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1. INTRODUCTION

Under the heading of nothing forbids us, we will define a new dynamical variable mo-

mentum.

Momentum is also called linear momentum, but the qualifier “linear” is really only

needed when one wants to emphasize the distinction between momentum and angular mo-

mentum. Angular momentum is the rotational-dynamics analog of momentum and is intro-

duced in the lecture Rotational Dynamics.

For a classical point particle, the definition of momentum is

~p = m~v , (1)
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where ~p is momentum, m is the particle mass, and ~v is the particle velocity.

Momentum is a VECTOR DYNAMICAL VARIABLE.

The MKS momentum unit is

unit[~p] = unit[m~v] = kg m/s . (2)

where unit[ ] is my own idiosyncratic unit function. The MKS momentum unit has no special

name or symbol. In fact, since the MKS momentum unit is the only common momentum

unit in use, one often doesn’t bother specifying the unit in speech or simple calculations—it

is simply understood. But in TEST ANSWERS, specify it.

For a system of classical point particles, one naturally defines the system momentum

(or total momentum) to be

~p =
∑

i

~pi =
∑

i

mi~vi = m

∑

i
mi~vi

m
= m~v , (3)

where the sum is over the individual particle momenta ~pi of the particles that make up the

system, mi is a particle mass, ~vi is a particle velocity, m is total mass, and ~v is now the

center-of-mass velocity.

Remember a system of particles can be anything—e.g., a single classical point particle,

a collection of free classical point particles, a rigid object, a flexible object, a collection of

objects flying around and colliding or not colliding, a sample of liquid, a sample of gas—

anything.

The microscopic momenta of actual particles are caused by thermal motion. This motion

is random on the macroscopic scale and cancels out completely in equation (3). Therefore,

one only needs to attribute the macroscopic average momentum of particles to the particles

that make up any macroscopically small, but microscopically large subsystem of a system.

Those actual particles viewed in this way act like the classical point particles of physics myth.
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For macroscopic objects, calculating the total system energy is simple since all the particles

of macroscopically small, but microscopically large subsystems are flying in formation. One

often makes the continuum approximation and treats macroscopic objects bing made of a

continuum of classical substance.

The center-of-mass kinetic energy can be written in terms of system momentum mag-

nitude using ~v = ~p/m. Behold:

KE =
1

2
mv2 =

p2

2m
. (4)

Now consider Newton’s 2nd law for a system:

~Fnet = m~a , (5)

where ~Fnet is the net force on the system (and also the net external force), m is the system

mass, and ~a is the center-of-mass acceleration. The 2nd law applies to a classical point

particle, of course, since a classical point particle is a system.

Let’s assume m is constant. Then

~Fnet = m~a = m
d~v

dt
=

d(m~v )

dt
=

d~p

dt
. (6)

Thus, we have

~Fnet =
d~p

dt
(7)

which is a new version of Newton’s 2nd law. This is the form that Newton originally gave—

but only sort of since he wasn’t using modern notation—and he used the Latin word for

“motion” instead of momentum (Wikipedia: Newton’s laws of motion).

Equation (7) is actually more general than the ~Fnet = m~a form that we have been

using since it applies when the mass of the system is varying. We havn’t allowed for mass
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variation in our derivation of equation (7), but we will show how that is done in § 4 which

covers mass-varying systems.

For the moment, we only consider systems with constant mass. Even for constant-mass

systems equation (7) is of interest because it brings out a new feature of Newtonian dynamics:

i.e., what ~Fnet = 0 implies for momentum.

It implies

~p = a constant , (8)

and since ~p = m~v (where ~v is center-of-mass velocity recall), we also find that

~v = a constant (9)

which in turn implies that the center-of-mass kinetic energy

KE =
1

2
mv2 =

p2

2m
= a constant . (10)

In words, if the net force on a system (i.e., a constant-mass system) is zero, then momen-

tum is conserved—or in other words, we have CONSERVATION OF MOMENTUM.

Also conserved are center-of-mass velocity and the center-of-mass kinetic energy.

One often says one has CONSERVATION OF MOMENTUM if the net external

force is zero. But having net external force is only a necessary condition, not a sufficient

condition: the net internal force must be zero too. But if one understands that Newton’s

3rd law implies the net internal force is zero, then saying one has conservation of momentum

when the net external force is zero is OK—and is probably clearer, since saying the net force

is zero tends to leave the impression that there are no internal forces acting—and in general

there are and those can be interesting cases.

By the way, having the net external force zero does NOT mean that there are no

external forces. It just means that they sum to zero. But the fact that they sum to zero,
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does not mean they do nothing. They may be affecting the internal motions of the system.

In simple examples of conservation of momentum, we usually assume there are no external

forces at all.

By the way also, recall that the 3rd law is not always valid even in classical physics (e.g.,

Goldstein et al. 2002, p. 7–8). We discussed this point in the lecture Newtonian Physics I.

The cases where the 3rd law fails are beyond the scope of this course. The situation isn’t so

scandalous however. Generalizations of the 3rd law that account for the exceptions to the

ordinary 3rd law do exist.

CONSERVATION OF MOMENTUM is useful in solving various kinds of prob-

lems. At our level, ideal collision problems are a main example and we will consider those

in § 3.

Let’s consider just a special case of conservation of momentum.

Say we had two objects: object 1 with mass m1 and object 2 with mass m2. Now

say these two objects interact and the net external force is zero during the interaction. The

objects collectively and individually don’t gain for lose mass. By conservation of momentum,

one has

~p = ~p ′ or ~p1 + ~p2 = ~p1′ + ~p2′ , (11)

where the unprimed subscripts indicate pre-interaction and the primed ones indicate post-

interaction. We can rewrite the conservation-of-momentum equation in the form

m1~v1 + m2~v2 = m1~v1′ + m2~v2′ , (12)

where the velocities are center-of-mass velocities for the two objects.

This CONSERVATION OF MOMENTUM equation (12) by itself allows us to

solve for one unknown only. Any one of the variables in equation (12) can be the unknown

variable. Often, however, one would like to predict the outcome velocities ~v ′

1 and ~v ′

2: i.e.,
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one would like to predict the future evolution of the system. But we CANNOT predict the

entire outcome of the interaction nor the course of the interaction from the initial conditions

(i.e., ~v1 and ~v2) given equation (12) alone. We’d have to have a detailed understanding of

the interaction to solve for the whole outcome and the whole course of the interaction.

But given the initial conditions and one of the post-interaction velocities, we could

solve for the other one without knowing anything about the detailed interaction. Like

conservation-of-mechanical-energy cases, conservation-of-momentum cases often allows us

to find partial information or make partial predictions of the future very easily without a

full understanding of the system.

Let’s do a simple example calculation.

1.1. Example: Archer and Arrow

A tall archer is standing on frictionless ice and shoots an arrow in the horizontal di-

rection. Initially everything is at REST. The archer mass is 50 kg and the arrow mass is

0.50 kg.

What are the external forces on the archer-arrow system and can we neglect them?

There is gravity and air drag (AKA air resistance) on both the archer and arrow.

We can neglect them. The gravity on the archer is canceled by the normal force of the

ice on her. We assume that the gravity on the arrow and air drag on archer and arrow can

be neglected since the time of the time of interaction—which is the arrow shooting event—is

very short. These forces cause only a small change in individual momenta and the total

system momentum. In the ideal limit of a vanishingly short interaction, the net force on the

archer-arrow system is exactly zero, and thus momentum is exactly conserved. We assume
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this ideal limit which is not a bad approximation actually.

So what are the archer and arrow post-interaction velocities? Initially, they are both

zero recall.

Well we can’t tell with what we know so far which are the masses and that the initial

velocities are zero.

We need one post-interaction velocity to find the other.

Let the arrow post-interaction velocity be 50x̂m/s.

What the archer’s post-interaction velocity?

You have 30 seconds. Go.

Well now using equation (12) with initial total momentum zero and letting the arrow

be object 1 and the archer object 2, we find

0 = m1~v1′ + m2~v2′

~v2′ = −m1

m2

~v1′

= −0.5

50
× 50x̂

= −0.5x̂ m/s . (13)

So the archer moves opposite to the arrow at a much slower speed.

The result isn’t too surprising.

The last equation also shows that the momenta of the two objects are equal in magnitude

and opposite in direction.
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2. IMPULSE-MOMENTUM THEOREM

We define the impulse of a force ~F acting for a time ∆t by

~I =

∫

∆t

~F dt , (14)

where the integral is over time ∆t. The integral, loosely speaking, is an infinite sum of the

differentials ~F dt.

The concept of impulse is most useful when the force ~F is very strong compared to other

forces present and acts for a much shorter time and this time of activity is usually ∆t itself.

Now recall our momentum version of Newton’s 2nd law equation (7) ~Fnet = d~p/dt, where

we still assuming constant mass for the system. We integrate the 2nd law over time ∆t to

get

∆~p =

∫

∆t

~Fnet dt (15)

or

∆~p = ~Inet , (16)

where ~Inet is the net impulse.

Equation (16) ∆~p = ~Inet is the impulse-momentum theorem (e.g., Tipler &Mosca 2008,

p. 256).

The impulse-momentum theorem is yet another version of Newton’s 2nd law.

Why do we need yet another version of the 2nd law?

Well it’s more useful in some special cases than the other versions.

The cases of greatest use is when there is a very strong force ~F that acts over ∆t and that

dominates the evolution of the system during ∆t. Other forces can be considered negligible

during ∆t although they can be important over longer time scales.
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Such cases are often collision events.

The collision approximation is to assume that only the collision forces act over the time

of the collision ∆t. This is an idealization in general although it can be exactly true in some

special cases.

With the collision approximation, the impulse-momentum theorem becomes

∆~p = ~Icol , (17)

where ~Icol is the collision force impulse.

Let’s to an example.

2.1. Example: Hit Baseball

A baseball of mass 0.14 kg moving is hit by a baseball bat. The motion of both objects

over the collision time is assumed to be horizontal. So the system is 1-dimensional.

The initial ball velocity is v = −40 m/s and its final velocity is v′ = 56 m/s. The time

of the collision is ∆t = 1.5 × 10−3 s.

By the by, 40 m/s in US customary units is 89.5 mi/h which is a poorish major-league

fast ball speed. Nolan Ryan could throw at over 100 mi/h—and sometimes even over the

plate.

What it the time-averaged force of the bat on the baseball?

From the collision-approximation impulse-momentum theorem specialized to one dimen-

sion, we find

∆p = Icol =

∫

∆t

Fcol dt = Fcol,avg∆t , (18)

where Fcol,avg is the time-averaged collision force.
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Thus

Fcol,avg =
∆p

∆t
=

m(v′ − v)

∆t
=

0.14 × 96

1.5 × 10−3
≈ 104 N . (19)

A more exact calculation gives 9000 N which is about 2000 lb of force. So if these numbers

are at all right—and I only adapted them from Cutnell & Johnson (2007, p. 199) and have

no idea if they are at all realistic—then being hit by a swung bat can be dangerous especially

if you are speeding into it—but you-all already knew that.

Was our assumption of the collision approximation justified?

Well we neglected gravity and air drag on the baseball.

The magnitude of the gravity force on the baseball is only about 1.4 N.

The terminal speed of baseball acted on by gravity and air resistance alone is about

42 m/s (e.g., Halliday et al. 2001, p. 105). At the terminal speed, the air drag force is equal

to the gravitational force. Since the air drag force depends on speed and 42 m/s is of order of

our baseball speeds, the air drag force magnitude is of order the same size as the gravitational

force magnitude.

Now since 1.4 N << 9000 N, we conclude that gravity and air drag were negligible during

the collision. Our assumption of the collision approximation is well justified.

Of course, over the long-term evolution of the ball from pitcher to final location, gravity

and air drag are important.

3. COLLISIONS IN ONE DIMENSION

We will only consider collisions in one dimension.

This saves us the tedium of full vector formalism.
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We don’t need—or at least don’t want—more practice with full vector formalism.

Somehow some constraint keeps the colliding object centers of mass on one axis.

We will also make the collision approximation: i.e.,. we assume that only the collision

forces act over the time of the collision ∆t.

This means that we have conservation of momentum for the overall system of colliding

objects since the net external force is implied zero by assuming the collision approximation.

We will also only consider two-object collisions. Specializing to one dimension, equa-

tion (12) (see § 1) for the conservation of momentum of two objects in an interaction becomes

m1v1 + m2v2 = m1v1′ + m2v2′ . (20)

where the particles are labeled by 1 and 2, the unprimed velocities are pre-interaction, and

the primed velocities are post-interaction. The velocities are center-of-mass velocities for the

two objects.

There are 6 dynamical variables only to consider since we consider only the pre-collision

and post-collision situation and not the interaction event itself. These variables are the ones

appearing in equation (20), of course.

For simple analysis, it’s usual to divide 1-dimensional collisions for two objects into

three types: inelastic collisions, completely inelastic collisions, and elastic collisions.

We’ll look at each type in turn.

But we only analyze these types using conservation principles: conservation of momen-

tum and a special conservation of kinetic energy rule. There is a distinction between the

two conservation rules. We impose conservation of momentum of the overall system in all

our collision types. This means that the center-of-mass kinetic energy of the overall system

is conserved in all ideal collision cases. This result follows from our discussion in § 1 where
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we showed that if system momentum is conserved, so is system center-of-mass velocity and

center-of-mass kinetic energy. But this conservation of center-of-mass kinetic energy of the

overall system is NOT the special conservation of kinetic energy rule.

The special conservation of kinetic energy rule defines elastic collisions only. This special

rule is that the sum of colliding object center-of-mass kinetic energies is conserved in the

sense of being the same before and after the collision event: there is usually no conservation

of the sum of colliding object center-of-mass kinetic energies during the event. The sum

of colliding object center-of-mass kinetic energies is NOT the same as the overall system

center-of-mass kinetic energy.

We will not go into details of collision forces which are complex in general. By using

conservation rules, we avoid needing to know about those details. But as mentioned in

NEWTONIAN DYNAMICS II, conservation rules only give partial information. So we get

only partial information, not complete information. But we don’t have to work hard or know

very much to get that partial information.

3.1. Inelastic Collisions

In inelastic collisions, the sum of the center-of-mass kinetic energies of the colliding

objects is NOT conserved and the objects do NOT stick together.

Actually, one can offer a different refined definition of inelastic collisions. The refinement

is a replacement for saying the objects do NOT stick together. Instead one says that

no matter what interactions (including sticking together) go on between the objects post-

collision, one continues to treat them as separate objects with their own centers of mass.

The refined definition may be practically useful in some cases and conceptually useful in

that it makes it clear that one can consider the separate behavior of objects that are still
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interacting post-collision.

But for intro physics, the first definition of elastic collisions is the usual one since we

primarily deal just with inelastic collision examples where the objects don’t interact at all

post-collision. So we will only use the first definition in our discussion and examples, unless

otherwise stated.

Now in completely inelastic collisions, the sum of the center-of-mass kinetic energies of

the colliding objects is NOT conserved and the objects DO stick together.

Actually, one can also offer a different refined definition of inelastic collisions. The

refinement is a replacement for saying the objects DO stick together. Instead one says that

no matter what interactions (including sticking together) go on between the objects post-

collision, one treats them as a combined system with with a single combined system center

of mass. The refined definition may be practically useful in some cases and conceptually

useful in that it makes it clear that one can consider the combined behavior of objects that

post-collision are not stuck together and maybe not interacting at all.

But for intro physics, the first definition is usual one since we primarily deal just with

completely inelastic collision examples where the objects are definitely stuck together post-

collision. So we will only use the first definition in our discussion and examples, unless

otherwise stated.

From the unrefined-definition point of view, the two kinds of collision are physically

distinct. From the refined-definition point of view, the two kinds of collisions are different

distinct in how one analyzes them.

From either point of view, neither of elastic and completely inelastic collisions are special

cases of the other according to our definitions.

The forces of collision for both inelastic and completely inelastic collisions for real solid
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objects in many cases are the elastic forces of the objects. But internal resistances dissipate

some kinetic energy and elastic potential energy to waste heat in those cases. This makes

such collisions inelastic. Collisions involving only field forces like the macroscopic Coulomb

force and gravity may not have much dissipation and can be better approximations to elastic

collisions: i.e., collisions where the sum of the center-of-mass kinetic energies of the colliding

objects is conserved. There are many kinds of collisions to consider if one is being very

general—which we are not.

Inelastic collisions are considered in this section and completely inelastic collisions in

§ 3.2.

For the inelastic collisions, we have the general constraint of the conservation of mo-

mentum expressed by equation

m1v1 + m2v2 = m1v1′ + m2v2′ , (21)

where the unprimed indices indicate pre-collision and the primed indices, post-collision. Note

that there are 6 variables.

Since the collisions are inelastic, we have no constraint on the sum of center-of-mass

kinetic energies, except that

1

2
m1v

2
1 +

1

2
m2v

2
2 6= 1

2
m1v

2
1′ +

1

2
m2v

2
2′ . (22)

A simple inequality is seldom of much use in solving for unknowns.

Without any detailed information about the collision forces, we must initially know 5 of

the 6 variables in order to know everything about the pre- and post-collision situation. The

conservation of moment gives the 6th variable.

In particular, we can’t predict the whole outcome (i.e., v1′ and v2′) given the initial

conditions. Someone has to give us one of the outcome velocities.
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3.1.1. Example: A Mysterious Inelastic Collision

Just as an example, say object 1 has mass m1 = 1.0 kg and velocity v1 = 2.0 m/s and

object 2 has mass m2 = 2.0 kg and velocity v2 = 0.0 m/s. Someone tells us that v2′ = 6.0 m/s.

What is v1′?

You have 1 minute working individually or in groups. Go.

Solving equation (21) for v1′ gives

v1′ =
m1v1 + m2(v2 − v2′)

m1

=
1 × 2 + 2 × (0 − 6)

1
= −10 m/s . (23)

Object 1 recoils from the collision.

Is there something odd about this result?

Look at the sizes of the post-collision velocities (i.e., v1′ = −10 m/s and v2′ = 6.0 m/s)

compared to the pre-collision velocities (i.e., v1′ = 2 m/s and v2′ = 0.0 m/s).

What would you say about the sum of object individual kinetic energies?

Well it looks like the sum of the object kinetic energies increased during the collision.

It has:

KE =
1

2
m1v

2
1 +

1

2
m2v

2
2 = 2.0 J (24)

KE ′ =
1

2
m1v

2
1′ +

1

2
m2v

2
2′ = 50 + 36 = 86 J . (25)

Question: Can the sum of the object kinetic energies really increase during an

inelastic collision?

a) Yes.

b) No.
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c) Maybe.

Yes, it’s (a).

If there is some kind of explosion, the sum of the colliding objects kinetic energies can

increase. The explosion can be a transformation of chemical energy or stored elastic potential

energy into kinetic energy.

In retrospect, our archer-and-arrow example (§ 1.1) can be recognized as an inelastic

collision with an increase in the sum of colliding object kinetic energies. Chemical energy

in the archer became elastic potential energy in the bow which in turn became the kinetic

energies of the archer and arrow.

But note the overall center-of-mass kinetic energy cannot change as we discussed in

§ 3. In the archer-and-arrow example (§ 1.1), for example, the overall system center-of-mass

kinetic energy was zero before and after the arrow was shot.

3.2. Completely Inelastic Collisions

As stated in § 3.1 in completely inelastic collisions, the sum of the center-of-mass kinetic

energies of the colliding objects is NOT conserved and the objects DO stick together.

Also as stated in § 3.1, there is a refined definition of completely inelastic collisions. We

won’t repeat the discussion of the refined definition here.

And also as stated § 3.1, the first definition of completely inelastic collision is the usual

one for intro physics and we use that one in our discussion and examples, unless otherwise

stated.

For completely inelastic collisions, the overall system center-of-mass velocity v is the

post-collision velocity of relevance since we are considering the two objects as having com-
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bined into one object. The overall system center-of-mass velocity is given by

m1v1 + m2v2 = (m1 + m2)v , (26)

of course.

For completely inelastic collisions, the whole outcome in a sense can be solved for given

the initial conditions because of the extra constraint that we only make use of overall system

center-of-mass velocity as the relevant final center-of-mass velocity.

An interesting fact true in all dimensions and for any number of colliding objects that

collide completely inelastically (i.e., the end system is considered one object) is that the

sum of individual object center-of-mass kinetic energies from before the collisions is always

greater than or equal to the center-of-mass kinetic energy of the post-collision combined

object. The equality only holds if all the individual object center-of-mass velocities were

equal before the collision process started. We assume the system of objects is closed in the

total collision event which means no particles enter or leave and there is no net external

force.

The proof of the above statement is actually simple, and so we will leave it as an

exercise for the students—probably it’s in a homework. In fact, the proof is very similar, but

not identical, to the proof given in the lecture ENERGY for the sum of the center-of-mass

kinetic energies of any set of subsystems of systems always being greater than or equal to the

system center-of-mass kinetic energy. The only distinction in the proofs is that in the latter,

the system is considered at one instant in time and in the former, the subsystem center-of-

mass kinetic energies are evaluated before the collision and the system center-of-mass kinetic

energy is a constant through the collision event.

Where does it go, the lost kinetic energy from colliding objects in a general completely

inelastic collision?
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Total energy is always conserved for a closed system, and so the lost kinetic energy must

go somewhere. But where actually depends on the details of the system and the collision

process.

First, it doesn’t necessarily have to go anywhere. It could still be kinetic energy of the

parts of the combined object. This would be the case if all the individual events in the

collision process conserved kinetic energy and the final combined object is just a combined

object because we so regard it and the original objects are actually all present and non-

interacting after the process.

But in cases were the original object was physically combined into a bound combined

objects, there must be losses of translational kinetic energy: i.e., energy of straight-line

motion.

One obvious sink for the lost energy is into waste heat. When objects collide, there is

some compression and possibly oscillation. Internal resistance in the objects can turn all the

energy of compression and oscillation into waste heat.

If the some of the oscillating subsystems are ideal, some of the lost energy can end

up as the conserved combination of macroscopic mechanical energy of oscillation (i.e., a

combination of oscillation kinetic energy and potential energy).

Some of the lost energy could end up as rotational kinetic energy. This case is very

often realized when the colliding objects actually stick together.

Some energy could have gone into emitted sound energy. Of course, we actually assumed

there was no medium when we assumed no external forces. But in less ideal completely

inelastic collisions, sound energy is possible sink for the lost energy. Of course, sound energy

gets turned into waste heat pretty quickly usually.

Electromagnetic radiation could carry away some of the lost energy. This electromag-
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netic radiation’s source would be the waste heat produced in the collision or perhaps some

non-thermal process in collision.

Let’s turn to a non-trivial completely inelastic collision process.

3.2.1. Example: Ballistic Pendulum

A ballistic pendulum is a device for measuring bullet speeds. It was the first practical

way to measure bullet speeds (Wikipedia: Ballistic Pendulum). Nowadays, fast photography

has probably largely replaced it for that job.

The setup is a follows. A bullet is fired at a block of wood typically suspended by two

cords. The block is rectangular and level. The cords are perpendicular to the bullet path.

The bullet embeds in the block and the block swings up to some maximum height that is

measured.

The bullet-block collision is a completely inelastic collision that happens on a short

time scale where the collision approximation is assumed valid. The upswing of the block is a

process in which ideally mechanical energy is conserved. Initially, the bullet-block mechanical

energy is all kinetic taking the initial level as zero potential energy and when the bullet-block

reaches its maximum height all the energy is potential energy. The height measurement gives

the potential energy.

Say the bullet’s mass is mbullet and the block’s mass is mblock and their sum is m.

What’s the post-collision bullet-block velocity v in terms of the bullet’s pre-collision

velocity vbullet?

It’s a completely inelastic collision remember.

You have 30 seconds. Go.
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To find the bullet’s pre-collision velocity vbullet, we note that the post-collision bullet-

block velocity v

Well

v =
mbullet

m
vbullet , (27)

where we have used equation (26) for completely inelastic collisions and where the block is,

of course, taken as being initially at rest.

We can now find bullet’s pre-collision velocity vbullet in terms of post-collision bullet-

block velocity v.

Do that. You have 10 seconds. Go.

Behold:

vbullet =
m

mbullet

v . (28)

From the work-energy theorem

∆E = Wnon , (29)

we find that

mgymax = KEpost−collision =
1

2
mv2 . (30)

Solving for the bullet velocity gives

vbullet =
m

mbullet

√

2gymax . (31)

We see that using the completely inelastic collision sort of amplifies the velocity mea-

surable by conservation of mechanical energy by a factor of

m

mbullet

=
mbullet + mblock

mbullet

. (32)

Say ymax = 0.5 m, mbullet = 0.05 kg, and mblock = 5.0 kg.
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What it the bullet speed?

You have 30 seconds. Go.

Behold:

vbullet =
m

mbullet

√

2gymax ≈
(

0.05 + 5.0

0.05

)

×
√

2 × 10 × 0.5 ≈ 300 m/s . (33)

This is sort of a moderate bullet speed for a rifle. It’s actually subsonic since the speed of

sound in air at 1 atm and 20◦C is 343 m/s (e.g., Halliday et al. 2001, p. 400).

3.3. Elastic Collisions

In elastic collisions, the sum of colliding object kinetic energies is conserved and the

objects DO NOT stick together.

They cannot stick together since then the sum of the individual object center-of-mass

kinetic energies is not conserved as we asserted in § 3.2. The center-of-mass kinetic energy of

the combined object is always less than or equal to the sum of center of mass kinetic energies

of the original objects.

There is an exception, of course. They can stick together and conserve the sum of

colliding object kinetic energies if the initial colliding object velocities were equal. But then

for an actual combining collision as in our first definition of a completely inelastic collision,

the colliding objects had to be in contact before the “collision” and the “collision” caused

no exchange of momenta, but only fused the objects together. For our second definition, we

merely think of the objects as one combined object after the collision event whether they

ever contacted each other or not, or ever fused together or not.

Elastic collisions can be regarded as a special case of inelastic collisions, of course. They

are inelastic collisions which happen to conserve the sum of colliding object kinetic energies.
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But elastic collisions are special enough to be regarded as a separate category for our level

of analysis.

Hereafter in this section, we will just say conservation of kinetic energy instead of

conservation of colliding object kinetic energies for the sake of brevity.

We have two equations of constraint in this case: the conservation of momentum equa-

tion

m1v1 + m2v2 = m1v1′ + m2v2′ (34)

and the conservation of kinetic energy equation

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

2
1′ +

1

2
m2v

2
2′ . (35)

A qualification is needed about conservation of kinetic energy. We only require and only

have that it is the same before and after the interaction. During the interaction, some or all

of the kinetic energy is transformed into some other form of energy which in many actual

cases is elastic potential energy of the colliding objects. But all this energy is transformed

back into kinetic energy by the end of the interaction.

For elastic collisions of two objects in one dimension, we can solve in general for the full

outcome (i.e., v1′ and v2′) since we have two equations for the two unknowns (i.e., v1′ and

v2′).

But solving for the outcome formulae is tricky since one of the equations (eq. (35)) is

non-linear in the unknowns.

But if the solution is tricky, there are tricks.

The main trick—after which everything is straightforward—is to rewrite equations (34)

and (35) so that all of the object 1 variables appear on one side of the equal sign in each

case and all the object 2 variables appear on the other side in each case.
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The rewriting preserves some of the symmetry of equations (34) and (35). Preserving

symmetries in solving systems of equations is often a good thing since it can lead to semi-

obvious simplifications—which is the case here.

The rewritten equations are

m1(v1 − v1′) = −m2(v2 − v2′) (36)

and

m1(v
2
1 − v2

1′) = −m2(v
2
2 − v2

2′) . (37)

Now recall the old difference of squares result: for any a and b,

(a + b)(a − b) = a2 − ab + ba − b2 = a2 − b2 . (38)

Now dividing equation (37) by equation (36) and using the difference of squares result,

we obtain

v1 + v1′ = v2 + v2′ . (39)

Note by the way that we assume that v1′ 6= v1 and v2′ 6= v2 or else we’d have been dividing

by zero which leads to an undefined result.

To sidetrack for a moment, equation (39) can be rearranged to get

v2′ − v1′ = −(v2 − v1) (40)

which shows that the relative velocity of the objects has the same magnitude before and

after the collisions, but velocity changes in sign. This is an important result in its own right:

v2′ relative to 1′ = −v2 relative to 1 . (41)

To maintrack again, multiply equation (39) by m2 and subtract equation (36) from it,

and one obtains

m2(v1 + v1′) − m1(v1 − v1′) = m2(v2 + v2′) + m2(v2 − v2′)
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(m2 − m1)v1 + (m1 + m2)v1′ = 2m2v2 . (42)

Solving for v1′ gives

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2

(43)

(e.g., Halliday et al. 2001, p. 207).

Absolutely, positively, equations (34) and (35) only apply to 1-dimensional elastic col-

lisions. Student have an awful temptation on tests to use them for any collision. Do NOT

do that.

Now the conservation of momentum and kinetic energy equations (i.e., eq. (34) and (35))

are symmetric in the indices 1 and 2. So if one does the same operations starting from those

equations, but interchanging the roles of objects 1 and 2 in the operations, one must arrive

at the equation

v2′ =
(m2 − m1)v2 + 2m1v1

m1 + m2

. (44)

(e.g., Halliday et al. 2001, p. 207).

Just to elaborate on our solution for v2′ by symmetry. Say we interchanged the labels for

objects at the start and then did all the steps as before. We would have gotten equation (43)

where the new 1 meant the old 2 and the new 2 meant the old 1. So we’d really have the

solution for the outcome of the object originally labeled by 2. Now we just interchange the

labels again. The old 2 is now the newest 2, and our solution for its outcome velocity v2′ is

just equation (44) as we’ve aforesaid.

Equations (43) and and (44) give us the complete outcome of the elastic collision in

terms of the initial conditions. To summarize compactly, we have

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2

, (45)

v2′ =
(m2 − m1)v2 + 2m1v1

m1 + m2

(46)
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(e.g., Halliday et al. 2001, p. 207).

Now there is in fact another set of solutions for the outcome velocities that we missed

in the derivation of equations (45) and and (46) since we couldn’t allow undefined divisions

by zero.

What are those other set of solutions?

You have 10 seconds to write them down. Go.

Well the other set of solutions—which yours truly calls the ghost solutions—are

v1′ = v1 , (47)

v2′ = v2 . (48)

Of course, these are the solutions if the objects do not collide—they are going in opposite

directions or are going in the same direction, but havn’t interacted yet—but that is a trivial

case.

Can they ever be the solutions of an actual collision in any sense?

Yes. The objects collide, but there are no collision forces. Say a ball and ring (with

inner radius larger than the ball’s) collide in the sense that their centers of mass pass through

each other. No forces act, but there is a collision—a ghost collision.

Rather than do boring numerical examples, let’s look at a few special cases of the

solutions equations (45) and (46).

We won’t do all special cases. That would cause mucho ennui.

3.4. Special Case: m1 = m2

Say m1 = m2.
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What do equations (45) and (46) specialize to?

You have 10 seconds. Go.

Behod—er, behold:

v1′ = v2 and v2′ = v1 . (49)

We see that in this case that the objects just interchange velocities.

To specialize just a bit more, say v1 6= 0 and v2 = 0. Then we have

v1′ = 0 and v2′ = v1 . (50)

So object 1 just stops and object 2 carries on filling object 1’s role.

Here we can demonstrate this with using two balls of a Newton’s cradle (Wikipedia:

Newton’s Cradle) which yours truly tends to call a ball pendulum. I’m assuming a Newton’s

cradle is around somewhere in the demo room.

Usually Newton’s cradle consists of 5 identical metal balls that are hung as pendulums

each from by two strings which are perpendicular to the pendulum swing direction. The two

strings force a pendulum ball to swing only in one plane (the cradle plane) and make all the

collisions of the pendulum balls 1-dimensional collisions along the axis of the cradle. More

pedantically, one can say that the two strings make the balls equilibrium in the cradle plane

a stable equilibrium. When the cradle is all at rest all the balls are just forcelessly touching

since their pivot points are offset along the cradle axis in order to arrange this setup.

In the two ball mode of operation, the two balls collide in an approximately elastic

collision after one ball is released from an upswing position. One doesn’t usually think of

metal balls as being very “elastic”, but they are in the sense of nearly conserving kinetic

energy through a collision. Because second ball starts at rest, it acquires all the momentum

of the first ball which is stopped.
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The second ball upswings and then down swings and collides with the first ball which

then acquires all the momentum and upswings again.

The upswings and down swings of the balls conserve mechanical energy approximately,

but not momentum. The combined gravity and tension force can change momentum. (Note

a centripetal force can change momentum even when it does no net work by being perpen-

dicular to the direction of motion.) Since gravity is a conservative force and the tension force

ideally does no work, mechanical energy is ideally conserved.

The motion one gets is a swinging oscillation with collisions at the bottom of the swings.

Ideally no energy is lost and the oscillation is perpetual. Actually energy is lost to air

drag, friction in the pivot points, and the slightly inelastic nature of the collisions. This

energy is dissipated to waste heat although some of it passes through a sound energy stage

first.

If you use all the balls starting with one in upswing position, you get an oscillation that

passes through 4 collisions on each half cycle.

More complicated cases. For example having two balls on one side in the upswing posi-

tion initially or having two balls on either side in the upswing position initially. The behavior

of these cases is easier to demonstrate than to describe, so yours truly will demonstrate. But

the cases can be analyzed easily too and be understood using the principles of conservation

of momentum, kinetic energy, and mechanical energy.

But we won’t go on to that.

The students are encouraged to go into it for fun.



– 28 –

3.5. Special Case: m2 = ∞ and v2 = 0

If m2 = ∞ and v2 = 0, equations (45) and (46) specialize to

v1′ = −v1 and v2′ = 0 . (51)

Here we have the stoppable object collided with the immovable object. The stoppable

object just bounces off and conserves speed. The immovable object is unmoved.

But what has happened to conservation of momentum. The total momentum is m1v1

before the collision and −m1v1 after.

Well sending object 2’s mass to infinity was unrealistic. Actually it can only get to be

very much more massive than object 1. So what really happens is that object 1’s speed is

slightly reduced and object 2 does gain some velocity in the initial direction of object 1.

Momentum does actually end up being conserved.

But the way we’ve taken the limit of infinite mass causes the conservation of momentum

to break down in our idealized result. The conservation of energy (i.e., conservation of the

sum of colliding object kinetic energies) is maintained.

An infinite mass object becomes a source and sink for momentum in our formalism.

Actually, collisions in multi-dimensions with effectively infinite mass objects happen all

the time in life and nature. You stub your toe on a couch, walk into a wall, etc. What about

elastic collisions with effectively infinite mass objects. Well they happen a lot in space. Small

objects (e.g., asteroids, space probes) interact with large objects (e.g., planets) elastically

through the gravitational force. There is no big mechanism to dissipate mechanical energy to

other forms in these cases along as the interaction is just gravitational. Small dissipations to

heat occur with tidal effects. Such elastic collisions are often used to accelerate space probes

and are called gravity assists or slingshot maneuvers (Wikipedia: Gravitational assist). A
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probe is “bounced off” a planet and picks up extra kinetic energy. The bouncing process is

really a partial orbit around the planet.

4. MASS-VARYING SYSTEMS

The mass-varying systems arn’t so hard to understand in essence—but it is rocket

science.

Say that you have a system of particles: the system could be anything—e.g., an ideal

classical point particle, a realistic classical particle (i.e., a very tiny object in some sense), a

collection of free particles, a rigid object, a flexible object, a bunch of objects flying around

and colliding or not colliding, a sample of liquid, a sample of gas—anything.

The system has mass m, but this m is NOT constant with time.

But we will assume that one can make the continuum approximation and add/subtract

mass from the system in a continuous way. This let’s us use calculus and avoid host of

difficulties beyond our scope and ambition.

Let’s say the particles of the system are acted on by an external force that includes all

forces, except it doesn’t include what below we call MOMENTUM FLUX FORCES.

This external force can be made up of, e.g., gravity, the electric force, and normal forces.

Let’s label this force ~Fother in this derivation.

But also there is mass being added to the system.

We will cop-out—er, avoid difficult generality by saying the mass is added at a single

velocity ~vflux, where the subscript flux stands for flux of mass and flux of momentum.

There is a flux of momentum when you add mass with momentum.
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The limitation to a single velocity can be lifted but is beyond our scope—it’s a long bad

road to perdition, in fact.

We are being general about how we add the mass to the system.

Maybe it is added when it crosses some defined barrier.

Maybe it is added just because we count it as part of the the system at a certain time.

Let the rate of mass added be dm/dt.

Now dm/dt can be positive or negative. The negative addition of mass is actually a

subtraction, of course. For rocket propulsion (which we consider below), the mass is actually

subtracted and is considered no longer part of the system when it has reached its final

ejection velocity relative to the rocket.

In differential time dt, the change in the momentum of the system (i.e., the total mo-

mentum) is

d~p = ~Fother dt + ~vflux

dm

dt
dt , (52)

where the first term is the known effect of forces other than momentum flux force—and we

know this from the formulation of Newton’s 2nd law without the momentum flux force—and

the second momentum flux force itself times dt. The momentum flux force is the rate of

momentum into the system carried by the mass entering the system.

Because the time is differentially small, we don’t have to worry about the change in

momentum due the non-momentum-flux force on the added or subtracted mass. That change

can be expected to be of order
∣

∣

∣

∣

∣

(

~Fother

m

)

dm dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

~Fother

m

)

dm

dt

∣

∣

∣

∣

∣

(dt)2 , (53)

where we assume that ~Fother is at least mass proportional to some crude approximation. The

change is 2nd order in dt, and so vanishes in a differential sense.
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The rate of change of momentum for the system is now seen to be

d~p

dt
= ~Fother + ~vflux

dm

dt
. (54)

Now the term ~vfluxdm/dt (which we’ve already called the momentum flux force) is ac-

tually considered a kind of force. Yours truly calls it a MOMENTUM FLUX FORCE.

Despite having been in physics since 1977, I not sure of the conventional name for this force.

Some textbooks may call it the momentum transport force. Maybe it has no common name

despite being a rather common quantity.

Since we count the MOMENTUM FLUX FORCE as a force, the net external force

on the system is

~Fnet = ~Fother + ~vflux

dm

dt
. (55)

Now we have the equation

~Fnet =
d~p

dt
(56)

which we derived before assuming a constant mass system in § 1 (see eq. (7)). As mentioned

in § 1, this is the form that Newton originally used—only sort of since he wasn’t using mod-

ern notation—and he used the Latin word for “motion” instead of momentum (Wikipedia:

Newton’s laws of motion).

Our derivation here of equation (56) is more general in that it allows for systems of chang-

ing mass. Note we needed to introduce the concept of MOMENTUM FLUX FORCE

in our derivation.

But note that now

d~p

dt
=

d(m~v )

dt
= m

d~v

dt
+

dm

dt
~v = m~a + ~v

dm

dt
, (57)

where we have used the product rule, ~v is the center-of-mass velocity, and ~a is the center-of-

mass acceleration.
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The product rule does hold for scalar multiplication with a vector. For a proof, consider

f ~A, where f is a scalar function and ~A a vector function. Assume that the unit vectors x̂i

for the space are constant. The proof is

d(f ~A)

dt
=

∑

i

d(fAi)

dt
x̂i =

∑

i

(

f
dAi

dt
+

df

dt
Ai

)

x̂i

= f
d ~A

dt
+

df

dt
~A , (58)

where the last expression is the product rule expansion itself. What if the unit vectors

are not constant? In classical physics, we can always express a vector in terms of constant

Cartesian unit vectors. Thus, the proof with constant unit vectors, I think, implies that the

result holds in general since vectors shouldn’t depend on how they are described.

We can now find an equation for the (center-of-mass) acceleration ~a.

Do so. You have 1 minute working individually or in groups. Go.

Behold:

~Fnet = ~Fother + ~vflux

dm

dt
= m~a +

dm

dt
~v =

d~p

dt

~a =
~Fother

m
+

(~vflux − ~v )

m

dm

dt
. (59)

Of course, equation (59) is NOT a solution for acceleration in general. It’s a differential

equation for acceleration in general.

A couple of special cases of equation (59) should be considered. The first is when

dm/dt = 0. The second is when ~vflux −~v = 0. In both cases, one recovers the familiar result

~a =
~Fother

m
(60)

which is just Newton’s 2nd law without the MOMENTUM FLUX FORCE.

The case with ~vflux−~v = 0 is interesting because you are varying the mass of the system

(assuming dm/dt is not zero also), but there is no acceleration if ~Fother = 0. Mathematically,
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this is because the MOMENTUM FLUX FORCE exactly cancels the (dm/dt)~v term of

equation (57). Another way to look at the situation is that the momentum per unit mass

of the added mass is the same as the momentum per unit mass of the system, and so the

momentum to mass ratio of the system stays constant. This ratio is just the center-of-mass

velocity itself, and so there is no center-of-mass acceleration.

A trivial example of the case with ~vflux − ~v = 0 is where you have a rocket flying at a

constant velocity through empty space, but you regard a subsystem as an ever diminishing

piece of the rocket. The subsystem is formally losing mass, but nothing dynamically is

happening to the overall system of the rocket.

A similar trivial example is that you are still flying through space in a rocket with no

external non-moment-flux forces acting on the rocket. You put items outside of the rocket

through an open window, but with no push one way or the other. The rocket is actually

losing mass, but the momentum per unit mass of the rocket is constant. The items placed

outside are just flying in formation with the rocket. This sort of thing actually happens with

astronauts go on space walks from orbiting spacecraft. Here there is an external force gravity,

but affects both spacecraft and astronaut alike—they are both in free fall. The astronaut and

rocket continue to fly in formation as long as there are no pushes between them. Actually

astronauts are tethered to prevent small relative velocities due to small pushes from causing

the astronauts to drift off.

4.1. Rocket Propulsion

In a rocket, rocket fuel burns and expands.

The fuel is collimated to flow out the back end of the rocket.

The burnt fuel pushes on the rocket and accelerates it forward while the rocket by
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Newton’s 3rd law pushes the burnt fuel away in rearward direction.

So fuel and rocket push each other apart.

This is how the rocket is propelled through space.

In empty space, there is nothing external for the rocket to push or pull on, and so the

rocket can only push on that part of itself that it ejects. On Earth pushing and pulling on

things is the usual way to accelerate things and keep then moving against resistive forces.

For the combined system of rocket and burnt fuel in empty space, there are no external

forces and the total momentum stays constant. We are neglecting gravity for simplicity. It’s

always around to some degree or other depending on where in space you are. But in empty

space over the time scales of rocket accelerations, the accelerations due to gravity can be

(although not always are) negligible. Of course, launching from a planet is not in empty

space, and gravity and air drag are not negligible in this case.

If the combined system were at rest (and thus has zero momentum) in some inertial

reference frame before fuel ejection, then momentum stays zero and the center of mass of

the combined system never ever moves no matter how long the fuel ejection goes on for.

But the rocket part of the combined system does accelerate away from the initial point.

So rocket propulsion is a conservation-of-momentum effect.

However, a simple-minded, direct conservation of momentum approach to solving the

propulsion problem is clonky—but intro textbooks love it for some reason—maybe because

of its total obscurity.

It’s better to treat the rocket as a mass varying system and use the MOMENTUM

FLUX FORCE. In this case, ~Fother = 0, and so equation (59) specializes to

~a =
(~vflux − ~v )

m

dm

dt
. (61)
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Let’s assume a 1-dimensional system for simplicity and drop the vector notation. We put

the positive direction in the direction of rocket motion. Now we have the equation of motion

a =
(vflux − v)

m

dm

dt
(62)

for the rocket. Note that vflux−v is less than zero since the fuel is moving at a lower velocity

than the rocket rocket (given our choice of positive direction)—unless the rocket is firing its

retrorockets—but it isn’t doing that in our example.

Now v− vflux is actually the relative speed of the ejected fuel with respect to the rocket.

This relative speed is a parameter of the rocket mode of operation, and so is fixed by the

rocket controls. It is a constant if those controls so dictate. We will assume it is a constant

and give it the symbol vex: it is a positive number or zero number since it is a speed, not a

velocity.

Equation of motion now becomes

a = −vex

m

dm

dt
, (63)

where since dm/dt < 0 for a rocket, the acceleration is positive. We note that the quantity

vex

∣

∣

∣

∣

dm

dt

∣

∣

∣

∣

(64)

is called the thrust or thrust force (e.g., Halliday et al. 2001, p. 183).

The rocket equation of motion equation (63) can actually be integrated to find v as a

function of m and constants of integration initial mass m0 and initial velocity v0.

Do the integration.

You have 1 minute working individually or groups. Go.

Behold:

a = −vex

m

dm

dt
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dv

dt
= −vex

m

dm

dt

dv = −vex

m
dm

∫ v

v0

dv′ = −
∫ m

m0

vex

m′
dm′

v − v0 = −vex [ln(m) − ln(m0)]

v = v0 + vex ln
(m0

m

)

, (65)

where m0 and v0 are initial, respectively, initial mass and velocity as we foreshadowed.

If one specified the mass evolution of the rocket (i.e., specified m(t)), then one could

specify the velocity evolution using equation (65).

We note that if m → 0, then the rocket velocity according to equation (65) diverges

logarithmically to infinity.

Question: This doesn’t actually happen. Why not?

a) If the mass goes to zero, then there is nothing left of the rocket. It’s awfully

hard to make the rocket mass go anywhere near zero in one sense since there

must be some solid structure: everything can’t be just fuel. But on the other

hand, rockets we launch from Earth to space have an awful lot of fuel stages to

get a relatively tiny payload to space. Low-Earth orbital velocity is about 8 km/s

which is really fast by terrestrial standards: of order 24 times the speed of sound

in air.

b) Relativistic effects prevent the velocity of matter objects from reaching the

speed of light.

c) It happens all the time. This question is a crock.

The answers are (a) and (b). Within classical physics (a) is the full answer. But this answer

allows arbitrarily high velocities: just not infinite velocities. But relativistic effects prevent
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the rocket from accelerating to arbitrarily high velocities. The rocket speed cannot reach

the speed of light in any inertial reference frame. What about non-inertial reference frames?

Textbooks grow coy on such tricky questions—the attitude seems to be that there is a special

place in—in a dark and dreary place for people who ask such questions.

4.1.1. Example: Rocket in Space

Say we have a rocket in empty, gravity-free space with v0 = 3.0 × 103 m/s and vex =

5.0 × 103 m/s.

What is v when m = (1/2)m0?

You have 1 minutes working individually or in groups. Go.

Behold:

v = v0 + vex ln
(m0

m

)

= 3.0 × 103 + 5.0 × 103 × ln(2)

= 3.0 × 103 + 5.0 × 103 × 0.69314718 . . .

≈ 3.0 × 103 + 3.5 × 103

≈ 6.5 × 103 m/s . (66)

What is the thrust force if dm/dt = −50 kg/s? Well

Fthrust = vex

∣

∣

∣

∣

dm

dt

∣

∣

∣

∣

= 5.0 × 103 × 50

= 2.5 × 105 N . (67)
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