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ABSTRACT

A lecture on what the title says and what the keywords say.

Subject headings: energy — conservation of energy — energy forms — E = mc2

— work — kinetic energy — work-kinetic-energy theorem — potential energy —

conservative forces — work-energy theorem — mechanical energy — conservation

of mechanical energy — forces of constraint — equilibria — power — energy units

— human body energy

1. INTRODUCTION

In this lecture, we introduce energy.

Energy is immensely important in all of physics, not just Newtonian physics. It is also

immensely important in chemistry, biology, engineering, economics, and human society.

But what is energy?

Well everyone, it seems, admits that it is very hard to define. Elementary physics

textbooks, for example.
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I think many people would agree that there is no adequate one-sentence definition.

But I will give one-sentence definition that I find useful:

“Energy is the transformable and conserved universal essence of structure.”

This is just my own idiosyncratic definition that others may dispute, but it works for me.

It’s not adequate—for one thing what the heck does it mean.

First, energy is transformable because it comes in many forms and every form is trans-

formable into every other form. Sometimes the energy transformations are spontaneous and

sometimes they are easy and sometimes they are hard to do and sometimes practically im-

possible for humans at least on a large scale. There is, however, no pure energy. It always

has some form. We will give important examples of energy forms in § 1.2 below.

The forms are concretely defined by each having their own formula: the amount of

that energy form is calculated from the formula using other physical variables. Some of the

variables that we calculate energy from have already been encountered in intro physics such

as position, velocity, angular velocity, mass, and the gravitational field. Others such as the

rotational inertia and electromagnetic field turn up later in this course or other courses.

Second, “conserved” in the physics jargon means not created or destroyed. Energy

counting all forms is conserved. But forms of energy can be non-conserved, of course, since

all forms of energy are transformable. There are limited energy conservation rules for subsets

of energy forms that apply in special cases. In this lecture, for example, we consider the

conservation of mechanical energy (which is the sum of kinetic and potential energy) in

§ 5.1. We also always use the classical energy conservation rule, except when discussing the

equation E = mc2 in § 1.4.

I say “essence of structure”, because this seems to be a valid description. Saying a
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system has so much energy of some form is a description of the structure of the system.

But note more energy of some form doesn’t mean more structure of some kind: amount of

structure is frequently a subjective judgment. But changes in system structure are usually,

but not always accompanied by a change in some form of energy.

I thought about saying “measure of structure” in my definition. But because of conser-

vation of energy, it seems that energy is a kind of stuff or substance in some sense. “Essence”

implies a measurable stuff, where the stuff has not got a lot of complicating features. Vaguely

this sounds like energy to me. But having made the definition using the word “essence”, it

seems pointless to reiterate “essence” —one can just say “energy” to mean energy and that’s

what we do hereafter.

Note I use the word structure broadly. A motion is a structure in the context of this

discussion.

Nature is full of structures or arrangements if you prefer. Many of the most basic of

these structures are well described by physical variables and those are the structures studied

by physics. As mentioned above, amounts of the various forms of energy can be calculated

from those physical variables. The amounts of the energy forms alone often offer at least a

short description of a system (i.e., of its structure) that is adequate for many purposes. For

example, just in giving a schematic description of a system. The changes in a system can

almost always be described by describing the energy transformations that go on and this is

often the best schematic description.

A few more thoughts on a definition of energy.

Energy is sometimes defined as the capacity for change or, to be consistent with my

definition, transformation. If you have energy in some form in a system, then the system

can be changed by changing that energy into some other form or by adding to or subtracting
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from the system energy in some form. This corresponds well to the qualitative usage of the

term energy in everyday life. If you have energy in the qualitative sense, you can do things

which usually involves changing things. But energy in the physics sense is quantitative.

Since there are energy conservation rules, the amounts of energy in its various forms put

limits on how much change can occur.

In fact, using energy conservation rules alone often allows one to have information, but

usually not full information, about a system’s evolution. This is a major use of energy in

this lecture.

A completely adequate definition of energy probably has to include a full recital of all

the things that energy is used for in physics. We make a start on that in this lecture.

In modern physics, a full description of a system almost always includes an energy

inventory. At a level beyond intro physics, the full treatment of a system’s evolution can be

done in terms of energy.

I use the word “universal” in my definition because the energy concept is universally

useful in physics: i.e., in all the systems we deal with. I also use “universal” since all energy

forms are energy since any form can be transformed into any other form.

Also all forms of energy have the same physical dimensions. But not all things with the

same dimensions as energy are energy: torque has the same dimensions as energy, but isn’t

energy. Torque comes up in the lecture ROTATIONAL DYNAMICS.

Not to be coy, the dimensions of energy are

ML2/T2 , (1)

where recall that the Roman letters M, L, T stand, respectively, for the dimensions of mass,

length, and time. The MKS unit of energy is called the joule (symbol J) and is, of course,
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defined by

J = kg m2/s2 . (2)

Of course, there are kilojoules, megajoules, etc.

The joule was named for James Joule (1818–1889) who extended the energy concept to

heat energy (properly internal energy) and coined the word thermodynamics for the physics

of internal energy and temperature. A word on pronunciation is in order:

The unit of energy is the joule

and this rhymes with drool,

but it should rhyme with bowel

to be correct for James Joule.

Even Joule’s contemporaries were a bit uncertain of the pronunciation of his name—which

was also the name of his brand of beer—he was brewer—“I’ll have a pint of Joule” one might

say.

The joule is a derived unit. But that does not mean that the energy is not a fundamental

quantity. It may be the most fundamental quantity. But it is a rather abstract quantity

at least in most ordinary physical applications. We will see that there is a concrete way

of thinking about energy when we consider the equation E = mc2 below in § 1.4. This

equation shows that we can think of energy as mass and determine it from measurements

of mass (or mass changes) alone, in principle. In practice, mass measurements are often far

from the best means to determine most of the forms of energy. In the classical limit, one

can’t determine energy from mass measurements alone at all. In the classical limit, energy

is determined from a calculation with more directly observable quantities like mass (but not

alone), displacement, and velocity.
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1.1. Conservation of Energy

As mentioned in § 1, energy counting all forms is conserved: i.e., energy is not created

or destroyed though its forms do change.

The conservation of energy is a basic principle of all of physics.

Conservation of energy implies, among other things, that the total energy of a closed

system stays constant no matter what changes occur in the system. In fact, energy is

conserved in every little interaction in the system which implies it is conserved overall.

Energy may change form in many different ways, but the total stays the same.

And energy does transform from one form to another. In fact, any form of energy can

transformed to any other form as emphasized in § 1. Whether that transformation happens

depends on the system. Some energy transformations cannot happen because of the nature

of a system. But if this is system changed appropriately, they could.

Is conservation of energy a postulate of physics or a derived result and is it exactly true?

We will treat it as an axiom. There is a theorem called Noether’s theorem that derives

conservation of energy from other physical principles, but yours truly is essentially ignorant

of Noether’s theorem and any limitations it may have. There are ambiguities about the

conservation of energy at high level in physics (e.g., Greene 2004, p. 532). We won’t concern

ourselves with them. Experimentally, energy always seems to be conserved.

1.2. Forms of Energy and Energy Transformations

There are many forms of energy.

And each form of energy has its own formula or formulae as mentioned above in § 1.



– 7 –

It’s tricky and tedious to try to list all the forms because there are a lot of them and the

forms actually overlap. One reason the list of forms goes on and on is that often energy of

one form is given different names in different contexts: e.g., horse energy and human energy

are both animal energy and animal energy can be decomposed into other kinds of energy

forms.

Here we will just run through a short list of important energy forms without giving

formulae:

1. Kinetic energy: This is the energy of motion. Actually, there is subtlety here. An

object in motion has kinetic energy, but in its own frame of reference it does not have

kinetic energy since it is not moving. Energy is actually reference frame dependent. It’s

conserved in every reference frame though. There are rules for energy transformation

between reference frames. Is there some frame of reference in which one calculates

what can be called the true energy? Well maybe in that continuum of inertial reference

frames that participate in the mean expansion of the universe—but I don’t know what

the great minds think on this fine point.

2. Potential energy: This is the energy of position in a field of force. Different fields

of force can have their own potential energies. The gravitational field, electric field,

and magnetic field can have potential energies. Actually, whether or not the energy

of a field can be described as potential energy depends not only on the nature of the

field, but on its structure (i.e., the distribution of field values in space and time). The

electric field is often said to have a potential energy, but it doesn’t in all contexts. The

magnetic field is often said not to have a potential energy, but in some contexts it does.

Note that fields of force always have energies it seems, it’s just that those energies may

not always be describable as potential energies.

3. Mechanical energy: This is the sum of kinetic and potential energy. This an example
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of the overlap of forms of energy.

4. Electromagnetic field energy: The energy of the electromagnetic field. The electro-

magnetic field is the electric and magnetic fields considered jointly. That’s all we can

say here.

5. Chemical energy: The energy stored in chemical bonds of atoms and molecules. This

is actually a form electromagnetic field energy.

6. Internal energy: This energy is also commonly, but improperly, called heat energy.

Yours truly has given up being proper and will usually just write heat or heat energy.

But what is internal energy or heat. It’s the sum of the microscopic forms of all

other energies. But what is a microscopic form of energy?

Well microscopic kinetic energy is the energy of the uncorrelated motion of the

atomic and subatomic particles. Uncorrelated motion means that those motions don’t

add up to any macroscopic motion.

Chemical energy is also microscopic energy.

The potential energy of atomic and subatomic particles in fields of force of micro-

scopic extent or structure is microscopic energy.

There are other microscopic energies in internal energy too.

7. Electromagnetic radiation energy: This is the energy of electromagnetic radiation or

light. Electromagnetic radiation is a self-propagating electromagnetic field. Both elec-

tric and magnetic fields are needed for propagation. Electromagnetic radiation energy

is a sub-form of electromagnetic field energy.

The list of energy forms goes on and on. It’s quasi-endless.

In this lecture, we introduce kinetic, potential, and mechanical energy.



– 9 –

We do have to allude to chemical, heat, and electromagnetic radiation energy.

The first comes up in our examples as a source for mechanical energy.

The latter two come up as sinks for mechanical energy.

In general, of course, chemical, heat, and electromagnetic radiation energy can be either

sinks or sources since all energy forms are transformable in to all other forms.

Frequently when mechanical energy has disappeared from our systems, it ends up as

heat energy or as we often say it is dissipated to waste heat.

As mentioned in § 1, changes in a system can usually be discussed schematically in

terms of energy transformations alone.

Now that we have some forms of energy we can do this. For concreteness, let’s just do

a specific example.

You metabolize food you’ve eaten changing one kind of chemical energy into another

kind of chemical energy. That chemical energy gets changed both into heat energy in your

body and into kinetic energy of motion. The kinetic energy of motion allows you to move

around. Much of it ends up as waste heat. If you lift objects or yourself, you change some

kinetic energy into gravitational potential energy.

What causes energy transformations?

Forces do.

To speak loosely: energy is the structure and forces change the structure.

For example, a net force changes some energy form into the kinetic energy. We’ll see

how this happens quantitatively in § 3 making use of Newton’s 2nd law of motion.

We can now pretty easily see that how vague energy as used in everyday life connects



– 10 –

with well defined energy.

If you have energy you have some kind of quantified structure. You can change that

into other structures using forces.

So actually I think vague use of the term energy is quite correct.

1.3. Energy and Newtonian Physics

Part of the concept of energy was known in the 17th century to Galileo (1564–1642),

Christian Huygens (1629–1695), and Gottfried Leibniz (1646–1716) as discussed in § 1.5.

Newton (1643–1727) never used energy insofar as it was known then though I guess he

must have known of it (see § 1.5).

But energy is implicit in Newton’s Newtonian physics in that work, kinetic energy,

potential energy, mechanical energy and the conservation of mechanical energy can be de-

veloped consistently from it. Personally, I’d say that work, potential energy, and mechanical

energy are defined and kinetic energy and the conservation of mechanical energy are derived.

But the epistemic status of these concepts may be debatable. We develop the aforesaid

concepts in this lecture.

Energy turns out be very useful in intro physics and in advanced Newtonian physics

even more so.

Energy, however, is much broader than Newtonian physics.

It’s a vital ingredient in all physics nowadays.

So it’s very important to introduce in intro physics.

At advanced levels, energy methods offer a superior approach to doing straightforward
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Newtonian physics.

At our level, energy methods or energy analysis (if you prefer) offer an alternative

approach to the non-energy Newtonian methods we’ve seen in the lectures NEWTONIAN I

and NEWTONIAN II. Sometimes the energy methods are just alternatives and not superior.

But sometimes they are superior.

In particular, energy methods often give you partial information easily that the non-

energy methods do not give you easily. By energy methods giving partial information easily,

one usually means in intro physics that conservation of mechanical energy (§ 5.1) gives partial

information easily.

1.4. E = mc2

If there is one physics equation everyone knows, it’s

E = mc2 , (3)

where E is energy, m is mass, and c = 2.99792458× 108 m/s is the vacuum light speed.

Usually people just name this equation by rattling it off. It is also called the Einstein

equation or the mass-energy equivalence.

But what does E = mc2 mean?

First of all, it means that all energy forms have mass: resistance to acceleration and

gravitational charge. This is the concrete way of thinking about energy we alluded to at the

end of § 1.

Now this may seem odd because there are negative amounts of energy and mass is never

negative. The resolution of this paradox is that if you add up all the energy forms of a

system, the result is always positive and it is the result that is always detectable as mass.
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Second of all, E = mc2 means there must be what is called rest mass energy of basic

particles. The most important of the basic matter particles of are those of ordinary matter:

protons, neutrons, and electrons. Rest mass energy is just the energy of existence of these

particles in a frame of rest. The mass of the particles in a frame of rest is their rest mass.

Some particles like photons don’t have rest mass or rest mass energy—but this is OK because

they are never observed at rest, but always moving at the vacuum speed of light. Massless

(i.e., rest massless) particles are usually not counted as matter in modern jargon.

For example of rest mass energy, consider a proton which has (rest) mass m = 1.672621637(83)×

10−27 kg. Its rest mass energy is

E = mc2 ≈ 1.503 × 10−10 J , (4)

where we see that the units work out to be joules.

Since all energy forms are transformable to all other forms of energy, the rest mass

energy of basic matter particles can be transformed to all other forms of energy and vice

versa. The transformations into rest mass energy are creations of the particles and the

transformation out of rest mass energy are the annihilations of the particles. Creations and

annihilations happen all the time, but in the ordinary terrestrial environments and most

astrophysical environments at a very low rate. So low that it wasn’t noticeable before the

20th century.

In particular, the ordinary matter particles are created or annihilated a very low rates

in ordinary terrestrial environments and most astrophysical environments—we say they are

nearly stable in these environments.

Since ordinary matter particles (protons, neutrons, and electrons) make up most of the

luminous mass in the universe, the ordinary matter is nearly stable in most environments,

in particular, the terrestrial environment.
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And since ordinary matter is mostly stable, it seemed before circa 1900 that the mass of

systems was conserved no matter what flows of kinetic, thermal, or chemical energy went into

or out of the system. Only when obvious matter flowed into or out of a system was the mass

changed as far the old-timers could tell then. That led to the classical conservation of mass

principle that mass/matter was not created or destroyed. What the old-timers thought of as

matter was various. Some believed in atoms as the unbreakable constituents of matter and

some thought of matter as a continuum of stuff that probably didn’t include electromagnetic

fields and some sat an the fence. A consequence of the classical conservation of mass is that

mass that is unchanged by energy flows and only by matter flows.

Nowadays, we use the term matter for particles with rest mass as mentioned above.

In fact, mass does change for energy flows without matter flows, but the changes were

so small that people couldn’t detect them before some time well into the 20th century. If

a system gains kinetic energy, its mass increases. If you heat up system or increase its

chemical energy somehow using energy from outside the system, the system mass increases.

For example, say an object in motion has 10 J of kinetic energy—and we’ll see what that

means about its motion soon—but it’s a human-scale amount of kinetic energy for human-

scale objects moving at human-scale speeds. The object has zero kinetic energy when at

rest. The difference between its rest mass and its mass when moving is

∆m =
E

c2
≈ 10−16 kg . (5)

Such mass changes for ordinary macroscopic objects were unmeasurably small until I don’t

when.

On the other hand, the stability of the ordinary matter in the terrestrial environment,

means that for most purposes the sum of energies excluding the rest mass energy of the

ordinary matter particles is conserved. This limited energy conservation is the classical

conservation of energy.
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With E = mc2, it is now seen that the true conservation of energy principle is also

the conservation of mass principle. In fact, in special relativity jargon, one often speaks of

mass-energy which explicitly shows energy and mass are in a sense the same thing. Person-

ally, I tend to think of mass as an attribute of energy (i.e., an energy form’s resistance to

acceleration and gravitational charge), but this is just a way of thinking.

In intro physics, we essentially live in the 19th century and use the separate classical

principles of conservation of mass and energy. But we won’t reiterate this much.

Just a bit of history.

Einstein discovered E = mc2 in 1905 by deriving it from special relativity which he also

discovered that year. The derivation is a physicsy derivation with reasonable assumptions

injected when needed, not a rigorous math derivation from clearly stated axioms.

He did not immediately jump to the idea that he had discovered a new source of energy.

Rather, he knew that energy changes in radioactive decay processes—only known since

1896—were very large compared to chemical energy changes. So he thought correctly that

E = mc2 could be tested by measuring mass changes in radioactive samples.

By the way, E = mc2 is NOT the singular key ingredient the development of nuclear

energy. It’s just one of the ingredients. But it’s also fundamental cornerstone of all modern

physics. And all modern physics is inextricably interconnected. If one main principle (e.g.,

E = mc2) is wrong, somehow it’s all wrong. Like a house of cards, it would all fall down.

But it’s much more stable than a house of cards—it doesn’t fall down.

In human-made nuclear energy generation, one does not for most part release heat

energy by destroying ordinary matter particles. What happens is that the nuclear bonding

of nuclei changes and protons turn into neutrons or vice versa. This is somewhat analogous to

changing chemical bonds to release or absorb energy. The key difference for energy generation
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is that the energy scale of nuclear bonds is of order 106 larger than that of chemical bonds.

So one can get a factor of a million more heat energy out nuclear fuel than out of the

same mass of chemical fuel.

That factor of million has mesmerized people since the early 20th century. So much

energy from so little fuel.

Of course, there are only certain ways that we can do it—and it’s beyond our scope to

discuss them now.

Why can’t one just convert ordinary matter into other forms of energy leaving no ordi-

nary matter at all?

Well, in principle, you can. Processes go on in nature and in the laboratory all the time

that convert ordinary matter into electromagnetic radiation and often into heat energy at the

microscopic level. For example, some radioactive material is always around and a common

radioactive decay particle is the positron, the antiparticle of the electron. There are a few in

this room. When a positron meets up with an electron, the two particles mutually annihilate

creating gamma-rays which are very short wavelength electromagnetic radiation.

So there is a way to convert ordinary matter into other forms of energy leaving no

ordinary matter at all.

But neither we nor nature have a way to assemble macroscopic amounts of antimatter.

It’s keeps annihilating before either of us (we and nature) can accumulate much. The ob-

servable universe is completely dominated by matter—antimatter particles when they arise

are annihilated when they interact with matter particles—which may take a long time in

some space environments, but not long enough for the creation of macroscopic antimatter

samples it seems.
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In general, we have no practical way of converting ordinary matter samples entirely into

other forms of energy on the macroscopic scale.

But say we could convert 1 kg of matter into some other form of energy such heat energy

which in a small region would create explosively high pressures. How much energy would we

get? Well

E = mc2 ≈ 9 × 1016 J ≈ 20 megatons , (6)

where a megaton is the heat energy released by a megaton (109 kg) of TNT.

It is actually a good thing in our bombing age that this can’t be done practically

speaking.

1.5. The History of Energy

The term energy (energiea) was introduced by Aristotle (384–322 BCE) in the 4th

century BCE as a philosophical term for which I’ve found no meaningful definition. I mean

the definitions given convey to me no clear idea of what old Aristotle used energy for.

Energiea is actually a compound word meaning “in work”, but that is not what it meant

(e.g., Smil 2006, p. 1). One suggested meaning is “actuality, identified with motion” (e.g.,

Smil 2006, p. 1)—but that doesn’t help much. Here’s an Aristotle quote “The energy of the

mind is the essence of life.” That doesn’t help much either—he may have been using energy

only metaphorically in this case.

The term energy kicked around in philosophical discourse for 2000 years because Aris-

totle used it.

But when did energy come into physics?

Well Galileo (1564–1642) had a quantitative of idea of work and power, and therefore
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of energy (e.g., Caldwell 1994, p. 87). But he didn’t use the word energy. Galileo’s concepts

were very useful in quantitatively understanding machine performance and were utilized and

extended by engineer-scientists in the 17th and 18th centuries somewhat independently of

Newton’s Newtonian physics it seems (e.g., Caldwell 1994, p. 89).

Christian Huygens (1629–1695) and Gottfried Leibniz (1646–1716) made use the quan-

tity mv2 which is object mass times object speed squared (e.g., Caldwell 1994, p. 96). Leibniz

used the quantity from 1676 on. Leibniz called it vis viva (living force) (Wikipedia: Vis viva).

Huygens and Leibniz thought this quantity was the true measure of an object’s motion. It

measures the degree to which resistance is overcome. For example, a bullet’s velocity is

doubled it penetrates four times as far into wood as the vis viva formula suggests. Also the

height that an object launched straight upward can be determined from it’s initial vis viva

which is nowadays recognized as a simple consequence of conservation of mechanical energy

(see § 5.1). Leibniz also noted that total vis viva is conserved in some systems. This result is

the conservation of kinetic energy alone. We consider this conservation rule from a modern

perspective in Appendix A.

I would guess that Newton (1643–1727) must have been aware of the energy concepts

of his great predecessors and contemporaries, but he doesn’t seem to have made any use of

them.

The word energy was not yet in use in any of these physics conceptions yet.

In 1807, Thomas Young (1773–1829) renamed vis viva energy.

In the course of the 19th century, it was figured out that a factor of 1/2 should multiplied

to vis-viva energy mv2—this 1/2 was needed precisely to make vis-viva energy change equal

to net work done in equation (25) (see § 3) without any klutzy explicit factors of 1/2.

When other forms of energy were introduced in the 19th century, (1/2)mv2 was given
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the special name kinetic energy. “Kinetic” is derived from the Greek word for motion kinesis

(Wikipedia: kinetic energy). The world cinema was also derived from kinesis—but cinematic

energy is something Steven Spielberg has. As we will see, kinetic energy arises from the

work concept used with Newton’s 2nd law. Thus, kinetic energy can be said to be implicit in

Newton’s Newtonian physics. In our Newtonian physics, energy is, of course, quite explicitly

used.

In certain kinds of isolated systems, kinetic energy is conserved: i.e., stays constant as

the system evolves as mentioned above (see also Appendix A).

It was found in the course of the 19th century that one could extend the principle of

conservation of energy by inventing new forms of energy.

It came to be believed that the sum of all energy forms is conserved: i.e., never created

or destroyed. Thus, the principle of conservation of energy was discovered.

In the 19th century, I think people began to take the principle of conservation of energy

as a postulate of physics.

I’m not sure of the modern view. As mentioned in § 1.1, Noether’s theorem, discovered

in 1915, (Wikipedia: Conservation of energy; Noether’s theorem) proves conservation of

energy from other principles. But the status of Noether’s theorem is beyond yours truly’s

expertise.

Remember though energy conservation is just for the sum of all energy forms in general.

Energy can be transformed from one form to another. In fact, any form of energy can be

transformed into any other form. This is a good reason for saying all forms of energy are

energy.

You may ask is energy conservation just an accounting trick—it is conserved because

we have invented forms of energy to make it conserved.
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The answer I think anyone would give is no.

One reason is Noether’s theorem discussed above with a confession of authorial igno-

rance.

A second reason is because we’ve always been able to find new forms of energy whenever

energy seemed to have been not conserved and this suggests that those forms were waiting

for us to discover. Also, the new forms have always been useful in calculations.

A third reason for viewing energy as a real thing is the Einstein equation:

E = mc2 (7)

which we discussed in § 1.4.

Since all energy has mass, I’m prepared to say that energy is a real thing.

2. WORK

To get to energy in Newtonian physics, we first define work.

What is work in everyday life?

Well it’s doing something.

You exert forces and move things if only electrons in your brain while thinking.

You also expend energy (in the vague everyday sense of the word) doing work: let’s call

this energy vague-energy.

This vague-energy is transformed by work: e.g., from the food energy of your body to

the energy of motion of your body.

In physics, it was found useful to find a quantitative formula for work done on a system



– 20 –

by a force. The formula incorporates the idea that force and movement come into work.

It turns out in our developments that work done (i.e., the work quantity) is energy

transformed (which in some cases is just energy transferred) by the work process. As men-

tioned in § 1.2, forces transform energy and work is the process whereby they do it. But

what the energy is transformed from and what it is transformed to is NOT explicit in the

work formula. Formulae for energy forms must be developed and related to work. We do

that in succeeding sections of this lecture.

Note the work formula is a definition that was found to be useful in developing the

energy concept. We just say this formula defines what work is.

The basic differential work formula for work done on a system is really very simple:

dW = ~F · d~s (8)

where dW is differential work done, ~F is the force acting on the system and doing the work,

d~s is the differential displacement of the system center of mass while the work is being done,

and the binary operation is the dot or scalar product. Note we are discussing work done on a

system thinking of the system as whole. This is why d~s is the center of mass displacement. If

the system is or is treated as a particle, d~s is the particle displacement. If you are considering

work done on a subsystem of a system, the force must act on the subsystem and d~s is the

displacement of the subsystem center of mass.

In our developments, we usually only consider external forces doing work on the system.

Internal forces can do work too, but usually we won’t get into that.

Note that work has the dimensions (ML/T2)L = ML2/T2 which as discussed in § 1 are

the dimensions of energy. This must be so for work to be energy transformed. Evidently,

the unit of work is

unit[W ] = unit[Fs] = N m = kg m2/s2 = J (9)
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where unit[ ] is my idiosyncratic unit function. So the MKS unit of work is the joule, of

course.

Work is a scalar quantity since it comes from the dot product of two vectors. One can

write out the dot product quantities explicitly:

dW = ~F · d~s = F ds cos θ , (10)

where F is the magnitude of the force ~F , ds is the magnitude of the differential displacement

force d~s, and θ is the angle between ~F and d~s with their tails at one point.

Note the displacement is not in general caused by the force ~F and ~F is not in general the

net force on the system. The force ~F is just the force for which the work is being calculated.

The energy (and structure) of system may not be changing in the system if the force is

being exactly canceled by another force. But somewhere in the chain of interactions energy

is being transformed or transferred.

There are special case results for the differential work formula for θ = 0, θ = π/2, and

θ = π.

What are they? You have 30 seconds working individually or in groups.

Behold:

dW =



























~F · d~s in general;

F ds for θ = 0;

0 for θ = π/2;

−F ds for θ = π.

(11)

These special cases illustrate that there is positive and negative work and that if the

force is perpendicular to the displacement there is zero work done.

There is also zero work done if the displacement is zero. No movement, no work no

matter how strong the force. If I push on a wall, no matter how hard I try, it does not move
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macroscopically and I’ve done no macroscopic work on the wall. Now at the microscopic

level, the wall has flexed and so microscopic work has been done, but that does not count in

a macroscopic calculation. To anticipate at bit, the wall doesn’t acquire macroscopic kinetic

energy or potential energy. The microscopic flow of energy in the microscopic work ends up

as waste heat pretty quickly. If one idealizes the wall as perfectly rigid as we often do, then

no work is done at all.

Now positive work done on a system is energy transferred to the system and negative

work done on the system is energy transferred from the system.

These interpretations of positive and negative work follow from the work-kinetic-energy

theorem which we’ll get to soon (see § 3).

The work-kinetic-energy theorem, in fact, gives the first validation that the work formula

is useful in physics.

For finite work done and finite displacements, one in general has a three-dimensional

integral work formula:

W =

∫

~F · d~s (12)

where the integral is along the path traced out by the system (i.e., its center of mass) as

it moves. Such integrals along paths are called path or line integrals. We don’t need to

specify how the integration is to be done here. There are ways as we’ll see. We just have to

acknowledge that the integral exists and is the sum of the infinitely many differential work

elements ~F · d~s along the path made up of differential displacements d~s.

Note we don’t specify endpoints in equation (12) since any labels for these are arbi-

trary. In the author’s opinion, it is best to leave general formulae unadorned by subscript,

superscript, and limit value symbols that are arbitrary choices and that obscure the simple

meaning of the formulae. Of course, in particular cases one must use adornments to show
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the particularities of the particular cases.

If the force is constant, then the force factor can be taken out of the integration and

the finite work formula becomes

W =

∫

~F · d~s = ~F ·
∫

d~s = ~F · ~s (13)

where ~s is the net displacement from the initial point of motion to the final point of motion.

Note the path did NOT have to be straight, but the vector sum of the path is, of course, a

straight line displacement vector.

Equations (8), (12), and (13) can all be referred to as the work formula.

2.1. Example Work Calculation

Say a man pulls a vacuum cleaner 3.0 m along the floor using a straight rope at an angle

of 30◦ to the horizontal. Since a straight rope can only extert a tension force parallel to

the rope itself, the rope force on the vacuum cleaner is at 30◦ to the horizontal. The rope

tension is 50 N.

In this case, the force is a constant and we can use equation (13).

Solve tor the work done.

You have 30 seconds working individually. Go.

We find that the work done on the vacuum cleaner is

W = ~F · ~s = 50 × 3.0 × cos(30◦) = 130 J (14)

to 3 digit accuracy.

Actually before one derives kinetic energy and the work-kinetic-energy theorem (which

we do just below in § 3), there arn’t many interesting example calculations that one can do.
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One can just calculate work done by forces, but in itself that tells little of the system behavior.

Even after we get kinetic energy and the work-kinetic-energy theorem really interesting

examples have to wait for the derivation of the work-energy theorem (§ 5) which is NOT

the same as the work-kinetic-energy theorem.

So don’t expect to see numbers much until we get to the work-energy theorem.

3. THE WORK-KINETIC-ENERGY THEOREM

The work-kinetic-energy theorem is a really beautiful result.

The derivation shows how the work formula in combination with the 2nd law of New-

tonian physics gives rise to the dynamical variable kinetic energy. So it finally puts energy

into Newtonian physics.

The theorem itself shows how to calculate changes in kinetic energy using forces. With-

out the theorem, the work formula would be an arbitrary definition without any use.

Kinetic energy alone is physically useful because we can calculate speed using it.

Kinetic energy is also useful because we know that in certain systems of interacting

particles or subsystems, it is conserved just by itself with certain qualifications to the word

“conserved”. We will briefly consider those cases in Appendix A.

But much more interesting uses of kinetic energy follow from the work-energy theorem

(§ 5).

As Federigo da Montefeltro would say, now to business: the derivation of the work-

kinetic-energy theorem.

Say you have a system that moves through three-dimensional space from point A to
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point B. Implicitly, we mean that the system center of mass moves from point A to point B.

What is the work done on the system by the NET force? Note NET force, not just

the work done by any force.

Well

WAB =

∫ B

A

~Fnet · d~s , (15)

where d~s is a differential path displacement vector for the center of mass. Now since we are

considering the net force on the system, we can make use of Newton’s 2nd law F = ma. The

2nd law applied to the system (which has mass m) is

~Fnet = m~a , (16)

where ~a is the system’s acceleration (i.e., the center-of-mass acceleration of the system). We

assume the mass is constant. Non-constant mass cases can be handled too—but we won’t

get into all that.

Now substituting for net force ~Fnet with m~a in the work integral, we get

WAB =

∫ B

A

m~a · d~s . (17)

Fig. 1.— System moving from point A to point B through three-dimensional space.
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Now for some calculus trickery. Note

~a =
d~v

dt
and d~s =

d~s

dt
dt = ~v dt . (18)

Thus,

WAB =

∫ B

A

m~a · d~s =

∫ tB

tA

m
d~v

dt
· ~v dt , (19)

where we have introduced as the explicit path parameter time t which is a variable of

integration. With the explicit path parameter, the endpoints of the integration are tA, the

time when the system is at point A, and tB, the time when it is at point B.

Now note that

1

2

dv2

dt
=

1

2

d(~v · ~v)

dt
= ~v · d~v

dt
. (20)

where we have just used the product rule for the dot product. The ordinary product rule

generalizes to the dot product rather obviously. For a proof, consider general vectors ~P and

~Q. Now making use of the component formula for the dot product, we see that

d(~P · ~Q)

dt
=

d (
∑

i
PiQi)

dt
=

∑

i

d(PiQi)

dt
=

∑

i

(

dPi

dt
Qi + Pi

dQi

dt

)

=
d~P

dt
· ~Q + ~P · d ~Q

dt
, (21)

where the sum is over all the components of the vectors. Equation (21) is the proof.

We now substitute equation (20) into equation (19) to obtain

WAB =

∫ tB

tA

1

2
m

dv2

dt
dt =

1

2
mv2

B − 1

2
mv2

A , (22)

where vA is the speed at point A and vA is the speed at point B.

We now define the center-of-mass or translational kinetic energy KE for a system to be

given by the formula

KE =
1

2
mv2 , (23)

where m is the system’s mass and v is the system’s speed (i.e., its center-of-mass speed).
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The dimensions of kinetic energy are ML2/T2 which are the foretold dimensions of

energy. The units of KE are energy units are joules, of course. To be explicit note that

unit[KE] = unit

[

1

2
mv2

]

= kg m2/s2 = J , (24)

where again unit[ ] is my idiosyncratic unit function.

Note that the system kinetic energy defined by equation (23) is he kinetic energy as-

sociated with the center-of-mass motion of the system. We can call it the center-of-mass

kinetic energy. It is also commonly called the translational kinetic energy of the system or

object. The center-of-mass kinetic energy does not include the kinetic energy of the sub-

systems the system which can be considerable. One could add up the kinetic energies of

any set of subsystems of the system and that would be the total kinetic energy of the set of

subsystems. The total kinetic energy of sets of subsystems is always greater than or equal

to the center-of-mass kinetic energy. We take up the subject of total kinetic energy in § 3.3.

What are the subsystems? The subsystems could be non-interacting particles flying

around with their own subsystem center-of-mass kinetic energies. They could parts of the

system that vibrate or rotate and kinetic energy associated with those motions. The whole

system could rotate and have rotational kinetic energy. But none of those kinetic energies

are counted in the center-of-mass kinetic energy. In the lecture ROTATIONAL DYNAMICS,

we consider rotational kinetic energy.

With the definition for kinetic energy equation (23), we can rewrite equation (22) to a

form we call the WORK-KINETIC-ENERGY THEOREM for a system:

∆KE = W , (25)

where ∆KE is the change in center-of-mass kinetic energy and W is the work done on

the system by the net force on the system (which is also the net external force). We have

suppressed the subscript labels in equation (25) since they were just arbitrary choices useful
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in the derivation. For a general theorem or rule, we don’t want any adornments that just

reflect arbitrary names and are unmemorable. One simply understands from context that in

equation (25), W is the work done on a system by the NET force that act on it and ∆KE

is the change in kinetic energy due to that work.

We have already said that work is an energy transfer process: it transforms energy from

one form to another. The WORK-KINETIC-ENERGY THEOREM gives us one of

the forms of energy the transfer process is between: kinetic energy. Work done on a system

can change energy from some form (e.g., potential energy as we will discuss later in § 5) into

kinetic energy of a system if W > 0 or the reverse if W < 0.

There is a key point to note: kinetic energy is always non-negative since the factors in

its formula can only be non-negative: i.e.,

KE =
1

2
mv2 ≥ 0 always. (26)

The kinetic energy bank (as one can call it) can be emptied.

Another key point is that the kinetic energy is frame dependent. Energy is conserved

in all frames, but it’s value can depend on the frame you observe it in. Recall we mentioned

this in § 1.2.

For example, an object at rest in a moving car has no kinetic energy relative to the car,

but it does relative to the ground.

A third key point is that the work-kinetic-energy theorem is referenced to inertial frames

since derived it using Newton 2nd law which is referenced to inertial frames.

One can still use the work-kinetic-energy theorem in non-inertial frames if one uses the

non-inertial frame generalization of the 2nd law introduced in the lecture NEWTONIAN

PHYSICS II. One must then introduce the fictitious inertial forces in evaluating the work
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done. Recall the inertial forces allow one to reference Newton’s laws to non-inertial frames.

Using inertial forces is a useful trick because it reduces an unsolved case (which laws to apply

in a non-inertial frame?) to a solved one (use Newton’s laws).

3.1. Individual Forces and the Work-Kinetic-Energy Theorem

The work done by the net force changes a system’s kinetic energy according to the

work-kinetic-energy theorem.

Or another way to put it, the net force transfers energy into or out of the system’s

kinetic energy bank.

But what do individual forces do that make up the net force?

Acting alone they would each be the net force.

But what do they do individually when they act together.

One perspective, which may not be the only one, is that there are various inflows and

outflows from the system’s kinetic energy bank which can be continuous.

The individual forces doing positive work contribute inflows and the individual forces

doing negative work contribute outflows.

The bank balance in the system’s kinetic energy bank is the system’s kinetic energy

itself.

If the system’s kinetic energy stays constant, no net force acts, but there can still

be energy transfers via the system. So energy elsewhere changes and structure elsewhere

changes.

Where to the inflows come from and where do the outflows go to?
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Well these are other stories.

We will consider qualitatively a couple of illustrative cases. Say you push on a block

and move it at a constant velocity. The friction force cancels your push force. Here chemical

energy from your body becomes kinetic energy of your body and flows into the block’s

motion, but friction extracts it as quickly as it flows in and turns it into waste heat.

Another case outside of the realm of mechanics is that of a constant electrical current

in direct current (DC) circuit. Energy from some source creates an electromagnetic field

in and around the circuit and that field drives the electrons in the wires. Energy from the

source continually flows into the circuit system, but the energy of the electromagnetic field

stays constant and the electron kinetic energy stays constant. An energy outflow occurs that

keeps these energy pools constant. The outflow could be macroscopic kinetic energy in an

electrical motor or heat energy in a resistor.

But we will quantitatively treat the flows energy between kinetic and potential energy

in § 5 on the work-energy theorem.

In simple kinetic energy examples, we often just name some energy source or sink without

going into the details.

3.2. Example Work-Kinetic-Energy Theorem Calculation

Given the work-kinetic-energy theorem

∆KE = W = F∆x , (27)

what is an formula for final speed v in terms of initial speed v0, mass m, and work done W ?

You have 1 minute working in groups or individually. Go.
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Behold:

∆KE = KE − KE0

KE = ∆KE + KE0

v =

√

2KE

m
=

√

2(∆KE + KE0)

m

v =

√

2∆KE

m
+ v2

0

v =

√

2W

m
+ v2

0 . (28)

Now for a number problem.

We pull a block of mass m = 6 kg with a net force F = 12 N in the horizontal direction

for a displacement ∆x = 3 m. The block is on a frictionless horizontal surface. All other

forces (gravity and the normal force) are perpendicular to the direction of motion, and so

do NO work.

From the WORK-KINETIC-ENERGY THEOREM, the change in the block’s

kinetic energy is what?

You have 10 seconds. Go.

Behold:

∆KE = W = F∆x = 36 J . (29)

What is the block’s final speed v given that its initial speed is v0 = 0?

You have 30 seconds working individually or in groups. Go.

Behold:

v =

√

2W

m
=

√

2 × 36

6
=

√
12 ≈ 3.5 m/s . (30)

Of course, the above calculation could have been done using Newton’s 2nd law to find a
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constant acceleration and then using the appropriate constant-acceleration kinematic equa-

tion (i.e., the timeless equation) to the find the speed. Recall, the timeless equation is

v2 = v2
0 + 2a∆x .

In fact, we could have gotten more information about the motion from using the 2nd-

law approach. We would have could have found the whole kinematic evolution of the block.

So the energy method gives less information in this case and is just an alternative method

for finding the speed. But there will be cases as we’ll see where energy gives us partial

information very easily and we’d have to work very hard to get any information by 2nd-law

approach.

3.3. Total Kinetic Energy

Note equation (23) KE = (1/2)mv2 defined the center-of-mass kinetic energy (or com-

monly the translational kinetic energy) since ~v is the center-of-mass velocity. But this is

not the total kinetic energy of the system, but just the kinetic energy associated with the

center-of-mass velocity. One could add up all the kinetic energies of the parts of the system

and that would be the total kinetic energy of the system.

The total kinetic energy is always greater than or equal to the center-of-mass kinetic

energy.

To prove the last statement, let’s decompose the system into arbitrary subsystems. The

subsystems i have masses mi and (center-of-mass) velocities ~vi. Let the subsystem velocities

relative to the center-of-mass velocity ~v be ~v ′

i. Now

~vi = ~v + ~v ′

i , (31)
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of course. The total kinetic energy of the set of subsystems is

KEtot =
∑

i

1

2
miv

2
i =

∑

i

1

2
mi(~v + ~v ′

i) · (~v + ~v ′

i)

=
∑

i

1

2
mi(v

2 + 2~v · ~v ′

i + v′2
i )

=
∑

i

1

2
miv

2 + ~v ·
∑

i

mi~v
′

i +
1

2

∑

i

miv
′2
i

= KE +
1

2

∑

i

miv
′2
i , (32)

where the first term is the center-of-mass kinetic energy, the cross term vanished since a

factor in it is the center-of-mass velocity of the whole system in the center-of-mass frame of

reference of the whole system, and the third term is always greater than or equal to zero.

The third term is only zero when all the relative velocities ~v ′

i = 0 which means that the

subsystem center-of mass are moving in formation.

The proof shows that the total energy of any set of subsystems is always greater than

center-of-mass kinetic energy of the system.

How small can we make the subsystems?

Well we could go right down the mythical classical point particles that often use as the

starting point for physics derivations.

Such particles could be regarded as actual basic particles that are assigned their classical

average behavior. Their quantum mechanical behavior is then eliminated.

In fact, the random kinetic energy of microscopic particles is part of the internal energy

(AKA heat energy) and is never added to the macroscopic kinetic energy. So the particles in

a macroscopic kinetic energy are just assigned the macroscopically non-random velocities—

which is actually easy to do.

In actual calculations, the classical particles are treated in the continuum limit so that

one can use integration.
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4. POTENTIAL ENERGY

Potential energy is the energy of position of a particle in the region of space where

there is a field force. For classical physics, the particle is a classical point particle. We will

elaborate this definition below.

But why is potential energy called potential energy? Historical reasons I suppose. If

one was doing the names all over again, one could more reasonably call it “position energy”.

Remember a field force is a force that is defined at every point space or at least a region

of space. We will just say space below for brevity.

Say that we have field force ~F .

Say we have general points A and B in space.

Going from A to B along some path, the work done by the field force on a particle is

WAB =

∫ B

A

~F · d~s , (33)

where we note this is NOT the net work in general, but just the work done by the field

force.

Now we assume that the work done by the field force is, in fact, path-independent for

the particle moving from general point A to general point B. This means one gets the same

work value for WAB for any path.

Forces for which this assumption holds are called CONSERVATIVE FORCES. The

term “conservative force” is probably used since only work done by conservative forces allow

mechanical energy to be conserved (see § 5.1).

For a conservative force, the work done by the force going around any closed path is

zero. The proof is simple. Say we did work WAB going from A to B along a particular path.



– 35 –

Remember A and B are general points. The work going from point B to point A by along

the same path in the reverse direction is

WBA =

∫ A

B

~F · d~s = −
∫ B

A

~F · d~s = −WAB , (34)

where the differentials d~s in the 2nd integral are implicitly the inverses of the differentials d~s

in the 1st integral. Clearly, WAB and WBA sum to zero. But since the work done going from

A to B and the work going from B to A are both path independent, the sum WAB and WBA

is zero for any path from A to B for WAB and any path from B to A for WBA. Thus WAB

and WBA sum to zero for any pair of paths. Thus work is also the work done going around

any closed path from general point A to general point A is zero. This completes the proof.

One can also show that if the work done by a field force around any closed path is zero,

then the force is conservative. Say one went from A to B along a path and came back along

a fixed path and the work done was zero always. Then the work done going from A to B

by any path must be the same since it must be canceled by the work coming back along the

fixed path. So if one assumes that the work done around any closed path is zero, the work is

done between any two points is path-independent. In fact, the two properties are equivalent

in that one implies the other. So a conservative force has both properties for the work it

does.

We now define POTENTIAL ENERGY as being the energy source for the conser-

vative force. If the conservative force does positive work, the particle’s potential energy is

decreased. If the conservative force does negative work, the particle’s potential energy is

increased. The general formula for potential energy changes is

∆PE = −W , (35)

where we have dropped arbitrary subscript labels, W is the work done by the conservative

force, and ∆PE is the potential energy change.
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Yours truly likes to use the symbol PE for potential energy since it is mnemonic,

but some texts use U and in the context of quantum mechanics and advanced classical

mechanics one uses V (e.g. Goldstein et al. 2002, p. 4). Potential energy is sometimes called

potential, particularly in quantum mechanics and advanced classical mechanics. But in

electromagnetism, the word potential is used for something else (the thing commonly called

voltage), and we will stick to saying potential energy for potential energy.

Consistent with our discussion above, W > 0 reduces PE and W < 0 increases PE.

Since the work done by the conservative force between any two points in space is path-

independent, we see that the potential energy change between any two points in space is

path-independent. Therefore a definite potential energy can be assigned to each point in

space for the particle aside from an arbitrary additive constant. The arbitrary additive

constant exists because general potential energy formula equation (35) gives us no absolute

zero point of the potential energy. It only gives changes in potential energy between points

in space. In fact, the zero point of potential energy is arbitrary. In any calculation, only

differences in PE affect the results, except for those results like the value of PE itself which

have arbitrary additive constants.

So as we’ll see in the examples, the zero point is chosen either for convenience of a

particular example or by a convenient convention that is widely used.

Equation (35) is the general potential energy formula. Particular conservative forces

will each have their own particular potential energy formulae which will depend explicitly

on position. These potential energy formulae are derived from the general potential energy

formula for those particular conservative force or a postulated and the conservative force is

derived from the potential energy formula. We will discuss the latter procedure in §§ 4.7

and 4.8.



– 37 –

Given how potential energy is defined, we see that it makes sense to call it the energy of

position in a field of force. Note we usually just say potential energy is a function of position

in space—and don’t explicitly mention “for a particle” usually.

4.1. Potential Energy of Systems

We have defined potential energy for particles.

What can be done for systems?

Well the potential energy for systems can be calculated by summing the potential energy

for the particles that make up the systems.

These particles don’t have to be classical point particles which are tricky to handle in

actual calculations. The particles are the bits that are small enough that one position fully

specifies them.

If the system is a continuum, one can integrate up the potential energy contribution of

the differential bits that make up the system.

Now in general doing the summing process might be difficult.

Can anything simpler be done?

One can approximate the system potential energy as being the potential energy for some

representative point for the system. The center of mass seems a natural choice since that

is consistent with using the center-of-mass kinetic energy—which is center-of-mass kinetic

energy in the sense that the velocity used in evaluating it is the center-of-mass velocity.

The representative point approximation may be poor sometimes.

But if the potential energy per particle varies little over the extent of the system the
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approximation may be very good. In such cases, the potential energies of the parts of the

system can be evaluated using just the representative point: i.e.,

PE =
∑

i

PEi(~r i) ≈
∑

i

PEi(~r rep) , (36)

where the parts are labeled by i, ~ri is the position of part i, PEi(~r i) is the potential of part i

evaluated at ~ri, ~rrep is the representative point position, and PEi(~r rep) is the potential of

part i evaluated at ~rrep.

Sometimes it is possible to find a representative point that gives exactly the potential

energy of the whole system.

Fortunately, this is the case for the examples we consider: the potential for gravity near

the Earth’s surface (where the representative point is the center of mass) and the potential

for the one-dimensional simple harmonic oscillator (where the representative point can be

any point of the system if it is rigid—but the center of mass seems a good choice).

4.2. What is Potential Energy?

What is potential energy?

And where is it?

The question means can potential energy be understood in terms of other physical

concepts.

In fact, usually yes.

For real physical conservative forces, potential energy is the energy associated with the

field structures of those forces. The field is a real physical thing in modern physics, not just

a mathematical auxiliary. The field is the cause of a field force recall. The energy of the

structure of fields is mostly beyond our scope though it comes up in the second semester
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when the electric and magnetic fields are introduced.

Can you calculate the potential energy from the fields? Yes. One integrates a field

energy density over space. So the energy of the field is spread out, in general unevenly,

through the region of the field extends over. Calculations of field energy can be done for

electric and magnetic fields easily enough. For gravity fields, it can be done too, but yours

truly is essentially ignorant of the finer details of gravitational fields.

Actually, the field energy of fields is more fundamental/intrinsic to the fields than po-

tential energy. As discussed in § 1.2 whether a potential energy can be used to describe the

energy of a field (and one can describe the force as conservative) depends not only on the

nature of the field, but on its structure (i.e., the distribution of field values in space and

time). We discuss examples of forces and when they are conservative forces in § 4.4.

But whether a potential energy can be defined or not, one can calculate the field energy

by an integration of the field energy density.

Potential energy can be described as shortcut way of calculating changes in the energy

of the field structure. Sometimes the shortcut is available, sometimes not. When it is

available, it can be very useful and allows one to avoid what may be awkward calculations.

The downside of using potential energy is that rather hides the structure of the field energy

and makes this energy a bit mysterious and not obviously locatable.

Can one find non-arbitrary zero points for potential energy by a field energy calculation?

Well in sense. But first note that having a zero field in a region does not mean that the

natural choice of potential energy for that region is zero. The field energy density of that

region is zero, and thus that region contributes nothing to an integral of the field energy.

But the potential energy at a point (for a point particle) depends on the structure of the

field as whole not just on its value at any particular point.
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To give an example, the gravitational field inside an isolated hollow sphere (which has

mass) is zero, but one usually doesn’t assign zero potential energy to objects placed in that

hollow—it isn’t a natural assignment it turns out. The natural assignment is to set the zero

potential at infinity (i.e., infinitely far from the sphere). We may consider gravitating hollow

spheres the lecture GRAVITY—or maybe not.

It also seems natural to say the gravitational potential energy of two point particles is

zero when they are at infinity relative to each other. Similarly, the electric potential energy of

two point electric charges is naturally said to be zero when they are at infinity relative to each

other. But there are ambiguities in classical physics. The electric field energy (and therefore

the potential energy) of a classical point electric charge is infinite. Classical point particles

don’t actually exist which is a relief in this context. Quantum mechanical point particles

may exist (e.g., the electron seems to be a quantum mechanical point particle) and their

energy (i.e., there rest mass energy) is not infinite. But there are still infinities in quantum

mechanical treatments that have been worked around by a theory called renormalization and

not solved to everyone’s satisfaction.

For ideal conservative forces that one just invents for heuristic purposes (e.g., the ideal

linear force), the potential energy is a just-so: it can’t be further explained.

4.3. What Field Forces are Conservative Forces?

As mentioned in §§ 1.2 and 4.2, whether a potential energy can be used to describe the

energy of a field depends not only on the nature of the field, but on its structure (i.e., the

distribution of field values in space and time).

For example, the Coulomb or electric force (which is caused by the electric field) is often

said to be a conservative force, but it isn’t in all contexts. For example, if the charges that
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cause the electric field are moving in the inertial frame of interest, then no potential energy

can be defined over finite times—you can define potential energy instant by instant. One

can define potential energy instant by instant and that may or may not be useful. Another

example where no potential energy can be defined is when the electric field is caused by

Faraday’s law of induction which is a topic in the 2nd semester of intro physics.

The magnetic field is often said NOT give rise to a conservative force, but there are

contexts in which it does. For example, a magnetic dipole in a magnetic field has a potential

energy associated with its orientation with respect to the magnetic field direction. This is

also a topic in the 2nd semester of intro physics.

Gravity is often called a conservative force, but like the Coulomb force, one can only

define a potential energy if the sources of the forces (i.e., masses) are not moving in the

inertial frame of interest. If the sources move, a potential energy is not strictly definable for

finite time intervals. One can again define potential energy instant by instant and that may

or may not be useful. If the source motion is slow enough, potential energy may be a valid

approximation.

If the sources of the electric or gravity force are in some sort of steady stream, then a

potential energy can be defined.

By the way, the potential energy of the Coulomb force is not a stranger to you. The

potential energy per unit charge is called electrical potential and, more commonly, voltage.

A 10-volt battery means that for every coulomb of charge that flows the battery, 10 J of

electrical potential energy is transformed into some other form of energy. A coulomb is the

standard SI unit of charge. It is a macroscopic unit of charge. A coulomb of charge flow per

second is the familiar ampere or amp.

The one-dimensional linear force is conservative as well as we’ll see below in § 4.6. But
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the linear force has only a one-dimensional field.

The linear forces often arise from the elastic forces for of materials. One usually thinks

of such forces as the forces of a body that resist compression, extension, and shearing. Elastic

forces can be regarded as field forces in the coordinate system defined by the body. Perfect

elastic forces don’t lose energy to waste heat through internal resistive forces and can have

associated potential energies. At the microscopic level, elastic forces are manifestations of

the electromagnetic force.

In the case of the ideal linear force of examples, there is no field energy other than what

is described by the potential energy. This potential energy has no defined location in space.

I suppose you could invent such field energy and locating in space, but there’s no advantage

I can think of in doing this. Now real linear forces arise from manifestations of fundamental

forces as we’ll discuss in § 4.6.

4.4. What Forces are Non-Conservative?

Well usually, one can say the ideal normal force, the ideal tension force, and friction are

not conservative forces and do not have potential energies.

They are non-conservative forces.

You can use the first two to push or pull an object through space, but the work done

is path-dependent. They also are not field forces. But one if one considers the normal force

as a perfect elastic force of a non-rigid surface, then a potential energy can be defined. As

you compress the surface potential energy is stored and as it is decompressed the potential

energy is released. So context is important in deciding if a normal force has a potential

energy.
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The kinetic friction force always does negative work on an object relative to the surface

over which the sliding occurs since the friction force always points opposite to the direction

of motion on that surface. To put this in a formula form, the work done by kinetic friction

is

dWki = ~Fki · d~s = −Fki ds , (37)

where ~Fki is the kinetic friction force and d~s is a differential displacement between the

surfaces. The work done clearly depends on the path and no potential energy can be defined.

The kinetic friction work is an outflow from the object’s macroscopic kinetic energy

bank. Where does that energy outflow go to?

Well to delve for a moment into the microscopic level, chemical bonds form between

the sliding surfaces. This bond formation is actually a transformation of microscopic electric

potential energy between the atoms of the surfaces into heat energy. So the heat energy

that heats the surfaces comes from the bond formation. To break the bonds, the electrical

potential energy between the atoms must be restored. The energy to do the restoration

comes from the macroscopic kinetic energy bank of the sliding object. From another point

of view the bonds exert a force on the sliding object that does negative work on the object,

and thus removes energy from the object’s kinetic energy bank.

Of course, both static and kinetic friction can do positive work on an object in certain

very common contexts. Just think of block in the back of the pickup truck. As the truck

accelerates, the static friction force does work to accelerate the block if the block doesn’t

slide. If the block slides back in the truck, kinetic friction force does negative work relative

to the truck. But as long as the block still goes forward relative the ground, kinetic friction

is doing positive work relative to ground.



– 44 –

4.5. Gravitational Potential Energy

Here we are concerned only with gravity near the Earth’s surface where the force law

for gravity on a classical point particle is

~F = mg(−ŷ) , (38)

where m is the particle mass, g is gravitational field magnitude (acceleration due to gravity)

idealized as CONSTANT (with fiducial value 9.8 N/kg), and ŷ is a unit vector pointing in

the upward vertical direction.

Going from A to B along some path, the work done by gravity on the particle is

WAB =

∫ B

A

~F · d~s =

∫ B

A

mg(−ŷ) · d~s = −
∫ yB

yA

mg dy = −mg∆yAB , (39)

where ∆yAB = (yB − yA) is the difference in y coordinates between the endpoints. The work

done is, in fact, independent of the path as the explicit evaluation of the integral shows. In

fact, it’s spatial dependence is only on the y coordinates of the endpoints.

Motion in the horizontal direction contributes no work. Any path loops cancel out.

Since the work is path independent, a potential energy can be defined for gravity.

Using the potential energy formula equation (35) PE = −W and dropping the arbitrary

subscripts gives

∆PE = mg∆y (40)

for gravitational potential energy changes. There is no conventional zero point of gravity

near the Earth’s surface, and so the zero point is chosen for convenience. Often the ground

level is the convenient choice.

We see that gravitational potential energy increases with height.

What about a finite system?
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Well say the system is made of classical point particles i and has total mass m.

The masses of the particles are mi and in some displacement of the system the particles

undergo height displacements ∆yi. The total change in potential energy of the system is

∆PE =
∑

i

mig∆yi = mg

(∑

i
miyi

mi

)

= mg∆y , (41)

where ∆y is the center of mass displacement.

So calculating potential energy for gravity near the Earth’s surface is simple. One just

needs to keep track of the center-of-mass position.

The potential energy for a system is the same as for a point particle with the meaning

of the factors changed appropriately: i.e.,

∆PE = mg∆y , (42)

where m is total mass and y is center of mass height.

4.5.1. Example Gravitational Potential Energy Calculation

Say you raise 100 kg object through 1 m.

This could be for example a large man climbing about 3 steps.

The gravitational potential energy change is what?

You have 10 seconds. Go.

Behold:

∆PE = mg∆y ≈ 100 × 10 × 1 = 1000 J . (43)
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4.6. Linear Force Potential Energy

As you should recall from the lecture NEWTONIAN PHYSICS I, the linear force is a

force of many names: linear force, linear restoring force, spring force, Hooke’s law force, and

simple-harmonic-oscillator force.

For one dimension, it is

F = −kx , (44)

where x is the displacement of an object from the equilibrium position (where the linear

force is zero) along an x axis and k is the force constant. The linear force is one-dimensional

field force since it is defined everywhere in a one-dimensional space.

What point in the object should x be?

If we assume a rigid object where all parts are constrained to move in formation, any

point will do.

That point will have an equilibrium position and the force varies varies linear with the

point’s displacement from equilibrium.

You could make the point the center of mass or for an ideal spring or the point where

the object is attached to the spring. The center of mass is the probably best choice since

that is consistent with all of our developments.

The linear force is extremely important since the physical parts of stable static structures

(i.e., those that resist distortion) are usually acted on by the linear force (for one or more

dimensions) for relatively small displacements from their stable equilibrium positions (i.e.,

the positions where all forces cancel). We discussed this point in the lecture NEWTONIAN

PHYSICS II and well discuss it again in § 7.1

To find the potential energy of the linear force, we consider the work done on an object
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moved from a zero-point x0 to general x along some path in one-dimension which may include

loops. This work is

W =

∫ x

x0

~F · d~s =

∫ x

x0

(−kx′x̂) · (dxx̂)

=

∫ x

x0

(−kx′) dx′ = −1

2
kx′2

∣

∣

∣

x

x0

= −1

2
k(x2 − x2

0) . (45)

The work done is, in fact, independent of the path as the explicit evaluation of the integral

shows. Any one-dimensional loops in the get canceled out since again ~F ·d~s+ ~F · (−d~s ) = 0.

The work depends only on the x coordinates of the endpoints.

Using the general potential energy formula equation (35), we find

∆PE = −W =
1

2
k(x2 − x2

0) . (46)

There is an obvious conventional zero point for the linear force: i.e., the equilibrium

point which can often be chosen to be x = 0. Thus, usually one writes the absolute linear

force potential energy as

PE =
1

2
kx2 . (47)

The linear force potential energy is parabolic.

Really we have to wait until we have the work-energy theorem (§ 5) before we can do

any interesting calculations with the linear force potential energy.

In the case of the ideal linear force of examples, there is, as mentioned in § 4.3, no field

energy other than what is described by the potential energy. This potential energy has no

defined location in space. I suppose you could invent such field energy and locating in space,

but there’s no advantage I can think of in doing this.

Now real linear forces arise from manifestations of fundamental forces. For example in

real springs, it is the electromagnetic force between the atoms that is the ultimate source
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of the linear force. So, in fact, the spring potential energy is actually electromagnetic field

energy. The linear force can arise as manifestations of other fields too: gravity and the strong

nuclear force. I don’t know about the weak nuclear force. An example of a linear force from

gravity is the case of the simple pendulum discussed in the NEWTONIAN PHYSICS II.

4.7. Deriving Force from Potential Energy

Obviously, we have the differential result

dPE = −dW = −~F · d~s , (48)

where ~F is the force that has the potential energy the equation defines.

In one dimension, equation (48) becomes

dPE = −dW = −Fdx , (49)

where the POSITIVE DIRECTION for the force is the positive x direction and the

NEGATIVE DIRECTION for the force is the negative x direction.

We find immediately, that

F = −dPE

dx
. (50)

So given a functional form for PE, the force can be obtained by differentiation.

The minus sign in equation (50) seems formally annoying, but it indicates an important

fact.

The force points in the direction that the potential energy decreases in.

If the PE is increasing with x, the force points in the negative direction.

If the PE is decreasing with x, the force points in the positive direction.
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As an example, let’s derive the gravitational force from the gravitational potential en-

ergy. We get

F = −dPE

dx
= −d(mgy)

y
= −mg (51)

which is what expected.

In multi dimensions, it turns out that the force points in the direction of fastest spatial

decrease in potential energy.

This gives a useful mental picture. As we’ll discuss in § 6, one can view the potential

energy as forming a landscape with high potential energy regions forming hills and low

potential energy regions forming valleys or—as they are usually called WELLS.

The force derivable from the potential energy always points down the hills and to the

bottoms of the wells.

This mental image is a useful mnemonic since it corresponds to our usual way of thinking

with real hills and valleys with the combined force of gravity and the surface normal force

being a force that points down the hills. This combined force is actually a conservative

force since moving along the land surface the normal force does no work and the gravity

component all the surface is conservative. Real hills and valleys (which can be called wells

in this context) with gravity are actually a special case of a potential energy landscape.

4.8. Deriving Force from Potential Energy in Three Dimensions: Reading

Only

This is verging on being out of the scope of this course—but not quite.

Just as in § 4.7 (see eq. 48), we have the differential result

dPE = −dW = −~F · d~s , (52)
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where ~F is the force that has the potential energy the equation defines.

We now expand d~s in a Cartesian coordinate system:

d~s = x̂ dx + ŷ dy + ẑ dz (53)

and then we find

dPE = −(Fx dx + Fy dy + Fz dz) (54)

from which it follows that

~F = −
(

∂PE

∂x
x̂ +

∂PE

∂y
ŷ +

∂PE

∂z
ẑ

)

, (55)

where the ∂ is the partial derivative derivative. A partial derivative is a derivative with

respect to only one variable when the function depends on multiple variables.

To see non-rigorously that equation (54) is correct consider equation (55) with only one

differential at a time non-zero.

The gradient operator of vector calculus for Cartesian coordinates is defined

∇ =
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ . (56)

This definition can be generalized to all orthogonal coordinates (e.g., spherical polar and

cylindrical).

The gradient is in some respects the three-dimensional analog of the derivative in one

dimension.

Thus, we get the general result

~F = −∇PE : (57)

the force is the minus the gradient of the potential energy.
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The gradient of a function actually points in the direction of greatest spatial increase of

a function which we will not prove—but it’s not very hard to do that—hold on until vector

calculus catches up with you.

The negative sign means that force points in the direction of fastest potential energy

spatial decrease.

The mental picture of the potential energy landscape that goes with this understanding

of the force derivable from a potential energy was discussed above in § 4.7.

5. THE WORK-ENERGY THEOREM

This section is the biggy for this lecture—well one of the biggies.

Recall the WORK-KINETIC-ENERGY THEOREM equation (25),

∆KE = W , (58)

where W is the net work (i.e., the net work done by all forces) during displacement of a

system center of mass and ∆KE is the change in center-of-mass kinetic energy of the system

during that displacement. The work is by the net force on the system and for a displacement

of the center of mass.

Nothing forbids us from decomposing W into the work done by conservative forces and

the work done by non-conservative forces. We do this thusly:

W = Wcon + Wnon , (59)

where Wcon is the work done by conservative forces and Wnon is the work done by non-

conservative forces.

Actually, we could decompose the net work W in any way we like among the work

contributions by various forces. Sometimes that turns out to be a useful trick. For example,
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it sometimes useful to include only some the conservative forces in Wcon and put the others in

Wnon treating them as non-conservative even though they are conservative—nothing forbids

us from doing this.

Recalling the general potential energy formula (eq. (35) in § 4), we can find the potential

energy change due to the conservative forces: i.e.,

∆PE = −Wcon , (60)

where PE is the potential energy for the conservative forces that do work Wcon.

A tricky point now. If the potential energy for a system can be evaluated accurately

enough using the center-of-mass position as a representative point for the system, then

making use of potential energy to replace −Wcon is straightforward. If not, not then not.

The displacement of parts of the system may need to be treated in accurately evaluating the

changes in potential energy.

Now we substitute equation (60) into equation (59)—with the assumption that all con-

servative potential energy forms have been included in equation (60) or at least those we

wanted to consider conservative—and then substitute that into work-kinetic-energy theorem

equation (25) to get

∆KE = −∆PE + Wnon . (61)

Now that ∆PE is just begging to be moved to the other side of the equal sign.

We do this and get the WORK-ENERGY THEOREM

∆KE + ∆PE = Wnon . (62)

It is now convenient to define MECHANICAL ENERGY as the sum of kinetic and

potential energy. Thus,

E = KE + PE , (63)
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where one can often distinguishes E with a subscript to make it explicit that mechanical

energy is meant, not just any old energy: e.g., Emech. But for general formulae, I prefer a

clean look with context giving the meaning. Mechanical energy is an example of a form of

energy that subsumes two other forms (i.e., kinetic energy and potential energy), and thus

is illustrates the difficulties encountered in drawing up a simple list of energy forms.

With the definition of MECHANICAL ENERGY, we can now write the WORK-

ENERGY THEOREM as

∆E = Wnon . (64)

Either equation (62) or equation (64) is fine to remember as the WORK-ENERGY THE-

OREM: equation (64) is more compact, but one often has to decompact it to equation (62)

anyway in solving problems.

To emphasize, equation (64) is the WORK-ENERGY THEOREM for a system as

whole. The mechanical energy is the sum of center-of-mass potential energy and the total

potential energy of the external forces. We are not counting the internal kinetic energy of

the system due to rotations, vibration, or other motions of the parts. We are not counting

the potential energy of internal forces.

A tricky point redux. If the potential energy for a system can be evaluated accurately

enough using the center-of-mass position as a representative point in the system, then making

use mechanical energy and the WORK-ENERGY THEOREM is straightforward. If not,

not then not. The displacement of parts of the system may need to be treated in accurately

evaluating the changes in potential energy.

The WORK-ENERGY THEOREM can be generalized to include internal kinetic

energies in some cases. The only case I really know of is that of a rigid-body roller (e.g., a

sphere or cylinder) that is rolling without slipping on some surface. Here one can include

the rotational kinetic energy in the WORK-ENERGY THEOREM. Because of the no-
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slip condition, the roller center-of-mass velocity v (i.e., the translational velocity) and the

angular velocity ω are related by v = rω, where is r radius from the roller axis to the surface

on which the roller is rolling.

5.1. Conservation of Mechanical Energy

Now overall energy is always conserved for a closed system. This is consequence of the

principle of conservation of energy and an empirical fact as far as we know.

But it—energy—can be transformed among all forms in principle. In macroscopic sys-

tems, it often transforms into heat energy and often heat energy is not transformed back

into any macroscopic form of the energy—in which case we say the system has dissipated

energy to waste heat.

But if non-conservative forces do NO net work, then that special form of energy ME-

CHANICAL ENERGY is conserved just by itself—then we have conservation of ME-

CHANICAL ENERGY.

From the WORK-ENERGY THEOREM with Wnon = 0, we have

∆E = ∆KE + ∆PE = 0 . (65)

The conservation of mechanical energy can often be used to obtain answers to problems

as an alternative to simply employing Newton’s laws.

Often the alternative is no better, but often it is.

In particular, it often turns out that using conservation of MECHANICAL EN-

ERGY is useful in obtaining partial information about the motion of a system easily when

full information about the motion is very hard to obtain.
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These cases often arise when there are non-conservative forces around acting, but NOT

doing net work. The non-conservative forces are often guiding the motion in such cases.

In physics jargon, they are CONSTRAINT FORCES. When they do no work, they are

WORKLESS CONSTRAINT FORCES.

The conservation of mechanical energy equation (65) can be rewritten

∆KE = −∆PE . (66)

Say one defines ∆PEinverse = −∆PE, then one gets

∆KE = ∆PEinverse , (67)

where ∆PEinverse means the additive inverse of ∆PE. This formula is often useful in simple

calculations. Say a ball drops from rest by |∆y| where ∆y < 0 is the actual displacement.

It’s final kinetic energy is

KE = ∆KE = −∆PE = −mg∆y = mg|∆y| = ∆PEinv . (68)

Unfortunately, students unclear on concept often use equation (67) without understand-

ing what the variables mean—frequently on tests. They often just say any amount of po-

tential energy equals any amount of kinetic energy and vice versa.

Do NOT do that.

Equation (65) is the basic conservation of mechanical energy equation. It should be the

formula memorized and used in general. Only equation (67) when one is clearly understands

what the variables mean.

5.1.1. Example 1: A Falling Ball

There is ball of mass m that we drop from an initial height y0 to y. We take upward as

the positive direction, and so y− y0 < 0. The ball is in free fall, and thus gravity is the only
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external force.

There are no CONSTRAINT FORCES.

Since gravity is a conservative force, MECHANICAL ENERGY is conserved.

Say the initial height of the ball is y0 and the initial speed of the ball is v0.

What is the speed v of the ball at any other height y as a function of y, y0, v0, g and

m?

The height and speed are center-of-mass values, of course.

You have 1 minute working in individually or groups? Go.

We can apply, the conservation of mechanical energy equation (65):

∆E = 0 (69)

which implies

E = KE + PE = KE0 + PE0 = E0 , (70)

where the unadorned symbols are for any time and the 0 subscripted symbols apply at time

zero.

Solving for the general speed v gives

KE = KE0 − (PE − PE0)

v =

√

2KE0

m
− 2g(y − y0)

v =
√

v2
0 + 2g(y0 − y) , (71)

where we have used the fact that gravitational potential energy is given by

PE = mgy , (72)
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where g is gravitation field (or acceleration due to gravity) which we assume is constant

since the problem is implicitly a near-Earth-surface problem. The zero point of the potential

energy is the arbitrary zero of our height scale. Recall that the zero point for potential

energy can always chosen for convenience or convention.

Equation (71) is mass independent.

Should we have expected this?

Yes.

All the terms in the conservation of mechanical energy are homogeneously linear in

mass. So mass cancels out. So canceling mass is to be expected with the only potential

energy in a system conserving mechanical energy is the potential energy of gravity.

In this case, we know the ball was moving down, and so knew that the solution formula

for velocity is

v = −
√

v2
0 + 2g(y0 − y) , (73)

where v means velocity now and not speed.

We could have been obtained equation (73) using Newton’s laws (which would have

given a constant acceleration a = −g) and then using the timeless equation of the constant-

acceleration kinematic equations.

Equation (71) is exactly the result the timeless equation would have given in fact.

In this case, the solution by either mechanical energy conservation or Newton’s laws

takes about the same amount of work.

But the Newton’s laws approach would have given us more. We could have found the

whole time evolution of position and velocity from that approach: i.e., full information.

Now the energy method can be made to give full information—but that takes formalism
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well beyond the scope of this course. But as we’ll see for other systems, getting partial

information from energy approach is often useful.

Say v0 = 0 and y0 − y = 10 m.

What is v?

You have 10 seconds. Go.

Behold:

v =
√

2g(y0 − y) ≈
√

2 × 10 × 10 =
√

200 ≈ 14 m/s . (74)

5.1.2. Example 2: The Bead-on-Wire System

Now for a much more interesting example that illustrates the power of the conservation

of mechanical energy method.

There is bead of mass m on a frictionless, fixed wire—which is in the near-Earth-surface

environment—which is always the case pretty well unless we say otherwise.

The wire curves around in three-dimensional space. The bead freely slides along it.

The wire has no cusps.

What forces act on the bead?

Gravity—a conservative force.

The normal force of the wire. It’s not a conservative force—no potential energy can be

associated with it.

But the normal force of the wire does NO work on the bead:

dWnormal = ~Fnormal · d~s = 0 (75)
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always since the bead path vector d~s is always perpendicular to the normal force.

The normal force in this case is a WORKLESS CONSTRAINT FORCE: it does

no work on the bead, but it does guide the bead’s path through space.

The friction force? It’s non-conservative, but since it’s zero, it does no work.

Since the non-conservative forces do NO net work—although the normal force provides a

WORKLESS CONSTRAINT FORCE—we can apply the conservation of MECHAN-

ICAL ENERGY.

We want to solve for the speed v for any height y given initial speed v0 and height y0.

You have 1 minute working individually or in groups. Go.

By steps absolutely identical to those in the falling ball example (§ 5.1.1), we arrive

again at

v =
√

v2
0 + 2g(y0 − y) . (76)

Note we only get the speed, not the velocity. We don’t know which way on the wire the

bead is moving just from conservation of mechanical energy alone.

Fig. 2.— Bead on a frictionless wire.
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Solving for y given v, v0 and height y0, one obtains

y = y0 +
(v2

0 − v2)

2g
. (77)

Note that again mass has canceled out of equations (76) and (77) as it does when gravity

is the only force in a case of conservation of mechanical energy.

Now for a really important point.

In falling ball example, g was the actual constant acceleration magnitude of the falling

ball as well the gravitational field magnitude and parameter in the gravitational force law

and gravitational potential energy formula.

In that context, equation (76) was also a special case of the timeless equation of the

constant-acceleration kinematic equations as well as being a constant mechanical energy

result.

But in the present example, the acceleration is NOT constant.

The acceleration magnitude is not g.

Question: What is the acceleration along the wire of the bead at any point?

a) ±g everywhere.

b) g downward everywhere.

c) g sin θ downward everywhere, where θ is angle of the wire from the horizontal

at the current position.

Yes, it’s (c).

Our conservation of MECHANICAL ENERGY analysis has allowed us to get partial

information (i.e., eq. (76) and (77)) about the bead’s motion very easily. We can get even
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more partial information easily about the bead-on-wire system using energy methods as we’ll

see in § 6.1.

It is one of the great benefits of conservation of mechanical energy analysis in general

that one can get partial information easily. Actually, it is generally true that conservation

laws (e.g., conservation of mechanical energy, conservation of total energy, conservation of

momentum, conservation of angular momentum) give partial information easily.

We cannot get complete information from conservation of mechanical energy: we won’t

get position, velocity, and acceleration as functions of time.

In fact, to get such information we would have to specify the whole path of the wire and

the initial conditions of the bead fully (i.e., initial velocity and position). And then we’d

have to do a lot of work.

There is in general no analytic solution for full information to the general bead-on-wire

system. In general, one would need a numerical solution. We won’t go there.

Of course, special cases can be done. Say the wire was straight. In this case, θ is

constant and the problem becomes a constant acceleration problem.

Here’s another question for the class.

Question: What is the maximum height y of the bead?

a) ymax = y0 + v2
0/(2g).

b) ymax = y0.

c) 0.

Yes, it’s (a). This is the maximum value of y according to equation (77). Also this value

for y causes the expression under the radical sign to be zero in equation (76): any larger
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value y would give an imaginary speed and kinetic energy. Obtaining the upper limit on y

is another example of the partial information that energy analysis allows.

At the maximum height, all the bead’s energy is potential energy and none is kinetic

energy.

Here’s still another question for the class.

Question: When the bead is at a specified height y, its speed:

a) is 0.

b) depends on acceleration.

c) is the same no matter what the bead’s location is in other coordinates.

Yes, it’s (c).

We’ll return to the bead-on-wire system in § 6.

5.2. Non-Conservation of Mechanical Energy

If non-conservative forces do work, then mechanical energy energy is NOT conserved.

Let’s consider kinetic friction which is a prime example.

Recall kinetic friction is caused by the formation of chemical bonds as discussed in § 4.4.

The bond formation causes the transformation of microscopic electrical potential energy

into heat energy when the bond forms.

The heat energy is randomized microscopic energy as seen from the macroscopic scale

and cannot easily nor entirely be converted back into macroscopic energy.
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In many ordinary human situations of friction, the heat energy created by bond forma-

tion is not recovered in any direct sense at the macroscopic level.

A sliding object on a surface breaks the chemical bonds between object and surface

almost immediately upon formation. The bond forces point opposite the direction of motion

relative of object and surface, and so do negative work on the object and reduce it’s kinetic

energy.

5.2.1. Example of Mechanical Energy Loss due to Kinetic Friction

Say we have an object of mass m sliding on a horizontal surface.

We can set the surface to zero gravitational potential energy for convenience.

It’s initial kinetic energy is KE0.

Only the kinetic friction force does work on the object. The coefficient of kinetic friction

µki.

The kinetic friction force always points opposite to the direction of motion.

Thus, the work done by friction over displacement ∆~s of object relative to surface is

W = ~Fki · ∆~s = −µkimg∆s , (78)

where mg is the magnitude of the normal force in this case and ∆s is just a magnitude.

By the work-energy-theorem with no change in potential energy, we find that

∆KE = Wnon = −µkimg∆s (79)

Given initial kinetic energy is KE0, how far does the object travel before it comes to a

stop where it has zero kinetic energy?
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You have 30 seconds working individually. Go.

Behold:

∆KE = 0 − KE0 = −µkimg∆s

∆s =
KE0

µkimg
. (80)

If we were given the initial speed v0, then

∆s =
v2
0

2µkig
(81)

which is independent of mass.

The independence of mass is, of course, because the kinetic frictional force is homoge-

neously linearly dependent on mass in this context.

Say v0 = 10 m/s and µki = 0.3, what is ∆s?

You have 30 seconds working individually. Go.

Behold:

∆s =
v2
0

2µkig
≈ 100

2 × 0.3 × 10
≈ 16.7 m . (82)

We can complicate things in finding the stopping distance for the object by making the

surface an incline at angle θ from the horizontal. To be definite, we say θ ≥ 0 if the surface

rises in the direction of motion and θ < 0 if the surface decreases in the direction of motion.

We also consider ∆s to be a one-dimensional displacement (rather than a magnitude of

displacement) that is positive in the direction of motion which is opposite to the direction of

kinetic friction force. We do this to use ∆s in describing vertical displacement. We assume

the direction of motion does not change.

Now from the work-energy theorem, we find that

∆E = 0 − KE0 + mg∆y = −KE0 + mg∆s sin θ = −µkimg cos θ∆s
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KE0 = ∆smg(sin θ + µki cos θ)

∆s =
KE0

mg(sin θ + µki cos θ)

∆s =
v2
0

2g(sin θ + µki cos θ)
. (83)

The last equation reduces to our horizontal surface equation if θ = 0.

Question: What does it mean if sin θ+µki cos θ = 0 which can happen for θ < 0?

a) The analysis fails.

b) The net force on the object is zero and it continues moving at a constant

velocity forever: i.e., ∆s = ∞. It can’t have zero velocity since we assumed

kinetic friction.

c) The object explodes.

Yes, it’s (b). The gravitational force and the kinetic friction force cancel each other.

What is the net force along the slope?

Well

Fnet = −mg sin θ − µkimg cos θ = −mg(sin θ + µkimg cos θ) , (84)

where we note that the gravitational term is a downhill force in all cases and the kinetic

friction term is a force opposing the direction of motion (which we assume does not change).

From the net force, we can see explicitly that the velocity will be constant and stopping

distance will be infinite if sin θ + µki cos θ = 0.

If ∆s becomes negative (which requires θ < 0) in equation (83), then that just means

that the object was at rest in the past when the object was higher up the slope. In this case,

the gravity force down the slope is greater than the kinetic friction force up the slope and

the object never comes to rest after it starts to slide and accelerates downhill forever.
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Note that mechanical energy keeps decreasing in the case of ∆s < 0 because of the loss

to waste heat by friction. There is a net lost in energy. But the loss is all from the potential

energy form. The kinetic energy keeps increasing.

We can show this explicitly using the the work-kinetic-energy theorem (eq. (25) in § 3).

The kinetic energy for |∆s| (i.e., the magnitude of the stopping distance for a stopping in

the past which requiresθ < 0 (sin θ + µki cos θ) < 0) is given by

∆KE = −mg|∆s| sin θ − µkimg cos θ|∆s| = −mg(sin θ + µki cos θ)|∆s| . (85)

We can see that ∆KE grows as |∆s| increases.

Sometimes the equations take some thought to understand.

6. POTENTIAL ENERGY LANDSCAPES AND ENERGY DIAGRAMS

Can we learn anything more about the bead-on-wire system from § 5.1.2 without a

detailed analysis?

Yes.

Say we observed the bead at initial height y0 and speed v0, but we also observed its

initial direction of motion.

To be definite let’s define the initial direction as positive.

The bead will travel along slowing down as it rises hills, speeding up as it descends

valleys, and staying constant as it travels on the level plains.

The literal hills, valleys, and plains of the wire are also potential energy hills, valleys,

and plains in the case of the bead-on-wire system since

PE = mgy : (86)
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i.e., potential energy is proportional to height.

Thus, there is a POTENTIAL ENERGY LANDSCAPE that directly corresponds

to the actual elevation landscape of the bead-on-wire system.

The concept of a potential energy landscape can be generalized to all potential energy

cases.

In this generalized potential energy landscape, hills, valleys, and plains are just features

in potential energy as a function of space and not literal features in general.

In fact, the expression “potential energy landscape” is not all that common, but the

concept is under whatever name a person chooses. We use “potential energy landscape” for

convenience in our discussions.

One common name is WELL which is a potential energy valley. People talk of potential

energy WELLS all the time.

A picture of a POTENTIAL ENERGY LANDSCAPE is an ENERGY DIA-

GRAM.

For two-dimensional or three-dimensional cases, it’s hard to draw a fully representative

ENERGY DIAGRAM, but partially representative ones or schematic ones are often easily

drawn and are useful in contemplating the potential energy landscape.

For the bead-on-the-wire system the ENERGY DIAGRAM is comparatively simple

since the potential energy is proportional to height, and so in two dimensional cases (x and

y) can be plotted on a two-dimensional diagram of PE versus x.

To quantitatively accurate for two-dimensional or three-dimensional cases, one must

resort to complex visualization techniques. But qualitative accuracy can be obtained by a

simply schematically visualizing the potential energy as varying with one coordinate as we
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can do with the bead-on-wire system.

As well as potential energy, one can put other system energies on ENERGY DIA-

GRAMS.

A common situation is to plot the mechanical energy for mechanical energy conserving

systems. In these cases, the mechanical energy just has a constant value. For one-dimensional

cases, the mechanical energy is just a horizontal line.

But conventionally one only plots the mechanical energy for only for locations that

the system can actually reach. The system cannot reach locations where the kinetic energy

would have to be negative to conserve mechanical energy since there is no negative mechanical

energy. The difference between the mechanical energy and the potential energy values at

any point is the kinetic energy, of course.

6.1. The Bead-on-Wire System Redux

To return to the bead-on-wire system again.

Now the bead will continue traveling along the wire in the positive direction until the

speed goes to zero.

Question: When would the speed go to zero?

a) When the bead returned to y0.

b) Never.

c) When the bead reached ymax.

Yes, it’s (c), but also maybe (b).
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In order or the direction of motion to change, the velocity in the direction of motion

must go to zero, and so the speed must go to zero.

This can only happen at ymax.

Of course, the bead may never encounter ymax and may just travel on forever in the

positive direction.

Speed zero happens when the wire is rising in the direction the bead is moving, and

so its acceleration points opposite to the direction of motion (i.e., in our defined negative

direction).

This means that the bead will change directions at that point of zero speed since the

acceleration is negative.

The point of changing direction is called a TURNING POINT.

After the turning point the bead will head off in the negative direction until its speed

goes to zero again—unless there are no other ymax points in the negative direction in which

cases it just keeps going in the negative direction forever.

The new zero-speed point is another TURNING POINT, but with a positive accel-

eration since the wire is now rising in the negative direction at the zero-speed point. After

this TURNING POINT, the bead heads back in the positive direction.

As time passes, the bead will just oscillate back and forth between the two TURNING

POINTS—unless in one direction there is no ymax in which case, as already understood,

the bead will just head off in that direction forever.

In the first case, the system is BOUND.

In the second case, the system is UNBOUND.
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In the bound case, the oscillation is actually exactly periodic since at every point, the

bead has exactly the same velocity as when it was at that point before going in the same

direction. Therefore integral of the velocity with respect to time must necessarily result in

exactly periodic motion. But finding the period of the motion requires an exact specification

of the wire a detailed calculation with Newton’s 2nd law which in many cases must be done

numerically.

The only possible deviation from the above scenario for the bead-on-wire system is if

the bead speed goes to zero exactly at local maximum of the potential.

At a potential maximum, the net force on the bead goes to zero.

So the bead will come to rest and stay at the local maximum.

To come to such an ideal resting place would take ideal fine-tuning of the bead’s initial

conditions.

The slightest deviation from rest at the potential maximum and the bead will slide down

from it one way or the other.

If one plots the mechanical energy on the bead-on-wire ENERGY DIAGRAM it

is just a line segment between the turning point potential energy values. The difference

between the mechanical energy line and the potential energy curve is the kinetic energy, of

course. At the turning points the kinetic energy is zero.

The picture of a system moving about in a potential energy landscape generalizes to any

system with a significant potential energy. If the system can escape to infinity, it is unbound

and otherwise it is bound. In one dimensional cases, there will be a periodic oscillation

between turning points. In multi-dimensional cases, the time evolution of a bound system

can be quite complex and may not ever repeat exactly in finite time I think.
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The situation of a system with only conservative forces is an idealization in the macro-

scopic realm. There are other forces besides the conservative force giving rise to the potential

energy. We take up the question of other forces in § 7, but only for an important special case.

The idea of potential energy landscapes is still very useful when non-conservative forces are

present.

Examples of systems moving in potential energy landscapes come up in celestial me-

chanics and microscopic physics. In celestial mechanics, planets are bound to stars. They

are in gravitational potential energy wells and don’t have enough energy to escape. If an

object has enough energy to escape from the star’s potential energy well, then the object

has a speed at or exceeding the escape speed and is unbound. In microscopic systems, there

is a similar situation with electrons bound to atoms: they are in the atom’s potential energy

well and can’t escape usually. If the electron is given an injection of energy, it may have

enough energy to become unbound.

Both cases are more complicated than our bead-on-wire case. For one thing they are

three-dimensional cases in general. Also the potential energy zero point is at infinity. Angular

momentum, in fact, puts extra restrictions are where the objects can move in these wells:

i.e., restrictions beyond those of conservation of mechanical energy. Discussions of angular

momentum in this context are beyond our scope of class.

7. EQUILIBRIA

In mechanics, equilibria are situations of zero net force on an object.

If the object is not moving, then the equilibrium is a static equilibrium.

Of course, the staticness is reference frame dependent: whether an equilibrium is static

or not depends on the frame of reference you are in.
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Let’s consider an inertial reference frame in which there is a defined potential energy.

The equilibria for the force of this potential energy acting alone or in combination with

workless constraint forces are all static equilibria. They occur where the potential energy has

zero derivative in one-dimensional systems and zero gradient in higher dimensional systems.

Recall from § 4.8 that gradient is in some respects the three-dimensional analog of the

derivative in one dimension.

Let’s consider the our bead-on-wire system again as a concrete example a system with

static equilibria due to a potential energy field.

The potential energy of a bead of mass m is

PE = mgy . (87)

But we also have a workless force of constraint, the normal force of the wire. This normal

force causes y to be a function of a path length parameter s. So a useful point of view PE

is a function of s and is a one-dimensional potential energy. Using results from § 4.7, the

one-dimensional force along the wire path derived from PE consistent with the constraint

force is

F = −dPE

ds
= −mg

dy

ds
= −mg sin θ , (88)

where θ is the angle of wire from the horizontal direction is aligned with the positive s

direction.

The stationary points or equilibria of the potential energy occur when θ = 0.

Can we make our bead-on-wire system a bit more realistic?

Let’s say that there is kinetic friction, but no static friction—which isn’t realistic for

the bead-on-wire, but is for many other kinds of systems that are somewhat analogous to

the bead-on-wire system.

In this case, mechanical energy is NOT conserved.
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The kinetic friction force always opposes the direction of motion, and so always reduces

speed and mechanical energy.

So the bead perpetually loses mechanical energy until it comes to permanent rest.

The bead can only come to permanent rest where the net force on it is zero.

Since at rest only gravity and the normal force act on the bead—remember there is no

static friction—it can must come to rest at potential energy equilibria.

Now let’s consider a more general kind of system.

Let’s consider a object (which could be just a particle) governed by a conservative force

and maybe workless constraint forces a DAMPING FORCE that like kinetic friction

always reduces the kinetic energy.

Since the conservative force is conservative, there is a potential energy with peaks, wells,

and plains in general.

We assume there are no cusps in potential energy which would cause discontinuities in

force. Remember a force in one dimension is minus the derivative of the potential energy

(§ 4.7). If the potential energy has a cusp, it has two slopes at one point and there a

discontinuity in the derivative and in the force. In three dimensions, similarly cusps lead to

discontinuities in force. Real discontinuities probably do not exist when one studies a system

on a small enough scale.

For systems like that described or even approximately like it, there is conventional

classification of equilibria into four kinds:

1. STABLE EQUILIBRIUM: This is a potential energy minimum located in a poten-

tial energy well of relatively large depth. It is not in general a global minimum of the

potential. Any small perturbation of the object from the exact minimum will lead to
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a small scale oscillation of the object between nearby turning points similar to that

discussed in for the bead-on-wire system (§ 6.1). Recall a conservative force points

in the direction of fastest decrease of potential energy (§ 4.7). Thus, the conservative

force tries to restore the object to the exact minimum. The damping force (if present)

will damp out the oscillation by reducing the kinetic energy to zero and causing the

object to come to rest at the minimum again. Except in very rare cases, the potential

energy in the vicinity of the minimum is parabolic and the restoring force it gives rise

to is linear. We discuss why this is so in § 7.1 below.

2. UNSTABLE EQUILIBRIUM: This is a potential energy maximum. Any pertur-

bation no matter how small starts the object accelerating away from the maximum.

Recall a conservative force points in the direction of fastest decrease of potential energy

(§ 4.7). The damping force (if present) will continue to reduce the mechanical energy

of the object and the object will never have enough mechanical energy to climb to the

maximum again unless there is some new injection of energy.

Inflexion points of potential energy are also unstable equilibria. Recall an inflection

point is one where the derivative has gone to zero, but the function is monotonically

increasing or decreasing at the point. Usually any perturbation will cause the system

to move off in the direction that the potential energy is decreasing (i.e., in the direction

the force points). One can image cases where the perturbation damps out by a damping

force, but such cases are probably rather rare.

In multi-dimensional cases, it is also possible to have equilibrium points that are

stable in some directions, but unstable in others. Overall such points probably have to

be judged as unstable since general perturbations will lead to a un-returning motion

away from the equilibria. The obvious example is a saddle point in a two-dimensional

space. In one direction the point is a maximum of potential energy (and so stable) and
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in an orthogonal direction it is a minimum (and so unstable).

3. NEUTRAL EQUILIBRIUM: This is a potential energy plain. The object can

come to rest on the plain. A small perturbation of added kinetic energy will cause the

object to move. But the object will come to rest again a short distance away when

if there is a damping force to remove all the kinetic energy, unless the object moves

off the plain. If the object moves off the plain, then the object position will evolve

according to the forces it encounters in the potential energy landscape.

4. METASTABLE EQUILIBRIUM: This is potential minimum, but one that is at

the bottom of a small potential energy well in the potential energy landscape. The

equilibrium is stable against sufficiently small perturbations, but not larger ones. A

sufficiently small one with a damping force present just leads to damped oscillations

and rest again at the minimum. A large one will cause the object to escape the well

and lead to further evolution. In reality, all stable equilibria are metastable. There

can always be a sufficiently large perturbation to make the object move away from a

minimum permanently if there are no other effects not included in the conservative

or damping force to bring it back. But metastable category is often used only for

equilibria that are considered delicate (i.e., potential energy wells that are shallow) in

the context of system.

If there was no damping force in the stable and metastable equilibria, then perpetual

oscillations or bound-state motions would occur as discussed in § 6.1. This can actually

happen in quantum mechanical systems which do not obey Newton’s laws of course. For

macroscopic systems, the absence of all damping forces is an ideal limit that cannot be

reached in reality.

The discussion of equilibria becomes more complex if our object is subject to something

like static friction as a real bead-on-wire system is.
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Nevertheless, the equilibrium categories we have introduced above have general utility.

For example, a building should be in overall stable equilibrium.

This means all its parts should be in stable equilibrium.

A little damped oscillation is necessarily allowed for in building design, but not irre-

versible motions that can lead to collapse.

On the other hand, a balance scale should be designed to be at a nearly unstable

metastable equilibrium when balanced.

This allows a fine mass determination.

Any stabilizing resistive force in the pivot will cause an uncertainty in a mass determi-

nation.

For a very fine balance scale, one wants the stabilizing resistance force as small as

possible while still allowing a balance.

7.1. The Nature of Stable Equilibria

In equilibrium, the net force on an object (which may be just a particle or may be a

part of a larger object) is zero.

To be a stable equilibrium, there has to be a restoring force that will try to push the

object back to the equilibrium position after a perturbation has displaced it as we discussed

above in § 7.

If the restoring force varies continuously with displacement, then the restoring force will

be linear in the displacement for a sufficiently small displacement from equilibrium, except

in very rare cases.
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Nature usually abhors discontinuities at least if you look on a fine enough scale. So

we will not bother with cases of discontinuities in the dependence of the restoring force on

displacement.

In some cases, the linear regime for the restoring force may be very tiny.

A more mathematical argument can be given for the linearity of the restoring force

about an stable equilibrium for the one-dimensional case.

Consider a potential energy PE for the system.

At an equilibrium point x0 for the force of the potential energy, the force is zero, and

thus PE has a stationary point.

We can can Taylor expand PE around the equilibrium point to get

PE(x) = PE0 +

∞
∑

n=2

(x − x0)
n

n!

dnPE

dxn

∣

∣

∣

x=x0

, (89)

where the linear term in the expansion is zero since PE is stationary at x0.

For the equilibrium to be stable, there must be at least a small region about x0 where

there is a restoring force due to the potential: i.e., where

F (x > x0) < 0 and F (x < x0) > 0 (90)

so that the force tends to push the system back to equilibrium when there are small pertur-

bations.

Since

F (x) = −dPE

dx
(91)

(eq. (50) in § 4.7), we demand for stability that the lowest non-constant term in equation (89)

have an even order n and a positive coefficient dnPE/dxn|x=x0
. This lowest non-constant

term is the stabilizing term. Say the stabilizing term is the nth order term, then for some
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small region about x0,

F (x) = −(x − x0)
n−1

(n − 1)!

dnPE

dxn

∣

∣

∣

x=x0

. (92)

We see explicitly that the last equation gives the behavior of equation (90).

In fact, almost always in nature and technology, the stabilizing term is the 2nd order

term. There is no general reason for this term to vanish at stationary points and it doesn’t

usually. Thus, for some small region about x0,

F (x) = −(x − x0)
d2PE

dx2

∣

∣

∣

x=x0

(93)

which is just the linear force with d2PE/dx2|x=x0
acting as the linear force constant k.

One can, of course, create higher order stabilizing terms for specially constructed sys-

tems, but I know of no practical reason for doing so.

A system which may turn up sometimes is where the potential energy at the bottom

of a well goes flat for a small region. Technically, the flat region is a neutral equilibrium,

but if this region is very small it might act effectively as a stable equilibrium giving rise to

oscillations for small perturbations of an object in the that are not simple harmonic motion.

If such oscillations damp out, then the object will come to rest nearly where it started from.

The system is not far removed from the case where one has a linear restoring force, but is

not exactly that case.

The above argument can be generalized to three dimensions and again the stabilizing

term is almost always 2nd order in displacement from stable equilibrium.

Since the 2nd order term is almost always the stabilizing term, the linear force has

immense importance both in nature and in technology. It is almost always the restoring

force for small displacements from the stable equilibria of a potential energy’s force.
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8. THE SIMPLE HARMONIC OSCILLATOR

Once more unto the linear farce—er force.

Recall for one dimension, it is

F = −kx , (94)

where k is a constant and x is measured from zero-point location for the force.

The equilibrium point for the linear force is x = 0. It’s actually a stable equilibrium

as we discussed in §§ 4.6 and 7.1 since the force tries to push the particle it acts on back

toward the x = 0 location after any displacement.

Say we have one-dimensional system in which a particle of mass m is subject only to

the linear force or the linear force is the only unbalanced force.

The equation of motion follows from F = ma:

ma = −kx , (95)

where the linear force is the net force in this case.1

Since a = d2x/dt2, the equation of motion is

m
d2x

dt2
= −kx (96)

which is called the simple harmonic oscillator equation since the system it describes is called

the simple harmonic oscillator. It is a differential equation recall.

We have already solved the simple harmonic oscillator equation in the lecture NEWTO-

NIAN PHYSICS II.

1Equation of motion is a term used in several ways. It can mean F = ma itself or a particular application

of F = ma. The latter is the usage I usually use. It can also mean the solution to F = ma. This is usage I

avoid.
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That solution gave us full information: position as a function of time and thus all orders

of derivatives of position with time. Recall

x = A cos(ωt) + B sin(ωt) , (97)

v = −Aω sin(ωt) + Bω cos(ωt) , (98)

a = −Aω2 cos(ωt) − Bω2 sin(ωt) , (99)

where ω =
√

k/m is the angular frequency and A and B are constants of integration de-

termined by the initial conditions. Position x and its derivatives are all sinusoidal. The

behavior of the simple harmonic oscillator is called simple harmonic motion.

The usual initial conditions specified for initial time t = 0 are the initial position x0 and

the initial velocity v0. Obviously at this point in the course,

A = x0 and B =
v0

ω
. (100)

An example of a simple harmonic oscillator is an ideal spring with an object with mass

attached.

But since the linear force is nearly always the stabilizing force for stable equilibria

for small displacements from equilibrium points (see § 7.1), approximate simple harmonic

oscillators are ubiquitous in nature and technology. Thus, the simple harmonic oscillator is

one of the most important of all ideal systems.

Actually, at the macroscopic level, an ideal simple harmonic oscillator is virtually im-

possible. There are always damping forces. However, the damping forces can be made very

small in some cases. Also one can always add a driver force to counteract the damping forces

and maintain a driven harmonic oscillator quasi-perpetually.

Although we have the full solution for the simple harmonic oscillator, energy methods

give us some information without having to know the solution.
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The linear force is a conservative force as we showed in § 4.6 where we also found the

linear force potential energy to be given by

PE =
1

2
kx2 , (101)

where the PE zero point is set to x = 0 (the equilibrium point) by a convention that is

obviously completely reasonable.

Since the only force that does work is conservative, mechanical energy is conserved.

Thus

E =
1

2
mv2 +

1

2
kx2 =

1

2
mv2

0 +
1

2
kx2

0 = E0 , (102)

where the subscripts 0 indicate initial values. The initial conditions x0 and v0 allow us to

calculate E0.

We can’t learn everything about the system from the energy method. We can’t learn

the time evolution. But we can find speed |v| as a function of |x| and vice versa:

|v| =

√

2E0

m
− k

m
x2 , (103)

|x| =

√

2E0

k
− m

k
v2 . (104)

From these equation it follows that |v|max occurs for x = 0 and |x|max for v = 0:

|v|max =

√

2E0

m
, (105)

|x|max =

√

2E0

k
. (106)

We could have found these values from the full solution simply by differentiating the ex-

pressions for x and v by time and setting the expression to zero and solving for the time

of the stationary points which then get plugged back into the x and v expressions for the

stationary points which we then take the absolute values of. The energy method is just
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alternative which may simpler to use in some cases. But in any case, shows how |x|max and

|v|max follow from specifying the mechanical energy of the simple harmonic oscillator.

The quantity |x|max is called the amplitude of the oscillation of the particle.

And there is an oscillation as we know from the full solution. But even without that

solution, we can know there is an oscillation.

First, we can see that the potential energy landscape is parabola with a single stationary

point at x = 0 which is a minimum.

From our discussion in § 6.1, we know that the particle will oscillate back and forth

between TURNING POINTS which are, in fact, at x = ±|x|max.

The total mechanical energy on an ENERGY DIAGRAM is a straight line between

the turning point potential energy values. At the turning points, the kinetic energy is zero.

So the energy method has taught us a lot.

But not the whole time evolution of the simple harmonic oscillator.

For that we need the full solution.

But note that as we discussed energy methods often give information easily when the

full solution is not available and not easily obtainable: e.g., for the bead-on-wire system

(§§ 5.1.2 and 6.1).

9. POWER

In science and technology, power is the rate of energy transfer or transformation (which

is a kind of transfer).
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The instantaneous power is given by

P =
dE

dt
, (107)

where E is any kind of energy being transformed into any other kind.

The basic SI unit of power is the familiar watt (W) which is a joule per second:

unit[P ] = unit[E/t] = J/s = W , (108)

where where unit[ ] is my idiosyncratic unit function.

Watts are familiar power units in the context of electricity.

Electric companies bill in kilowatt-hours which are actually energy units:

1 kW-h = 1 kW-h ×
(

1000 W

1 kW

)

×
(

3600 s

1 h

)

= 3.6 × 106 J = 3.6 MJ . (109)

So electric companies could bill you in megajoules, but nooOOOooo they have to use

an obscure unit that confuses all energy discussions.

The watt is named for James Watt (1736–1819) who vastly improved the steam engine

and invented an obsolete unit of power, the horsepower. He used horsepower (meaning the

rated power of his engines in horsepower) in marketing his engines.

There are various definitions of horsepower (which differ by smidgens), but the electrical

horsepower is defined exactly by the following equation:

1 hp = 746 W . (110)

Actually, only very strong horses can deliver a horsepower of power to external objects for

very long (Wikipedia: Horsepower). Maybe Shire horses, where the stallions have typically

more than 900 kg of mass, can do it easily.
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Horse metabolic rate (which the power to just live and move their bodies as well as

external objects) probably exceeds a horsepower often.

We are familiar with watts from electrical devices. A 100-watt incandescent light bulb

uses 100 W of power. In fact, only a few percent of this power comes out as visible light.

The rest is mostly in the form of infrared light (which quickly becomes waste heat) or waste

heat directly. This remarkable inefficiency is why the venerable incandescent light bulb will

probably be phased out in a few years.

In the context of macroscopic work on an object, we can find a power-work formula.

Since basic differential work formula for work done on an object by a force is

dW = ~F · d~s , (111)

it follows that power produced by the force is

P =
dW

dt
= ~F · d~s

dt
= ~F · ~v . (112)

Positive power puts energy into an object’s kinetic energy bank and negative work takes

it out.

9.1. Example: Power by Elevator Motor

There is an elevator with mass of 1800 kg including cargo. It moves upward with constant

velocity and is acted on by a tension force of a cable and a kinetic friction force of 4000 N.

Note that since the velocity is constant as much energy flows out of the kinetic energy

bank as flows in.

The tension force puts energy in. This energy comes from the motor.
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Energy flows out into gravitational potential energy and into waste heat due to the

kinetic friction.

How much power must be generated by the motor to raise the elevator at a constant

v = 3.00 m/s?

You have 2 minutes working individually or in groups. Go.

We need to find the tension force to find the motor power.

Since the elevator is unaccelerated, Newton’s 2nd law tells us that

T − Fki − mg = 0 , (113)

where T is the tension force magnitude, Fki is the friction force magnitude, and mg is the

gravitational force magnitude.

Clearly,

T = Fki + mg . (114)

Using equation (112), we find

P = ~F · ~v = Tv = (Fki + mg)v ≈ (4000 + 1800 × 10) × 3.00 = 66000 W = 66 kW . (115)

10. WEIRD ENERGY UNITS: READING ONLY

One of my pet peeves is that in special contexts, traditional special energy units are

used.

Now if one had a concrete sense of the size of an energy unit, then context-dependent

units might make some sense.

But in all contexts, energy is a pretty abstract quantity.
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Using special—and weird—energy units just makes it difficult to compare energy usage

in different contexts.

Table 1 below shows energy unit conversions.

We won’t describe it all.

But the food calories are really egregious. A food calorie is 4.1868 kJ.

You need thousands of food calories per day.

Why not just put megajoules on the food containers?

The human food needs are typically in the range 8–12 MJ per day.

Then there is the kilowatt-hour which is unit of energy not power: it’s a kilowatt of

power times one hour. It’s 3.6 MJ.

I admit the kilowatt-hour is a somewhat convenient unit for domestic energy usage.

But in the modern age with calculators and energy measuring meters, its easy enough to use

joules, kilojoules, and megajoules.

There is no sense, however, in using kilowatt-hours for large scale energy reports and

calculations—at least I think not.

I believe that all discussions of energy usage in society would be more rational and

effective if people simply knew by using standard SI energy units the relative sizes of the

energy involved.

But no one ever listens to me.
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Table 1. Energy Unit Conversions

Energy Unit SI equivalent Comment

1 food calorie 4.1868 kJ Typical human food needs are

in the range 2000–3000 food calories per day.

1000 food calories 4.1868 MJ That turns into 8–12 MJ.

So the megajoule is a perfectly

convenient unit for food energy.

It’s better than food calories

1 calorie 4.1868 J A food calorie is really a kilocalorie.

The real calorie is the amount of

energy needed to raise the temperature

of one gram of water by 1◦ Celsius.

Various versions exist because the

amount of energy needed varies

with conditions. The shown one

is the International Steam calorie

(See Wikipedia: Calorie).

1 kilowatt-hour 3.6 MJ The kilowatt-hour is hybrid unit

that is (kilojoule/second)×hour.

The MJ is good-sized replacement.

1 Btu 1.0545 kJ British thermal units of slightly

different size still linger around.

Kilojoules can obviously replace them.

1 kg of gasoline 44–45 MJ About 5.5 times daily human

food needs. You could live

on a about 0.2 kg of gasoline per day.

1 kg of oil 41.868 MJ This is standard definition

since the chemical energy content

of oil varies. It looks like the calorie digits.

tonne oil equivalent 41.868 GJ A tonne is a metric ton (1000 kilograms).

(toe) It really ought to be called a

megagram (Mg).
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Table 1—Continued

Energy Unit SI equivalent Comment

barrel (bl) of oil 6.12 GJ This is approximate. The oil

equivalent industry insists are reporting

oil in barrels—though no one

has put oil in barrels in a jillion years (to be precise).

Why not just report oil quantities

in energy equivalent since energy

content is the key issue.

1 Mbl of oil 6.12 PJ World daily consumption is often

given in mbls.

1 Gbl of oil 6.12 EJ World yearly consumption is often

given in Gbls.

tonne coal equivalent 29.3076 GJ This must be a standard definition

since the chemical energy content

of coal varies. You can see one

the reasons why people prefer oil

to coal. Oil has a higher energy

density typically. (See tonne oil

equivalent just above.)

Note. — The values are from Wikipedia’s article Conversion of Units, except the gasoline value

is from Smil (2006, p. 16).
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11. HUMAN BODY ENERGY: READING ONLY

How much energy does a human transform from food energy to other forms?

The food energy is chemical energy.

The other forms are mainly kinetic energy, gravitational potential energy, and waste

heat.

Mostly the kinetic energy and the gravitational potential ends up as waste heat.

However, putting books up onto bookshelves for eternity is certainly making quasi-

eternal contributions to gravitational potential energy.

We need some terminology now.

Human body power—human body energy output per unit time—is called the metabolic

rate.

The lowest power a healthy human can have is the basal metabolic rate (BMR) measured

when a person is doing absolutely nothing not even digesting food. It’s measured some hours

after last eating and in some temperature controlled setting.

The resting metabolic rate (RMR) is the metabolic rate of ordinary resting. Actually,

the difference between BMR and RMR is not large. They can be taken to be almost the

same, except when being exact.

The sustained metabolic rate (SMR) is the daily average rate or at least that is the

definition we will use.

There are also high metabolic rates that can be sustained for limited times.

Table 2 below shows typical metabolic rates.

The values are not carefully defined in the sources and must be treated as typical (or
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representative) and not as exact or exact averages.
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Table 2. Typical Metabolic Rates

Specification Metabolic Rate Metabolic Rate

(W) (MJ/day)

BMR adult female of 50–80 kg 55–80 4.7–6.9

BMR adult female of 50–80 kg 60–90 5.2–7.8

SMR female scientist 100 8.5

SMR male scientist 140 12

SMR male miner 180 16

SMR male soldier 200 17

SMR male antarctic explorer 230 20

SMR male Tour de France cyclist 380 33

elite male endurance athlete 1750

for some hours

maximum MR for a few seconds ∼ 8000 . . .

Note. — The values are from Smil (2006, p. 59–61) and Peterson et al.

(1990). These are not the best or most up-to-date sources. They are just

the ones I can lay my hands on. BMR is basal metabolic rate and SMR is

sustained metabolic rate. It’s pretty easy to find scientists to measure, but

I wonder where one lays hands on an antarctic explorer—yes, I know there

are lots of outdoor scientists in Antarctica to study while they are studying

something else—the observer observed.
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If you are sedentary, your power is like that of bright light bulb and you may need only

8 to 12 megajoules of food energy per day.

If you are high performance athlete, your SMR can be over 400 W and you need over

35 MJ of food energy per day. This, of course, is when you are training or performing for

hours per day for weeks on end.

In fact, somewhere in the range 400–500 W may be the upper limit for SMR for a human

since even elite athletes can’t seem to do better. There may be a limit to how much a human

can eat and metabolize.

The sustained metabolic scope is the ratio of SMR to BMR. The human limit sustained

metabolic scope may be about 6. In fact, a sustained metabolic scope of 7 may be the limit

for all animal life (Peterson et al. 1990).
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A. Conservation of Kinetic Energy

Is kinetic energy ever just conserved by itself alone?

A single particle alone in force-free space has conserved kinetic energy obviously, by the

work-kinetic-energy theorem.

No forces, no net force, no net work done on the particle, no change in kinetic energy.

But this is a pretty trivial example.

Say you imagine a system of non-interacting particles in force-free space, then each
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particle has it’s own constant kinetic energy.

Then each particle’s kinetic energy is conserved and the total kinetic energy of the

system is conserved.

But this is a pretty trivial example too.

Say the space is force free, except of the forces the particles exert on each other when

they collide.

If these forces are perfect elastic forces, then the kinetic energy lost in compression of

the particles in a collision is stored as a potential energy of compression which is then entirely

converted back to kinetic energy by the end of the collision. But the kinetic energy of the

individual particles can be changed in a collision.

Nevertheless, the total system kinetic energy between collisions is a constant.

But whoa now. How can a particle be compressed?

We have to de-assume that our objects are “particles”.

They are objects with extension. But between the collisions, let’s assume they are

RIGID.

But there is another qualification.

Since the objects have extension, they can rotate and have kinetic energy associated

with rotation.

So the total kinetic energy that is conserved is the sum of what we later call the transla-

tional (or more exactly center-of-mass kinetic) energies plus the rotational kinetic energies.

Well this subsection is getting into deeper waters than I thought, and so that’s why it’s

optional.
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Historically, such a system of interacting particles is probably important.

Leibniz’s concept of vis viva (his name for the quantity mv2 for a particle) partially had

its basis in that he recognized the concept of conservation of kinetic energy in some contexts.

Wikipedia is unenlightening on which contexts. But I imagine Leibniz as studying

billiard balls (if they had them in the 17th century) colliding on level surfaces.

If the balls are IDENTICAL and roll without slipping either on the surface or in

collision events, then the center-of-mass and rotational kinetic energies will be conserved

separately in the ideal case as we’ll now prove. The ideal case means no dissipation to waste

heat by any kind of dissipative force (friction, rolling friction, air drag, internal friction

inside the balls, etc.) and the collisions are instantaneous. I think it is true that total kinetic

energy is conserved in such cases. With no dissipation to waste heat, total kinetic energy is

conserved, except during the instants of collision if you count them.

Now consider an equation that anticipates later results:

KE =
∑

i

1

2

(

m +
I

r2

)

v2
i =

(

1

2
m +

1

2

I

r2

)

∑

i

v2
i , (A1)

where KE is the total kinetic energy (i.e., the sum of center-of-mass and rotational kinetic

energies) and the sum is over all balls which have identical mass m, radius r, and rotational

inertia I. The quantity (1/2)m
∑

i
v2

i is the total center-of-mass kinetic energy, and the

quantity (1/2)(I/r2)
∑

i
v2

i is the total rotational kinetic energy. If KE is constant, then
∑

i
v2

i is constant Then so are total center-of-mass and rotational kinetic energies. This is

what we started out to prove.

Leibniz may have recognized the conservation of the total center-of-mass kinetic energy.

I don’t think in his time, it could have treated rotational kinetic energy.

From total center-of-mass kinetic energy conservation in this case, he might have inferred

that point particles (which have no rotational kinetic energy) would have conservation of total
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kinetic energy even when the particle mass differs.

But all this is speculation. Historians of science must know the real story.
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