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Modern Physics: Physics 305, Section 1

NAME:

Homework 8: Spin, Magnetic Dipole Moments, and the Spin-Orbit Effect: Homeworks are due
as posted on the course web site. They are NOT handed in. The student reports that it is completed and
receives one point for this. Solutions are already posted, but students are only permitted to look at the
solutions after completion. The solutions are intended to be (but not necessarily are) super-perfect and go
beyond a complete answer expected on a test.

1. “Let’s play Jeopardy! For $100, the answer is: It is the intrinsic angular momentum of a fundamental
(or fundamental-for-most-purposes) particle. It is invariant and its quantum number s is always an
integer or half-integer.

What is , Alex?

a) rotation b) quantum number c) magnetic moment d) orbital angular momentum
e) spin

2. “Let’s play Jeopardy! For $100, the answer is: Goudsmit and Ulhenbeck.”

a) Who are the original proposers of electron spin in 1925, Alex?
b) Who performed the Stern-Gerlach experiment, Alex?
c) Who are Wolfgang Pauli’s evil triplet brothers, Alex?
d) What are two delightful Dutch cheeses, Alex?
e) What were Rosencrantz and Gildenstern’s first names, Alex?

3. A spin s particle’s angular momentum vector magnitude (in the vector model picture) is

a)
√

s(s+ 1)h−. b) sh− c)
√

s(s− 1)h− d) −sh− e) s(s+ 1)h−2

4. The eigenvalues of a component of the spin of a spin 1/2 particle are always:

a) ±h−. b) ± h−
3

. c) ± h−
4

. d) ± h−
5

. e) ± h−
2

.

5. The quantum numbers for the component of the spin of a spin s particle are always:

a) ±1. b) s, s− 1, s− 2, . . . ,−s+ 1,−s. c) ±1

2
. d) ±2. e) ±1

4
.

6. Is the spin (not spin component) of an electron dependent on the electron’s environment?

a) Always.
b) No. Spin is an intrinsic, unchanging property of a particle.
c) In atomic systems, no, but when free, yes.
d) Both yes and no.
e) It depends on a recount in Palm Beach.

7. A spatial operator and a spin operator commute:

never. b) sometimes. c) always. d) always and never. e) to the office.

8. What is

µb =
eh−
2me

= 9.27400915(26)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T ?

a) The nuclear magneton, the characteristic magnetic moment of nuclear systems.
b) The Bohr magneton, the characteristic magnetic moment of electronic systems.
c) The intrinsic magnetic dipole moment of an electron.
d) The coefficient of sliding friction.
e) The zero-point energy of an electron.

9. The g factor in quantum mechanics is the dimensionless factor for some system that multiplied by
the appropriate magneton (e.g., Bohr magneton for electron systems) times the angular momentum of
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the system divided by h− gives the magnetic moment of the system. For example for the electron, the
intrinsic magnetic moment operator associated with intrinsic spin is given by

~µop = −gµb

~Sop

h−
,

where µb is the Bohr magneton and Sop is the spin vector operator. What is g for the intrinsic magnetic
moment operator of an electron to modern accuracy?

a) 1. b) 2. c) 2.0023193043622(15). d) 1/137. e) 137.

10. An object in a uniform magnetic field with magnetic moment due to the object’s angular momentum
will both classically and quantum mechanically:

a) Lancy progress. b) Lorenzo regress. c) London recess. d) Larmor precess.
e) Lamermoor transgress.

11. What is the main internal perturbation preventing the spinless hydrogenic eigenstates from being the
actual ones?

a) The Stark effect. b) The Zeeman effect. c) The Stern-Gerlach effect.
d) The spin-orbit interaction. e) The Goldhaber interaction.

12. The hydrogen atom energy level energies corrected for the fine structure perturbations (i.e., the
relativistic and spin-orbit perturbations) is

E(n, ℓ,±1/2, j) = −ERyd

n2

m

me

[

1 +
α2

n2

(

n

j + 1/2
− 3

4

)]

,

where n is the principal quantum number, ℓ is the orbital angular momentum quantum number, ±1/2
is allowed variations of j from ℓ, j (the total angular momentum quantum number) is a redundant
parameter since j = max(ℓ± 1/2, 1/2) (but it is a convenient one),

ERyd =
1

2
mec

2α2

is the Rydberg energy, me is the electron mass, α ≈ 1/137 is the fine structure constant, and

m =
memp

me +mp

is the reduced mass with mp being the proton mass. The bracketed perturbation correction term is

α2

n2

(

n

j + 1/2
− 3

4

)

which is of order α2 ≈ 10−4 times smaller than the unperturbed energy. Show that the perturbation
term is always negative and reduces the energy from the unperturbed energy: i.e., show that

n

j + 1/2
− 3

4
> 0

in all cases.
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Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they are
neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so
some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998× 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

e = 1.602176487(40)× 10−19 C

ERydberg = 13.60569193(34) eV

ge = 2.0023193043622 (electron g-factor)

h = 6.62606896(33)× 10−34 J s = 4.13566733(10)× 10−15 eV s

hc = 12398.419 eVÅ ≈ 104 eV Å

h− = 1.054571628(53)× 10−34 J s = 6.58211899(16)× 10−16 eV s

k = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23),MeV

α = e2/(4πǫ0h−c) = 7.2973525376(50)× 10−3 = 1/137.035999679(94) ≈ 1/137

λC = h/(mec) = 2.4263102175(33)× 10−12 m = 0.0024263102175(33) Å

µB = 5.7883817555(79)× 10−5 eV/T

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

3 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]

sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

4 Blackbody Radiation
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Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

E = hν =
hc

λ
p =

h

λ

F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)

5 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

6 Matter Waves
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λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫ ∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

7 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t

ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗iφj dx = δij cj =

∫ b

a

φ∗jf(x) dx

[A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫ ∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ

|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫ ∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫ ∞

−∞

dx 〈Ψi|x〉〈x|Ψj〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x)

P
dfe/o(x)

dx
= ∓dfe/o(x)

dx

8 Spherical Harmonics
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Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .

s p d f g h i . . .

9 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a0

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
mreduced =

m1m2

m1 +m2

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
≈ −13.606× Z2

n2

mreduced

me
eV

10 Spin, Magnetic Dipole Moment, Spin-Orbit Interaction

S2
op =

3

4
h−

(

1 0
01

)

s =
1

2
s(s+ 1) =

3

4
S =

√

s(s+ 1)h− =

√
3

2
h−
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Sz,op =
h−
2

(

1 0
0 −1

)

ms = ±1

2
χ+ =

(

1
0

)

χ− =

(

0
1

)

µb =
eh−
2me

= 9.27400915(26)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

µnuclear =
eh−
2mp

= 5.05078324(13)× 10−27 J/T = 3.1524512326(45)× 10−8 eV/T

~µℓ = −gℓµb

~L

h−
µℓ = gℓµbℓ(ℓ+ 1) µℓ,z = −gℓµb

Lz

h−
µℓ,z = −gℓµbmℓ

~τ = ~µ× ~B PE = −~µ · ~B ~F = ∆(~µ · ~B) Fz =
∑

j

µj
∂Bj

∂z
~ω =

gℓµb

h−
~B

~J = ~L+ ~S J =
√

j(j + 1)h− j = |ℓ − s|, |ℓ− s+ 1|, . . . , ℓ+ s triangle rule

Jz = mj h− mj = −j,−j + 1, . . . , j − 1, j

E(n, ℓ,±1/2, j) = −ERyd

n2

m

me

[

1 +
α2

n2

(

n

j + 1/2
− 3

4

)]

11 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′

obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2
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E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)

τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


