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1. INTRODUCTION

2. ELECTRIC FIELD LINES

2.1. Two Equal Point Charges

3. THE ELECTRIC FIELD IN THE FAR-FIELD LIMIT

In this section, we consider the electric field for a localizable distribution of charge in

the far-field limit.

In this context “localizable” means that the distribution can be enclosed in a finite

closed surface.

We will do the derivations for discrete sets of charge only for mental clarity. One can

also take the continuum limit and turn sums into integrals if needed.
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Consider a set of point charges qi located at points ~ri. The origin is close to the center

of distribution somehow defined. It doesn’t have to be very close and we leave how close

unspecified, but it is relatively close to the center when we specify that that we are in the

far-field limit. The far-field limit is when the size scale of the distribution and the distance of

the center to the origin are small compared to the distance to the location where we evaluate

the electric field.

In many theoretically interesting and practically important cases, it is useful to put the

origin at the center of the distribution somehow defined. The center of mass position is often

a useful place.

The general electric field at position ~r for the distribution is

~E(~r ) =
∑

i

kqi

|~r − ~ri|3
(~r − ~ri) . (1)

We now write

~r − ~ri = r

(

r̂ −
~ri

r

)

, (2)

where r is the magnitude of ~r as usual and r̂ is the unit vector in the direction of ~r.

Next we use the law of cosines to write

1

|~r − ~ri|3
=

1

(r2 + r2

i − 2rri cos θi)3/2
=

1

r3[1 − 2(ri/r) cos θi + (ri/r)2]3/2
, (3)

where θi is the angle between ~r and ~ri.

Substituting equations (2) and (3) into equation (1), we obtain

~E(~r ) =
∑

i

kqi

r2

(r̂ − ~ri/r)

[1 − 2(ri/r) cos θi + (ri/r)2]3/2
. (4)

In the far-field limit, ri/r << 1 for all ~ri by our definition of the far-field limit.

We will explore the far-field limit by Taylor’s series expanding equation (4) to first order

in small ri/r. The higher orders terms will be dropped. In general, of course, they can be
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worked out to any order one likes and those higher order terms have uses, but they are

beyond our scope.

In the far-field limit, the higher the order of the term, the smaller the contribution of

the term to the electric field. Each term is of order ri/r smaller than the previous term.

As one goes farther and farther into the far-field, eventually each term in decreasing order

becomes negligible.

Expanding equation (4) in a Taylor’s series, we get

~E(~r ) =
∑

i

kqi

r2

(

r̂ −
~ri

r

)

(

1 + 3
ri

r
cos θi + . . .

)

=
∑

i

kqi

r2

(

r̂ −
~ri

r
+ 3

ri

r
cos θir̂ + . . .

)

, (5)

where we have only shown the terms explicitly to 1st order in ri/r.

Remember the Taylor’s series in general will not converge if the ri/r values get too large

and in this case the Taylor’s series does not give the electric field value.

The zeroth order term is the monopole term. The 1st order term is the dipole term. The

undisplayed 2nd order term is the quadrupole term. The undisplayed 3rd order term is the oc-

tupole term. Higher order terms don’t have very common names, but the 6th order term has

been called the hexacontatetrapole (http://physics.unl.edu/~tgay/content/multipoles.html).

The expansion itself is called a multipole expansion and the coefficients of the powers of ri/r

are components of what are called the multipole moments—which tensors (e.g. Jackson 1975,

p. 138). But don’t worry about tensors in general now—a zeroth order tensor is a scalar and

1st order tensor is a vector and that is all we need. The Coulomb constant k is not included

as a factor in the multipole moments.

If we truncate to the zeroth order term, we get

~E(~r ) =
∑

i

kqi

r2
r̂ =

kq

r2
r̂ , (6)
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where

q =
∑

i

qi (7)

is the net charge or the monopole moment of the distribution. (The monopole moment is

a scalar or rank zero tensor.) If one is far enough from the distribution, only the monopole

term is significant. The above development shows explicitly how any localizable charge

distribution begins to look like a point charge at the origin if one gets sufficiently far away

from the origin.

Note that the monopole moment is actually origin independent, and thus is an intrinsic

property of the distribution.

We now define the dipole moment ~p by the formula

~p =
∑

i

~riqi (8)

(e.g., Jackson 1975, p. 137), where we note the dipole moment is a vector, has dimensions

of length times charge, and in MKS units has units of m C. (The dipole moment is a vector,

as just noted, and so is a rank 1 tensor.) The traditional symbol for the dipole moment ~p

is the same as for momentum. Context must decide which is meant. We can’t have a new

unique symbol for every variable in physics. We’d run out of symbols or have to invent new

ones which would be horrible. We have to recycle symbols.

The dipole moment is generally dependent on the origin. But if the monopole moment

is zero, then it becomes origin independent and thus an intrinsic property of the distribution.

The proof is simple. Say ~p is the dipole moment for a distribution with q =
∑

i qi = 0 for an

origin at ~r = 0. Now let ~p0 be the dipole moment relative to an origin at ~r0. We find that

~p0 =
∑

i

(~ri − ~r0)qi =
∑

i

~riqi − ~r0

∑

i

qi = ~p − 0 = ~p (9)

Since ~r0 is general, the dipole moment for any origin is ~p.
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With the definitions of the monopole and dipole moments, we find to 1st order that the

electric field is

~E(~r ) =
kq

r2
r̂ + k

[

3(~p · r̂)r̂ − ~p

r3

]

(10)

(e.g., Jackson 1975, p. 138), where we have used the fact

~p · r̂ =

(

∑

i

~riqi

)

· r̂ =
∑

i

riqi cos θi . (11)

Equation (10) is a very useful expression for finding the electric field in the far-field

limit for general localizable charge distributions.

If the charge distribution is overall neutral (i.e., the monopole moment q = 0) and the

dipole moment is non-zero (i.e., ~p 6= 0), then the charge distribution is usually called a

dipole or an electric dipole (to distinguish it from magnetic dipoles which we get to in a later

lecture). The 1st order far-field dipole electric field (or dipole electric field for brevity) is

~E(~r ) = k

[

3(~p · r̂)r̂ − ~p

r3

]

. (12)

It has to be emphasized that equation (12) is only the 1st order far-field dipole electric

field. If you get close enough to the charge distribution, the higher order terms will become

important and eventually the Taylor’s series expansion will fail in general.

Equation (12) is actually very useful since microscopic dipoles are everywhere in nature.

Many molecules (and some atoms??) have permanent dipole moments and all molecules and

atoms can have induced dipole moments when an external field polarizes them. Induced

macroscopic dipoles occur all the time too.

Equation (12) shows explicitly that the dipole electric field falls off as 1/r3 which is

significantly faster than the monopole electric field fall of 1/r2. So the forces dipoles tend to

be shorter range than monopole electric fields. For example, consider a monopole of charge

q and a dipole of charges q and −q. In the far-field limit at radial coordinate r from the
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origin centered in the charge distribution, the dipole field will be smaller on average than

the monopole field by a factor of order |~p/q|/r and this factor is much less than 1 since we

are in the far-field limit. We can see this from equation (12) for a dipole electric field in the

far-field limit:

~E(~r ) = k

[

3(~p · r̂)r̂ − ~p

r3

]

. ∼
kq

r2

|~p/q|

r
. (13)

We can now look at some special cases of the far-field electric fields of charge distribu-

tions.

3.1. Two Equal Point Charges

Say we have had two point charges of charge q separated by a distance 2a. The midpoint

between the charges is the origin. The displacement vectors of the charges are −~a and ~a.

The general electric field is

~E(~r ) =
kq

|~r + ~a|3
(~r + ~a) +

kq

|~r − ~a|3
(~r − ~a) . (14)

The monopole moment is, of course, just 2q.

The dipole moment is

~p =
∑

i

~riqi = −~aq + ~aq = 0 . (15)

This dipole moment is origin-dependent, of course. But putting the origin at the mid-

point makes the dipole moment zero which is actually simplifying. It causes us to have no

dipole term in the Taylor’s series expansion.

Thus to 1st order the far-field electric field is just the monopole field

~E(~r ) =
k(2q)

r2
r̂ . (16)

We have already consider the electric field structure of this charge distribution in § 2.1.
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3.2. The Simple Dipole

The simple dipole consists of two point charges of charge −q and q. Let’s say that they

are separated by a distance 2a and put origin at the midpoint. The displacement vectors of

the charges are −~a and ~a.

The general electric field is

~E(~r ) =
k(−q)

|~r + ~a|3
(~r + ~a) +

kq

|~r − ~a|3
(~r − ~a) . (17)

The monopole moment is, of course, zero.

The dipole moment is

~p =
∑

i

~riqi = −~a(−q) + ~aq = 2q~a . (18)

The dipole moment is origin independent since the monopole moment is zero.

The dipole electric field (i.e, the 1st order far-field dipole electric field) is

~E(~r ) = k

[

3(~p · r̂)r̂ − ~p

r3

]

. (19)

which, of course, looks just like the general formula the dipole electric field.

What is the structure of the simple dipole electric field?

????

3.3. An Alternate Formula for the Dipole Electric Field: Optional

Just for completeness, there is another way to write the formula for the dipole electric

field (i.e, the 1st order far-field dipole electric field). First note that

~E(~r ) = k

[

3(~p · r̂)r̂ − ~p

r3

]

= k

[

3p cos θr̂ − ~p

r3

]

, (20)
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where θ is the angle between the dipole moment and r̂ (the unit vector pointing to the

location where the field is being evaluated).

If one defines a set spherical polar coordinates with the dipole moment defining the

positive z direction, then

~p = p cos θr̂ + p cos
(

θ +
π

2

)

θ̂ = p cos θr̂ − p sin θθ̂ , (21)

where r̂ and θ̂ are the unit vectors of the the radial and polar angle components of the

spherical polar coordinates.

Now First note that

~E(~r ) = k

[

3(~p · r̂)r̂ − ~p

r3

]

= k

[

3p cos θr̂ − p cos θr̂ + p sin θθ̂

r3

]

= k

[

2p cos θr̂ + p sin θθ̂

r3

]

, (22)

where the last expression is the alternate formula we sought.
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Fig. 1.— Schematic structure of a simple dipole electric field shown in cross section.
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