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Intro Physics Semester I Name:

Homework 10: Rotational Kinematics: One or two full answer questions will be marked. There will
also be a mark for completeness. Homeworks are due usually the day after the chapter they are for is
finished. Solutions will be posted soon thereafter. The solutions are intended to be (but not necessarily are)
super-perfect and often go beyond a fully correct answer.

Answer Table Name:

a b c d e a b c d e
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1. A circle can be divided into:

a) 360 divisions only. b) any number of divisions you like. c) 2π divisions only.
d) π divisions only. e) 360 or 2π divisions only.

2. How many radians are there in a circle?

a) π. b) 2π. c) 3π. d) 360◦. e) 360.

3. The division of the circle into 360◦ was an arbitrary choice—and we don’t know why. We just know
the ancient Mesopotamian mathematicians and astronomers did it this way—you know Mesopotamia—
ancient Iraq: “the cradle of civilization”. Their choice was just adopted by the ancient Greeks and got
passed on to us. In the French Revolutionary epoch, the decimal system was adopted for most measures,
but the revolutionaries didn’t get around (you might say) to the circle. We can guess that one reasons is
that the ancient Mesopotamians had a preference for whole number arithmetic particularly in division
and 360 has a lot of whole number factors. How many whole number (i.e., integer) factors does 360
have counting 1 and 360 itself?

a) 24. b) 360. c) 6. d) 7. e) 12.

4. What is the approximate conversion factor from radians to degrees?

a) 1/60degrees/radian. b) π degrees/radian. c) 2π degrees/radian.
d) 60 degrees/radian. e) 360 degrees/radian.

5. There are 2π radians in a circle. It’s rather inconvenient that this means that there are 2π = 6.2831853 . . .
radians in a circle which is an irrational number. For convenience, we could use the revolution (with
sympbol Rev: vocalized rev) as a new unit: 1 Rev = 2π. One hundredth of an Rv would be a:

a) exaRev. b) megaRev. c) kiloRev. d) deciRev. e) centiRev.

6. Approximately, at arm’s length a finger subtends 1◦, a fist 10◦, and a spread hand 18◦. These numbers,
of course, vary a bit depending on person and exactly how the operation is done. What are these angles
approximately in radians?

a) 1/60, 1/6, and 1/3 radians. b) 60, 600, and 1800 radians.
c) π/12, π/3, and π/2 radians. d) π/12, π/3, and π radians. e) π/12, π/3, and 2π radians.

7. Can you cover the Moon with your finger held at arm’s length? HINT: You could try for yourself if
you are not in a a test mise en scène.

a) No. The Moon is much larger in angle than a finger. Just think how huge the Moon looks on the
horizon sometimes.

b) It depends critically on the size of one’s finger and arm. People with huge hands can to it and those
without can’t.

c) Yes. A finger at arm’s length typically subtends about 10◦ and the Moon subtends 0.01◦.

d) No. The Moon’s diameter is about 3470 km and a finger is about a centimeter or so in width.
e) Usually yes. A finger at arm’s length typically subtends about 1◦ and the Moon subtends 0.5◦.

8. For small angles θ measured in radians and with increasing accuracy as θ goes to zero (where the
formulas are in fact exact), one has the small angle approximations:

a) sin θ ≈ cos θ ≈ 1 − 1

2
θ2. b) cos θ ≈ tan θ ≈ 1 − 1

2
θ2. c) sin θ ≈ cos θ ≈ θ.

d) cos θ ≈ tan θ ≈ θ. e) sin θ ≈ tan θ ≈ θ.

9. “Let’s play Jeopardy! For $100, the answer is: It is the study of the description of rotational motion or
angular motion without reference to forces or torques.”

What is , Alex?

a) translational dynamics b) rotational dynamics c) translational kinematics
d) rotational kinematics e) rotational freight

10. The rotational kinematics analog to 1-dimensional translational (or rectilinear) motion is:

a) general rotation. b) kernal rotation. c) rotation about a single fixed axis.
d) rotation about two axes. e) rotation about three axes.
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11. A change in angular position of a point is a/an:

a) angular displacement. b) angular velocity. c) angular acceleration.
d) translational velocity. e) translational acceleration.

12. The usual symbols for the angular kinematic variables angular displacement, angular velocity, and
angular acceleration all for rotational motion around a single fixed axis are, respectively:

a) α, β, γ. b) θ, ω, α. c) θ, α, ω. d) ω, θ, α. e) δ, ǫ, ζ.

13. About a single fixed axis,

ω = lim
∆t→0

∆θ

∆t
or, if you know calculus, ω =

dθ

dt

is the definition of:

a) angular displacement. b) angular acceleration. c) angular velocity.
d) angular momentum. e) torque.

14. About a single fixed axis,

α = lim
∆t→0

∆ω

∆t
or, if you know calculus, α =

dω

dt

is the definition of

a) angular displacement. b) angular acceleration. c) angular velocity.
d) angular momentum. e) torque.

15. The formulas
∆s = ∆θr , v = ωr , a = αr

(where r is the radius of circular motion) relate the rotational variables to the analog:

a) units. b) transgressional variables. c) tangential variables. d) angular units.
e) translational units.

16. The rotational constant-angular-acceleration kinematic equations:

a) have no resemblance to the linear kinematic equations.
b) are exactly the same as the linear kinematic equations, except that the angular kinematic equations

relate ANGULAR rather than linear variables.
c) are exactly the same as the linear kinematic equations, except that the angular kinematic equations

relate LINEAR rather than angular variables.
d) do not allow for angular acceleration.
e) include torque terms.

17. The number of ALGEBRAICALLY INDEPENDENT rotational constant-angular-acceleration
equations is:

a) 5. b) 4. c) 3. d) 2. e) 1.

18. The rotational constant-angular-acceleration equation

ω2 = ω2
0 + 2α∆θ

by itself alone does NEVER allows you to solve for:

a) α. b) ∆θ. c) ω0. d) ω. e) t.

19. A wheel spins π radians in 10.0 s with an angular acceleration of 4.00 radians/s2. What is its final
angular velocity?

a) 80.1 radians/s. b) 203 radians/s. c) 20.3 radians/s. d) 3.14 radians/s.
e) 6.28 radians/s.

20. A discus thrower (in Greek, a Diskobolos) accelerates a discus from rest through π radians accelerating
it from angular velocity 0 to angular velocity 15 rad/s. We idealize his motion as circular with radius
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r = 0.81 m. The time of the throwing motion is 0.27 s. What is the net TRANSLATIONAL

acceleration (not tangential acceleration) of the discus at the end of the throwing motion just before
release? Give the direction of acceleration relative to the inward radial direction.

a) 200 m/s2; 10◦. b) 13.9 m/s2; 188◦. c) 188 m/s2; 13.9◦. d) 150 m/s2; 15◦.
e) 100 m/s2; 50◦.

21. Waldo’s back—you know, Waldo Pepper, the Playful Pig—just accept it. This time, the Bold Boar
has decided to become an astronaut and is training on NASA’s giant centrifuge—the one in the film
The Right Stuff. Let’s guess it has a radius of 10 m. The centrifuge spins in the horizontal: i.e., the
centrifuge axis is perpendicular to the ground.

a) Starting from rest the centrifuge goes into a constant angular acceleration phase for 10 s. At this
point Waldo—who does indeed have a mass of 150 kg—notes that the vertical weighing scale he
is nauseatingly pressed on reads 3000 N. What is the centripetal force on Waldo and what kind of
force is the centripetal force?

b) The Sentient Swine now does some math—some correct math. What does Waldo find for his
tangential velocity at the 10 s mark? What does he find for his angular velocity at the 10 s mark?

c) Doing a little more correct math, Waldo now finds his angular acceleration from time zero to the
10 s mark. What is this angular acceleration?

d) At this point, the Shaken Bacon does a little Gedanken experiment—just like Einstein—“what if I
instantaneously left NASA’s big blender and found myself 1000 KILOMETERS from the center
of Pluto (formerly the 9th planet) and moving perpendicularly to the line to Pluto in free space, but
with my current velocity?” What in this case would Waldo’s angular velocity be about Pluto—for
an instant since after that the Heck-of-a-Hog knows his orbital path will almost certainly not be
circular.
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67428(67)× 10−11 Nm2/kg2 (2006, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)



6

sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt


