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Modern Physics: Physics 305, Section 1

NAME:

Homework 6: 1-Dimensional Applications of Non-Relativistic Quantum Mechanics: Homeworks
are due as posted on the course web site. They are NOT handed in. The student reports that it is completed
and receives one point for this. Solutions are already posted, but students are only permitted to look at the
solutions after completion. The solutions are intended to be (but not necessarily are) super-perfect and go
beyond a complete answer expected on a test.

Answer Table for the Multiple-Choice Questions
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1. In quantum mechanics, the infinite square well can be regarded as the prototype of:

a) all bound systems. b) all unbound systems. c) both bound and unbound systems.
d) neither bound nor unbound systems. e) Prometheus unbound.

2. In the infinite square well problem, the wave function and its first spatial derivative are:

a) both continuous at the boundaries.
b) continuous and discontinuous at the boundaries, respectively.
c) both discontinuous at the boundaries.
d) discontinuous and continuous at the boundaries, respectively.
e) both infinite at the boundaries.

3. Meeting the boundary conditions of bound quantum mechanical systems imposes:

a) Heisenberg’s uncertainty principle. b) Schrödinger’s equation. c) quantization.
d) a vector potential. e) a time-dependent potential.

4. At energies higher than the bound stationary states there:

a) are between one and several tens of unbound states. b) are only two unbound states.
c) is a single unbound state. d) are no states. e) is a continuum of unbound states.

5. “Let’s play Jeopardy! For $100, the answer is: This effect occurs because wave functions can extend
(in an exponentially decreasing way albeit) into the classically forbidden region: i.e., the region where
a classical particle would have negative kinetic energy.”

What is , Alex?

a) stimulated radiative emission b) quantum mechanical tunneling c) quantization
d) symmetrization e) normalization

6. A simple model of the outer electronic structure of a benzene molecule is a 1-dimensional infinite square
well with:

a) vanishing boundary conditions. b) periodic boundary conditions.
c) aperiodic boundary conditions. d) no boundary conditions.
e) incorrect boundary conditions.

7. You are given the time-independent Schrödinger equation

Hψ(x) =

[

− h−2

2m

∂2

∂x2
+ V (x)

]

ψ(x) = Eψ(x)

and the infinite square well potential

V (x) =
{

0 , x ∈ [0, a];
∞ otherwise.

a) What must the wave function be outside of the well (i.e., outside of the region [0, a]) in order to satisfy
the Schrödinger equation? Why?

b) What boundary conditions must the wave function satisfy? Why must it satisfy these boundary
conditions?

c) Reduce Schrödinger’s equation inside the well to an equation of the same form as the CLASSICAL

simple harmonic oscillator equation with all the constants combined into a factor of −k2, where k is
newly defined constant. What is k’s definition?

d) Solve for the general solution for a SINGLE k value, but don’t impose boundary conditions or
normalization yet. A solution by inspection is adequate. Why can’t we allow solutions with E ≤ 0?
Think carefully: it’s not because k is imaginary when E < 0.

e) Use the boundary conditions to eliminate most of the solutions with E > 0 and to impose quantization
on the allowed set of distinct solutions (i.e., on the allowed k values). Give the general wave function
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with the boundary conditions imposed and give the quantization rule for k in terms of a dimensionless
quantum number n. Note that the multiplication of a wave function by an arbitrary global phase factor
eiφ (where φ is arbitrary) does not create a physically distinct wave function (i.e., does not create a
new wave function as recognized by nature.) (Note the orthogonality relation used in expanding general
functions in eigenfunctions also does not distinguish eigenfunctions that differ by global phase factors
either: i.e., it gives the expansion coefficients only for distinct eigenfunctions. So the idea of distinct
eigenfunctions arises in pure mathematics as well as in physics.)

f) Normalize the solutions.

g) Determine the general formula for the eigenenergies in terms of the quantum number n.

8. The one-dimensional infinite square well with a symmetric potential and width a is

V =

{

0 for |x| ≤ a/2;
∞ for |x| > a/2.

The eigenstates for infinite square well are given by

ψn(x) =

√

2

a
×

{

cos(kx) for n = 1, 3, 5 . . .;
sin(kx) for n = 2, 4, 6 . . .,

where
ka

2
=
nπ

2
and k =

nπ

a
.

The n is the quantum number for eigenstates. The eigenstates have been normalized and are guaranteed
orthogonal by the mathematics of Hermitian operators of the which the Hamiltonian is one. A quantum
number is a dimensionless index (usually integer or half-integer) that specifies the eigenstates and
eigenvalues somehow. The eigen-energies are given by

En =
h−2
k2

2m
=

h−2

2m

(π

a

)2

n2 .

a) Verify the normalization of eigenstates.

b) Determine 〈x〉 for the eigenstates.

c) Determine 〈pop〉 for the eigenstates. HINT: Recall

pop =
h−
i

∂

∂x
.

d) Determine 〈p2
op〉 and the momentum standard deviation σp for the eigenstates.

e) Determine 〈x2〉 and the position standard deviation σx in the large n limit. HINT: Assume x2

can be approximated constant over one complete cycle of the probability density ψ∗

nψn

f) Now for the boring part. Determine 〈x2〉 and the position standard deviation σx exactly now.
HINT: There probably are several different ways of doing this, but there seem to be no quick
tricks to the answer. The indefinite integral

∫

x2 cos(bx) dx =
x2

b
sin(bx) +

2

b2
x cos(bx) − 2

b3
sin(bx)

might be helpful.

g) Verify that the Heisenberg uncertainty principle

∆x∆p = σxσp ≥ h−
2

is satisfied for the infinite square well case.
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Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they are
neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so
some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

2 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]

sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

3 Blackbody Radiation

Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

k = 1.3806505(24)× 10−23 J/K c = 2.99792458× 108 m

h = 6.6260693(11)× 10−34 J s = 4.13566743(35)× 10−15 eV s

h− =
h

2π
= 1.05457168(18)× 10−34 J s

hc = 12398.419 eVÅ ≈ 104 eV Å E = hν =
hc

λ
p =

h

λ
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F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)

4 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

λC =
h

mec
= 2.426310238(16)× 10−12 m e = 1.602176487(40)× 10−19 C

me = 9.1093826(16)× 10−31 kg = 0.510998918(44)MeV

mp = 1.67262171(29)× 10−27 kg = 938.272029(80)MeV

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

5 Matter Waves
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λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫

∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫

∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

6 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t

ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗i φj dx = δij cj =

∫ b

a

φ∗jf(x) dx [A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫

∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ

|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫

∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫

∞

−∞

dx 〈Ψ|x〉〈x|Ψ〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x) P

dfe/o(x)

dx
= ∓dfe/o(x)

dx

7 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns
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β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′

obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2

E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)

τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


