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Modern Physics: Physics 305, Section 1

NAME:

Homework 5: Non-Relativistic Quantum Mechanics Homeworks are due as posted on the course
web site. They are NOT handed in. The student reports that it is completed and receives one point for
this. Solutions are already posted, but students are only permitted to look at the solutions after completion.
The solutions are intended to be (but not necessarily are) super-perfect and go beyond a complete answer
expected on a test.

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 16. O O O O O

2. O O O O O 17. O O O O O
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7. O O O O O 22. O O O O O
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12. O O O O O 27. O O O O O

13. O O O O O 28. O O O O O

14. O O O O O 29. O O O O O

15. O O O O O 30. O O O O O
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002 qmult 00080 1 1 2 easy memory: wave-particle duality
1. The principle that all microscopic physical entities have both wave and particle properties is called the

wave-particle:

a) singularity. b) duality. c) triality. d) infinality. e) nullility.

SUGGESTED ANSWER: (b)

Wrong answers:

e) Oh, c’mon.

Redaction: Jeffery, 2001jan01

002 qmult 00090 1 4 5 easy deducto-memory: Sch eqn
2. “Let’s play Jeopardy! For $100, the answer is: The equation that governs (or equations that govern)

the time evolution of quantum mechanical systems in the non-relativistic approximation.”

What is/are , Alex?

a) ~Fnet = m~a b) Maxwell’s equations c) Einstein’s field equations of general relativity
d) Dirac’s equation e) Schrödinger’s equation

SUGGESTED ANSWER: (e)

Wrong answers:

d) The Dirac equation for electrons includes relativistic effects.

Redaction: Jeffery, 2001jan01

002 qmult 00100 1 1 1 easy memory: Sch eqn compact form
3. The full Schrödinger’s equation in compact form is:

a) HΨ = ih−∂Ψ

∂t
. b) HΨ = h−∂Ψ

∂t
. c) HΨ = i

∂Ψ

∂t
. d) HΨ = ih−∂Ψ

∂x
.

e) H−1Ψ = ih−∂Ψ

∂t
.

SUGGESTED ANSWER: (a)

Wrong Answers:

b) The i is missing.
c) The h− is missing.

Redaction: Jeffery, 2001jan01

002 qmult 00210 1 1 1 easy memory: QM probability density
4. In the probabistic interpretation of wave function Ψ, the quantity |Ψ|2 is:

a) a probability density. b) a probability amplitude. c) 1. d) 0.
e) a negative probability.

SUGGESTED ANSWER: (a)

Wrong answers:

b) The probability amplitude is Ψ itself.
e) A nonsense answer.

Redaction: Jeffery, 2001jan01

002 qmult 00220 1 1 5 easy memory: probability of finding particle in dx
5. The probability of finding a particle in differential region dx is:

a) Ψ(x, t) dx. b) Ψ(x, t)∗ dx. c) [Ψ(x, t)∗/Ψ(x, t)] dx. d) Ψ(x, t)2 dx.
e) Ψ(x, t)∗Ψ(x, t) dx = |Ψ(x, t)|2 dx.

SUGGESTED ANSWER: (e)

Wrong Answers:
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a) I’m always making this mistake when the wave function is pure real.

Redaction: Jeffery, 2001jan01

002 qmult 00300 1 4 5 easy deducto-memory: observable defined
Extra keywords: See CT-137, Gr-104

6. “Let’s play Jeopardy! For $100, the answer is: It is an Hermitian operator that governs an dynamical
variable in quantum mechanics.”

What is an , Alex?

a) intangible b) intaglio c) obtainable d) oblivion e) observable

SUGGESTED ANSWER: (e)

Wrong answers:

a) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

002 qmult 00310 1 1 3 easy memory: expectation value defined
7. In quantum mechanics, a dynamical variable is governed by a Hermitian operator called an observable

that has an expectation value that is:

a) the most likely value of the quantity given by the probability density: i.e., the mode of the
probability density.

b) the median value of the quantity given by the probability density.
c) the mean value of the quantity given by the probability density.
d) any value you happen to measure.
e) the time average of the quantity.

SUGGESTED ANSWER: (c): Why do we use this funny jargon term expectation value in
quantum mechanics? Who knows. We’re stuck with it though.

Wrong Answers:

e) No. The probability density is for an ensemble of identical states all at one time.

Redaction: Jeffery, 2001jan01

002 qmult 00320 1 1 3 easy memory: expectation value notation
8. The expectation value of operator Q for some wave function is often written:

a) Q. b) 〉Q〈. c) 〈Q〉. d) 〈f(Q)〉. e) f(Q).

SUGGESTED ANSWER: (c)

Wrong Answers:

d) This is expectation value of the operator f(Q).
e) This is the operator f(Q).

Redaction: Jeffery, 2001jan01

002 qmult 00400 1 1 1 easy memory: physical requirments
Extra keywords: Gr-11

9. These quantum mechanical entities (with some exceptions) must be:

i) Single-valued (and their derivatives too).
ii) finite (and their derivatives too).
iii) continuous (and their derivatives too).
iv) normalizable or square-integrable.

They are:
a) wave functions. b) observables. c) expectation values. d) wavelengths.
e) wavenumbers.

SUGGESTED ANSWER: (a)
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Wrong answers:

b) So-so guess.

Redaction: Jeffery, 2008jan01

002 qmult 00500 1 1 2 easy memory: the momentum operator defined

10. The momentum operator in one-dimension is:

a) h− ∂

∂x
. b)

h−
i

∂

∂x
. c)

i

h−
∂

∂x
. d)

i

h−
∂

∂t
. e) h− ∂

∂t
.

SUGGESTED ANSWER: (b)

Wrong Answers:

e) C’mon.

Redaction: Jeffery, 2001jan01

002 qmult 00530 1 4 5 easy deducto-memory: Heisenberg uncertainty

11. “Let’s play Jeopardy! For $100, the answer is: It describes a fundamental limitation on the accuracy
with which we can know position and momentum simultaneously.”

What is , Alex?

a) Tarkovsky’s doubtful thesis b) Rublev’s ambiguous postulate
c) Kelvin’s vague zeroth law d) Schrödinger’s wild hypothesis
e) Heisenberg’s uncertainty principle

SUGGESTED ANSWER: (e)

Wrong answers:

a) Tarkovsky, you should be living in this hour.

Redaction: Jeffery, 2001jan01

002 qmult 00700 1 1 4 easy memory: Schr. eqn. separation of variables

12. The time-independent Schrödinger equation is obtained from the full Schrödinger equation by:

a) colloquialism. b) solution for eigenfunctions. c) separation of the x and y variables.
d) separation of the space and time variables. e) expansion.

SUGGESTED ANSWER: (d)

Wrong Answers:

a) Huh?

Redaction: Jeffery, 2001jan01

002 qmult 00720 1 1 1 easy memory: stationary state

13. A system in a stationary state will:

a) not evolve in time. b) evolve in time. c) both evolve and not evolve in time.
d) occasionally evolve in time. e) violate the Heisenberg uncertainty principle.

SUGGESTED ANSWER: (a) The wave function itself will have the time oscillation factor eiωt,
but that is not considered time evolution of the state.

Wrong answers:

b) Exactly wrong.

Redaction: Jeffery, 2001jan01

002 qmult 00800 1 4 2 easy deducto-memory: orthogonality property

14. For a Hermitian operator eigenproblem, one can always find (subject to some qualitifications perhaps—
but which are just mathemtical hemming and hawwing) a complete set (or basis) of eigenfunctions that
are:
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a) independent of the x-coordinate. b) orthonormal. c) collinear. d) pathological.
e) righteous.

SUGGESTED ANSWER: (b)

Wrong Answers:

e) Not the best answer in this context anyway.

Redaction: Jeffery, 2001jan01

002 qmult 00810 1 4 2 easy deducto-memory: basis expansion
Extra keywords: mathematical physics

15. “Let’s play Jeopardy! For $100, the answer is: If it shares the same boundary conditions as a basis set
of functions and is at least piecewise continuous, then it can be expanded in the basis with a vanishing
limit of the mean square error between it and the expansion.”

What is a/an , Alex?

a) equation b) function c) triangle d) deduction e) tax deduction

SUGGESTED ANSWER: (b) See WA-510.

Wrong answers:

e) Sounds plausible.

Redaction: Jeffery, 2008jan01

002 qmult 00820 1 4 5 easy deducto-memory: general Born postulate
Extra keywords: mathematical physics

16. “Let’s play Jeopardy! For $100, the answer is: The postulate that expansion coefficients of a wave
function in the eigenstates of an observable are the probability amplitudes for wave function collapse to
eigenstates of that observable.”

What is , Alex?

a) the special Born postulate b) the very special Born postulate c) normalizability
d) the mass-energy equivalence e) the general Born postulate

SUGGESTED ANSWER: (e)

Wrong answers:

b) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

002 qmult 00830 1 1 4 easy memory: basis expansion physics
17. The expansion of a wave function in an observable’s basis (or complete set of eigenstates) is

a) just a mathematical decomposition. b) useless in quantum mechanics.
c) irrelevant in quantum mechanics. d) not just a mathematical decomposition since the
expansion coefficients are probability amplitudes. e) just.

SUGGESTED ANSWER: (c)

Wrong answers:

a) A nonsense answer.

Redaction: Jeffery, 2008jan01

020 qmult 00840 1 4 5 easy deducto-memory: wave function collapse
Extra keywords: mathematical physics

18. “Let’s play Jeopardy! For $100, the answer is: It is a process in quantum mechanics that some decline to
mention, some believe to be unspeakable, some believe does not exist (though they got some explaining
to do about how one ever measures anything), some believe should not exist, and that some call the
fundamental perturbation (but just once per textbook).”

What is , Alex?
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a) the Holy b) the Unholy c) the Unnameable d) the 4th secret of the inner circle
e) wave function collapse

SUGGESTED ANSWER: (e) The massive non-relativistic quantum mechanics textbook Cohen-
Tannoudji on p. 226 mentions the “fundamental” perturbation (their quotation marks) and that’s
all that I can find: it’s not in the index either. Cohen-Tannoudji says they will not consider problems
associated with the “fundamental” perturbation and they never do.

Wrong answers:

b) Some would say so.
d) Well I’m not really sure, but sometimes when certain physicists meet there seems to be a bit

of wink and a nod. I’ve even caught a glimpse of what may be a secret handshake. Odd words
or emphases some time turn up in articles. Just around the edges of the known and the canny,
things seem to get done, people promoted—or eliminated. Maybe they’re always watching. If
I vanish without a trace some day, best not to make a point of saying anything.

Redaction: Jeffery, 2008jan01

002 qmult 00900 1 4 1 easy deducto-memory: macro object in stationary state
19. “Let’s play Jeopardy! For $100, the answer is: A state that no macroscopic system can be in except

arguably for states of Bose-Einstein condensates, superconductors, superfluids and maybe others sort
of.”

What is a/an , Alex?

a) stationary state b) accelerating state c) state of the Union d) state of being
e) state of mind

SUGGESTED ANSWER: (a)

Wrong answers:

b) Clearly wrong.
c) Well we-all are in a state of the Union.
d) Lots of macroscopic objects are real things without being Bose-Einstein condensates either.
e) I’m a macroscopic object and I’m occasionally in a state of mind, but never noticeably in

a Bose-Einstein condensate.

Redaction: Jeffery, 2001jan01

002 qmult 01000 1 1 5 easy memory: stationary state is radical
20. A stationary state is:

a) just a special kind of classical state. b) more or less a kind of classical state.
c) voluntarily a classical state. d) was originally not a classical state, but grew into one.
e) radically unlike a classical state.

SUGGESTED ANSWER: (e)

Wrong Answers:

c) Nonsense answer.
d) Nonsense answer.

Redaction: Jeffery, 2001jan01

002 qmult 01400 1 4 4 easy deducto-memory: operators and Sch. eqn.
21. “Let’s play Jeopardy! For $100, the answer is: An equation that must hold in order for the non-

relativistic Hamiltonian operator and the operator ih−∂/∂t to both represent energy in the evaluation
of the energy expectation value for a wave function Ψ(x, t).”

What is , Alex?

a) the continuity equation b) the Laplace equation c) Newton’s 2nd law
d) Schrödinger’s equation e) Hamiton’s equation

SUGGESTED ANSWER: (d)
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Wrong answers:

c) Schrödinger’s equation is the analog to Newton’s law for quantum mechanics.
e) The two Hamilton’s equations together are equations of motion in classical mechanics that

can be used instead of Newton’s law in advanced treatments.

Redaction: Jeffery, 2001jan01

002 qmult 02000 2 1 4 moderate memory: does gravity quantize
Extra keywords: reference: Nesvizhevsky et al. 2002, Nature, 413, 297

22. Can the gravitational potential cause quantization of energy states?

a) No. b) It is completely uncertain. c) Theoretically yes, but experimentally no.
d) Experimental evidence to date (post-2001) suggests it can.
e) In principle there is no way of telling.

SUGGESTED ANSWER: (d)

Wrong Answers:

b) This used to be the right answer.
c) If so then either theory or experiment is wrong.
e) Experiments can address the issue.

Redaction: Jeffery, 2001jan01

002 qfull 00100 1 3 0 easy math: probability and age distribution
Extra keywords: (Gr-10:1.1)

23. Given the following age distribution, compute its the normalization (i.e., the factor that normalizes the
distribution), mean, variance, and standard deviation. Also give the mode (i.e., the age with highest
frequency) and median.

Table: Age Distribution

Age Frequency
(years)

14 2
15 1
16 6
22 2
24 2
25 5

SUGGESTED ANSWER: The normalization is 1/18, the mean 19.56, the variance 18.36, and
the standard deviation 4.28. The mode is 16. Because of the sparseness of the data, the median
is somewhat ill-defined. One could put it anywhere from 16 to 22. The middle of this range 19 is
probably most sensible.

Fortran Code
program ages

parameter (nage=6)

dimension age(2,nage)

data age/14.,2., 15.,1., 16.,6., 22.,2.,

& 22.,2., 25.,5./

*

sum0=0.

sum1=0.

sum2=0.

do i=1,nage

sum0=sum0+age(2,i)

sum1=sum1+age(1,i)*age(2,i)

sum2=sum2+age(1,i)**2*age(2,i)

end do
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xmean=sum1/sum0

var=sum2/sum0-xmean**2

stdev=sqrt(var)

print*,’sum0,xmean,var,stdev’

print*,sum0,xmean,var,stdev

* 18. 19.5555553 18.3580322 4.28462744

*

end

Redaction: Jeffery, 2001jan01

002 qfull 00400 1 3 0 easy math: orthonormality leads to mean energy
Extra keywords: (Gr-30:2.10)

24. You are given a complete set of orthonormal stationary states (i.e., energy eigenfunctions) {ψn} and a
general wave equation Φ(x, t) for the same system: i.e., Φ(x, t) is determined by the same Hamiltonian
as the complete set. Find the general expression, simplified as far as possible, for expectation value 〈Hℓ〉
where ℓ is any positive (or zero) integer. Give the special cases for ℓ = 0, 1, and 2, and the expression
for σE . HINTS: Use expansion and orthonormality. This should be a very short answer: 3 or 4 lines.

SUGGESTED ANSWER: Behold

〈Hℓ〉 =

∫ ∞

−∞

Φ(x, t)∗HℓΦ(x, t) dx

=
∑

m,n

c∗mcn

∫ ∞

−∞

Ψm(x)∗HℓΨn(x) dx

=
∑

m,n

c∗mcnE
ℓ
n

∫ ∞

−∞

Ψm(x)∗Ψn(x) dx

=
∑

m,n

c∗mcnE
ℓ
nδm,n

=
∑

n

|cn|2Eℓ
n ,

where we used expansion and orthonormality. The most interesting special cases are for
normalization, energy expectation value, and second moment of the distribution:

1 =
∑

n

|cn|2

〈H〉 =
∑

n

|cn|2En

and

〈H2〉 =
∑

n

|cn|2E2
n .

The energy standard deviation is given by

σE =
√

〈H2〉 − 〈H〉2 .

In fact on any measurement of energy (or ℓth power of energy) one obtains a value En (or
Eℓ

n) with a probability of |cn|2. Sometimes one hears |cn|2 called the probability of the system
being in stationary state n. This is actually a bit careless. In the standard interpretation the
system isn’t in any particular stationary state (unless the expansion contains only one term) before
the measurement: the measurement projects the system into (or collapses the wave function to)
a particular stationary state. This is sensible. Take an ensemble and measure any dynamical
quantity (represented by some operator) and you project the system into an eigenstate for that
quantity’s operator. But energy eigenstates (stationary states) and other kinds of eigenstates do
not necessarily form the same set. So how can the system be in a stationary state and an eigenstate
for some other operator at the same time. It can, of course, if the Hamiltonian and the other
operator commute. But in general they won’t.
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Redaction: Jeffery, 2001jan01

002 qfull 01000 2 5 0 moderate thinking: energy and normalization
Extra keywords: (Gr-24:2.2) zero-point energy

25. Classically E ≥ Vmin for a particle in a conservative system.

a) Show that this classical result must be so. HINT: This shouldn’t be a from-first-principles proof:
it should be about one line.

b) The quantum mechanical analog is almost the same: Ē = 〈H〉 > Vmin for any state of the system
considered. Note the equality Ē = 〈H〉 = Vmin never holds quantum mechanically. (There is an
over-idealized exception, which we consider in part (e).) Prove the inequality. HINTS: The key
point is to show that 〈T 〉 > 0 for all physically allowed states. Use integration by parts.

c) Now show that result Ē > Vmin implies E > Vmin, where E is any eigen-energy of the system
considered. Note the equality E = Vmin never holds quantum mechanically (except for the over-
idealized system considered in part (e)). In a sense, there is no rest state for quantum mechanical
particle. This lowest energy is called the zero-point energy.

d) The E > Vmin result for an eigen-energy in turn implies a 3rd result: any ideal measurement always
yields an energy greater than Vmin Prove this by reference to a quantum mechanical postulate.

e) There is actually an exception to E > Vmin result for an eigen-energy where E = Vmin occurs. The
exception is for quantum mechanical systems with periodic boundary conditions and a constant
potential. In ordinary 3-dimensional Euclidean space, the periodic boundary conditions can only
occur for rings (1-dimensional systems) and sphere surfaces (2-dimensional systems) I believe. Since
any real system must have a finite size in all 3 spatial dimensions, one cannot have real systems with
only periodic boundary conditions. Thus, the exception to the E > Vmin result is for unrealistic over-
idealized systems. Let us consider the idealized ring system as an example case. The Hamiltonian
for a 1-dimensional ring with a constant potential is

H = − h−2

2mr2
∂2

∂φ2
+ V ,

where r is the ring radius, φ is the azimuthal angle, and V is the constant potential. Find the eigen-
functions and eigen-energies for the Schrödinger equation for the ring system with periodic boundary
conditions imposed. Why must one impose periodic boundary conditions on the solutions? What
solution has eigen-energy E = Vmin?

SUGGESTED ANSWER:

a) Classically, for a conservative system E = T + V is a constant: T is kinetic energy and V is
potential energy: and T = (1/2)mv2 ≥ 0 always, of course. Thus E ≥ V ≥ Vmin. If E = Vmin,
the system is in static equilibrium since T = 0 and F = −dV/dx = 0 for V = Vmin. Of course,
a system with T > 0 can be instantaneously at the point where V = Vmin: the particle in
this case is just passing through the equilibrium point where its acceleration is instantaneously
zero.

b) In quantum mechanics the expectation value of the kinetic energy for any wave function is
given by

〈T 〉 =

∫ ∞

−∞

Ψ∗TΨ dx =
1

2m

∫ ∞

−∞

Ψ∗p2Ψ dx =
−1

2m

∫ ∞

−∞

pΨ∗pΨ dx

=
1

2m

∫ ∞

−∞

(pΨ)∗pΨ dx

≥ 0 ,

where we have used integration by parts, the vanishing of the boundary terms, and the fact that
integrand of the penultimate line is evidently always greater than or equal to zero. Note the
above derivation demands that the boundary terms vanish and that the function is sufficiently
differentiable. The requirement of normalization and the fact that in reality all physical systems
show no discontinuities or infinities guarantees conditions of the derivation. If discontinuities
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are introduced as a mathemetical idealization, then they must be treated so as to yield the
same derivation in order to be valid. For instance, the infinite square well has a discontinuity
in ∂ψ/∂x at the well walls. However, since the wave function is zero outside of the well and at
the well walls, we derive the same result as above: 〈T 〉 ≥ 0.

The only way 〈T 〉 can be zero is if the derivative of the wave function were everywhere
zero which requires that the wave function be a constant. A constant wave function cannot
be normalized, and so is not a physically allowed wave function (except for the over-idealized
systems considered in part (e).) Ergo

〈T 〉 > 0

always. Ergo all over again
Ē = 〈H〉 > 〈V 〉 ≥ Vmin

or
Ē = 〈H〉 > Vmin

which is the result we wanted to show.

c) For a stationary state, the expectation value of the Hamiltonian is just the eigen-energy:

E = 〈H〉 .

Thus for a stationary state of eigen-energy E it follows that

E > Vmin .

d) Now for an Aristotelian syllogism:

Major premise: By quantum mechanical postulate the result of any ideal measurment of
an observable is an eigenvalue of the observable for that system. Well if the eigenvalues
form a continuum then it seems that an even ideal measurement must always be some
average of a finite range of eigenvalues. But if the measurement is ideal it must be a very
small range. The point is not cleared up in my sources.

Minor premise: All eigenvalues E obey E > Vmin.

Conclusion: All ideal measurements of energy of a quantum mechanical system yield an
energy Emeasured > Vmin.

Further Considerations:

What if the potential is time-varying? I guess the argument then is that at any instant
the potential can be treated as a constant with instant-existing eigenstates. Then again any
expectation or eigen-energy is greater than Vmin always.

Further insight into our results can from a reasoning argument. Physical states are
described by wave functions. To be physical, a wave function must be normalizable. To
be normalizable function must have some curvature. Curvature gives rise to a kinetic energy
contribution to energy expectation value unless somehow a pathological wave function can be
found where the kinetic energy contributions all cancel out. The proof done above shows that
no such pathological wave function can be found. We can further note that the classical state
of rest doesn’t exist in quantum mechanics. A stationary state may correspond to rest in some
respects, but it is radically different in other respects.

Yet more further insight into our results can come from considering the time-independent
Schrödinger equation in the form

ψ′′ =
2m

h−2 [V (x) − E]ψ .

For simplicity let ψ be a pure real stationary state as we are always free to arrange. Any
normalizable wave function must “turn over” at least once somewhere: i.e., it’s absolute value
must have a global maximum (or maybe more than one equal global maxima). Now if ψ′′ and
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ψ always have the same sign and are well defined, then for ψ > 0 there can only be a minimum
and for ψ < 0 there can only be a maximum. Thus the absolute value can never have a global
maximum and the wave function cannot be normalized.

This argument gives insight, but I don’t think it is a fully convincing proof. One has to
wonder couldn’t ψ′ = ψ′′ = ψ′′′ = 0 and the nature of the stationary point be determined by
the fourth order derivative ψ(4)? Also what if ψ′′ is undefined at maximum or minimum which
is a cusp: this happens for the wave function of a Dirac Delta function (see Gr-54). Clearly, a
wave function that somehow was normalizable with E ≤ Vmin would be pathological, but more
intricate argument is needed to show that it was impossible.

And also one can always imagine a normalizable wave function that is made of piecewise
regions that have ψ and ψ′′ always of the same sign. Maybe such wave functions can’t be
physical, but it would be tedious to argue generally enough to exclude them.

To investigate just a bit further let us consider a concrete example where V (x) goes to a
asymptotic constant Vasy for |x| large. If E < Vasy in this asymptotic limit, then

ψ(x)asy = Ce±kx ,

where C is some constant and

k =

√

2m

h−2 [Vasy − E] .

The asymptotic wave functions if they applied everywhere are clearly not normalizable. They
are allowed as the wave functions in some regimes: e.g., for x positive, Ce−kx is allowed and
for x negative, Cekx.

e) The time-independent Schrödinger equation in this case is

− h−2

2mr2
∂2ψ

∂φ2
+ V ψ = Eψ

which we can rewrite as
∂2

∂φ2
= −k2ψ ,

where

k = ±
√

2mr2

h−2 (E − V )

with E ≥ V asssumed. The normalized solutions are

ψ =
eikφ

√
2π

,

where we’ve just taken the azimuthal angle φ as the coordinate and not rφ (which would
require a normalization constant 1/

√
2πr. In order to be single-valued (which is a necessary

condition on wave functions), we must have an integer k. Let us write k as m since n is more
integerish: n is the quantum number for the eigenstates and eigenvalues. Thus

n = 0,±1,±2,±3, . . .

and the quantized eigen-energies are given by

E = V +
h−2

2mr2
n2 .

Requiring single-valuedness amounts to the same thing as requiring periodic boundary
conditions for the ring since one can choose any point on the ring as a conventional boundary.
Thus, periodic boundary conditions are required.
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In the ring system, nothing forbids the n = 0. This means that we have valid eigenstate
ψ = 1/

√
2π which is a constant and the lowest eigen-energy is

E = V .

Since the potential is a constant, V = Vmin, and thus the lowest eigen-energy E equals Vmin.
This is an exception to our usual rule that the eigen-energies obey E > Vmin, but it is for an
over-idealized case.

Note that there are solutions that are ruled out. If E−V = 0, we have the linear solution

ψ = aφ+ b ,

where a and b are constants. The solution with a = 0 is just the n = 0 solution which is
allowed. But if a 6= 0, the linear solution is not single-valued nor normalizable and must be
ruled out.

If E − V < 0, we have exponential solutions

ψ = e±κx ,

where

κ =

√

2mr2

h−2 (V − E) .

These solutions are not single-valued nor normalizable and must be ruled out.

Redaction: Jeffery, 2001jan01

002 qfull 01100 3 5 0 tough thinking: 1-d non-degeneracy
26. If there are no internal degrees of freedom (e.g., spin) and they are normalizable, then one-particle,

1-dimensional energy eigenstates are non-degenerate. We (that is to say you) will prove this.

a) Assume you have two degenerate 1-dimensional energy eigenstates for Hamiltonian H : ψ1 and ψ2.
Prove that ψ1ψ

′
2 − ψ2ψ

′
1 equals a constant where the primes indicate derivative with respect to

x the spatial variable. HINT: Write down the eigenproblem for both ψ1 and ψ2 and do some
multiplying and subtraction and integration.

b) Prove that the constant in part (a) result must be zero. HINT: To be physically allowable
eigenstates, the eigenstates must be normalizable.

c) Show for all x that
ψ2(x) = Cψ1(x) ,

where C is a constant. HINT: The eigenproblem is a linear, homogeneous differential equation.

SUGGESTED ANSWER:

a) Assume you have two degenerate 1-d energy eigenstates for Hamiltonian H : ψ1 and ψ2. Then

Hψ1 = Eψ1 and Hψ2 = Eψ2 ,

and so
ψ2Hψ1 = ψ2Eψ1 and ψ1Hψ2 = ψ1Eψ2 .

If we subtract first from the second of these, we get

ψ1Hψ2 − ψ2Hψ1 = ψ1Tψ2 − ψ2Tψ1 = 0 ,

where T is the kinetic energy operator. Thus,

ψ1ψ
′′

2 − ψ2ψ′′

1 = 0

which integrates to
ψ1ψ

′

2 − ψ2ψ′

1 = Constant .
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b) To be normalizable, the energy eigenstates must be zero at infinity, and thus the constant form
the part (a) result must be zero. Thus,

ψ1ψ
′

2 − ψ2ψ′

1 = 0 .

Note it doesn’t matter what the derivatives are doing at infinity. If they are zero, then that’s
just another reason for the constant to be zero.

Note that the free particle (i.e., potential zero or constant) eigenstates are not normalizable
at infinity and are degenerate. There are two independent eigenstates for each energy:

psi+ =
eikx

√
2π

and psi− =
e−ikx

√
2π

,

where

k =

√

2mE

h−2 .

c) Well if ψ2(x) = Cψ1(x), then

ψ1ψ
′

2 − ψ2ψ1ψ1Cψ
′

1 − Cψ1ψ′

1 = 0

and our condition is satisfied. Is there any other way to satisfy the condition? Well if
ψ2(x) = Cψ1(x) holds over any extended region of x, then by the linear, homogeneous nature of
the eigenproblem (or so I believe), the equality must hold everywhere and our guessed solution
is unique (aside from the multiplicative constant C which is physically irrelevant). Remember
for a 2nd order linear differential equation (without any pathologies in its coefficient functions
anyway) if you specify the solution at any two points or the solution and its derivative at any
one point, then the whole solution follows. Thus, we merely have to prove that ψ2(x) = Cψ1(x)
holds over an extented region.

Note

ψ1ψ
′

2 = ψ2ψ
′

1 ,

ψ′
2

ψ2
=
ψ′

1

ψ1
,

dψ2

ψ2
=
dψ1

ψ1
,

ln |ψ2| = ln |ψ1| + Constant ,

and finally

|ψ2| = C|ψ1| ,
where C is a constant and we have used

d ln |x|
dx

=
1

|x| (±1) =
1

x
,

where the upper case is for x > 0 and the lower for x < 0. Now if there is any region where
both ψ1 and ψ2 have the same sign, then by our uniqueness argument above

ψ2 = Cψ1

must hold everywhere. If everywhere the two functions have a different sign, then everywhere

ψ2 = −Cψ1 ,

but this just to say that the two functions differ only by a multiplicative constant which is
what we wanted to prove.

The upshot is that single-particle, 1-dimensional eigenstates (with no internal degrees of
freedom) are non-degenerate. Any difference by a constant between two eigenstates is not a
physical difference. Both functions must be normalized and any difference by a global phase
factor has no physical effect.

Admittedly, one might be able to imagine some pathological potential that gives a
degenerate eigenstate, but such a case is unlikely to turn up in nature.

Of course, if you have internal deqrees of freedom with no energy distinction in principle
like spin, then degeneracy in 1-dimension is easily obtained. In nature, I believe some
interaction always breaks spin or angular momentum degeneracy to some degree.

Redaction: Jeffery, 2001jan01
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Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they are
neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so
some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

2 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]

sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

3 Blackbody Radiation

Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

k = 1.3806505(24)× 10−23 J/K c = 2.99792458× 108 m

h = 6.6260693(11)× 10−34 J s = 4.13566743(35)× 10−15 eV s

h− =
h

2π
= 1.05457168(18)× 10−34 J s

hc = 12398.419 eVÅ ≈ 104 eV Å E = hν =
hc

λ
p =

h

λ
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F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)

4 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

λC =
h

mec
= 2.426310238(16)× 10−12 m e = 1.602176487(40)× 10−19 C

me = 9.1093826(16)× 10−31 kg = 0.510998918(44)MeV

mp = 1.67262171(29)× 10−27 kg = 938.272029(80)MeV

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

5 Matter Waves
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λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫ ∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

6 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t

ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗i φj dx = δij cj =

∫ b

a

φ∗jf(x) dx [A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫ ∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ

|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫ ∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫ ∞

−∞

dx 〈Ψ|x〉〈x|Ψ〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x) P

dfe/o(x)

dx
= ∓dfe/o(x)

dx

7 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns
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β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′

obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2

E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)

τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


