
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We cannot solve for normal and frictional forces since we only three equations of
equilibrium and four unknowns. The problem is indeterminate using the idealized perfectly
rigid objects that we have invoked. Nature has no problem though giving those forces definite
values. This is because in reality all objects show some deformation under applied force (unless
the applied force is uniform field force as gravity is for most small objects) and the deformation
causes an equal and opposite restoring force. The force laws governing those deformations and
restoring forces provide enough constraints that the realistic problem is always determinate.
It is well beyond our scope, however, to go into elasticity theory.

c) No. There are four unknown forces and only three equations of equilibrium. We cannot solve
for the unknowns without more information.

d) Given Ff2 = 0, we can solve the equations for the three unknown forces by inspection. We
obtain

FN1 = mg ,

Ff1 = mg
ℓcm

ℓ
tan θ ,

FN2 = Ff1 = mg
ℓcm

ℓ
tan θ .

These are NOT general formulae for these forces. They are formulae for what the forces must
be given our static system.

e) Given Ff2 = 0, we can solve the equations for the ground friction Ff1 must be to maintain
static equilibrium. We obtained this formula in the part (d) answer. However, static friction
has an upper limit µst|FN|. If θ grows sufficiently large, then this limit will be exceeded since
according to our formula for Ff1 goes to infinity as θ → 90◦ while the FN1 stays constant. So
static equilibrium will fail and the ladder will slide to the ground. I once saw this happen
with a worker—who was not hurt to save suspense—on a ladder in the computer room of the
astronomy department of the University of Barcelona.

f) Using the approximate law |Fst,max| = µst|FN| and the part (d) answer, we find

µst =

∣

∣

∣

∣

Ff1

FN1

∣

∣

∣

∣

=
ℓcm

ℓ
tan θslip .

g) Given Ff1 = 0, it follows from the equations in the part (d) answer that

FN1 = 0 ,

Ff2 = mg
ℓcm

ℓ
,

FN2 = mladderg

(

1 − ℓcm

ℓ

)

.

It certainly violates our ordinary friction rules to have a wall frictional force without a wall
normal force. But those rules don’t actually account for all cases. Here the wall must be
sticky—maybe with fresh paint.

Redaction: Jeffery, 2001jan01

013 qfull 00330 3 5 0 tough thinking: rolling a roller over a step
11. A roller (either a spherically symmetric ball or a cylindrically symmetric cylinder) is rolled up to a step

and rests against it. The roller has radius R and mass m. The step has height y with y ≤ R. A force
Fapp is applied horizontally to the roller at height R to try to push the roller over the step. A line
drawn through the applied force through passes the roller’s center of mass. Find the expression for Fapp

that just marginally lifts the roller. This is a static equilibrium situation where the normal force of the
ground has just gone to zero, but the roller is still marginally touching the ground. What are the Fapp

values for y = 0 and y = R? HINTS: Draw a good diagram, use geometry, and identify the best pivot
point for a torque calculation.
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SUGGESTED ANSWER:

You will have to imagine the diagram. First note that since the roller has just lifted from the
ground, the normal and friction forces of the ground have gone to zero. Thus, only three forces act:
gravity, the applied force, and the corner force where the roller touches the corner. We must choose
the origin for the torque calculation to be at the corner. The force at the corner cancels the applied
force and gravity to maintain translational equilibrium, but until we find out what the applied force
is we can’t work out the corner force. If we don’t know the corner force, we don’t know its torque
unless we take the origin so that its moment arm is zero and it has zero torque. After we find the
applied force we could find out the corner force, but I confess to having no burning interest in it.

From the torque equilibrium equation and a bit of geometry to find the moment arms (or one
could go back to the torque definition), we find

0 = Fapp(R − y) − mg
√

2Ry − y2 .

Thus

Fapp = mg















√

2Ry − y2

R − y
in general;

0 for y = 0;
∞ for y = R.

Clearly, no applied force as described in the problem can lift the roller over a step of height equal
to the roller’s radius.

If y → 0, then the applied force must turn off for there to be equilibrium. In this case the corner
force becomes a normal force to counter gravity. The roller is just sitting in neutral equilibrium on
the ground.

The formula actually works for y > R too. A proof of this is really necessary though from a
new diagram. For y > R, Fapp becomes negative (i.e., points away from the roller). Also the corner
is no longer a corner, but some sort of clamp that pulls up (to support against gravity) and away
from the roller to cancel Fapp.

Redaction: Jeffery, 2001jan01
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a



12

6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics
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~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′
ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant
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REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2

P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max
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y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v

24 Thermodynamics

dE = dQ − dW = T dS − p dV

TK = TC + 273.15 K TF = 1.8 × TC + 32◦F

Q = mC∆T Q = mL

PV = NkT P =
2

3

N

V
KEavg =

2

3

N

V

(

1

2
mv2

RMS

)

vRMS =

√

3kT

m
= 2735.51 . . .×

√

T/300

A

PV γ = constant 1 < γ ≤ 5

3
vsound =

√

B

ρ
=

√

−V (∂P/∂V )S

m(N/V )
=

√

γkT

m

ε =
W

QH
=

QH − QC

W
= 1 − QC

QH
ηheating =

QH

W
=

QH

QH − QC
=

1

1 − QC/QH
=

1

ε

ηcooling =
QC

W
=

QH − W

W
=

1

ε
− 1 = ηheating − 1

εCarnot = 1 − TC

TH
ηheating,Carnot =

1

1 − TC/TH
ηcooling,Carnot =

TC/TH

1 − TC/TH


