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Intro Physics I EXAM 3
2012 March 28, Wednesday NAME:

Instructions: There are 20 multiple-choice problems each worth 1 mark for a total
of 20 marks altogether. Choose the BEST answer, completion, etc., and DARKEN fully
the appropriate circle on the table provided below. Read all responses carefully. NOTE

long detailed responses won’t depend on hidden keywords: keywords in such responses
are bold-faced capitalized. Harder/longer multiple-choice problems (which are sometimes
based on full-answer problems) are marked by asterisks: ∗ for easy, ∗∗ for moderate, ∗ ∗ ∗
for hard: all in the judgment of the instructor.

There are THREE full-answer problems worth 10 marks for a total of 30 marks
altogether. Answer them all. It is important that you SHOW (SHOW, SHOW,

SHOW) how you got the answer for the full-answer problem. Don’t give up on problems
where you can’t do the first part: sometimes later parts can be done independently. Some
full-answer problems may be multiple-pagers: make sure you have answered everything.
And BOX-IN your final answers.

This is a CLOSED-BOOK exam. NO cheat sheets allowed. An EQUATION

SHEET is provided. Calculators are permitted—but ONLY for calculations. There are
SCRATCH PAGES for auxiliary calculations. Remember your name (and write it down
on the exam too).

The exam is out of 50 marks altogether and is a 50-minute exam.

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 11. O O O O O

2. O O O O O 12. O O O O O

3. O O O O O 13. O O O O O

4. O O O O O 14. O O O O O

5. O O O O O 15. O O O O O

6. O O O O O 16. O O O O O

7. O O O O O 17. O O O O O

8. O O O O O 18. O O O O O

9. O O O O O 19. O O O O O

10. O O O O O 20. O O O O O
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005 qmult 00670 1 5 5 easy thinking: hanger center of mass
1. Where, roughly speaking, is the center of mass of a coat hanger? HINT: Imagine

letting it hang from two different free pivot points: this is called a Gedanken (thought)
experiment in physics speak. If you arn’t in a test mise en scène, you could actually
do the experiment.

a) At the end of the hook.
b) At the top of the hook.
c) At the left end of the triangular loop.
d) Nowhere since a center of mass must be inside the material of an object to be a

center of mass.
e) Oh, somewhere not so far from the middle region of the triangular loop.

SUGGESTED ANSWER: (e)

Wrong answers:

c) What if the left side of a hanger? The one to which the hook grabs or the
other? Maybe Charles Dodgson would know.

Redaction: Jeffery, 2001jan01

009 qmult 00160 2 5 1 moderate thinking: KE change and momentum change
Extra keywords: physci KB-94-13

2. If the kinetic energy of an object is doubled, the momentum magnitude changes by a
factor of:

a)
√

2. b) 2. c) 1/2. d) 1/
√

2. e) 1.

SUGGESTED ANSWER: (a)

Recall ~p = m~v, and thus ~v = ~p/m. Thus, KE = mv2/2 = p2/(2m), and
thus p =

√
2mKE. Thus, momentum magnitude increases as the square root of

KE. Thus, if KE increases by 2, momentum magnitude increases by
√

2.

Wrong answers:

b) Not a good guess, but better than some others anyway.

Redaction: Jeffery, 2001jan01

009 qmult 00270 1 1 2 easy memory: conservation of momentum, Thor
Extra keywords: physci

3. The mighty Thor is trapped in the eternal vacuum of gravity-free space with nothing
to push on. But he sees Asgard glittering YONDER (i.e., over there). Having taken
introductory physics in his young Viking days, he realizes that he will soar straight
to Asgard if, with awesome strength, he throws his hammer:

a) yonder. b) anti-yonder. c) any which way. d) left.
e) in a parabolic arc.

SUGGESTED ANSWER: (b)

Wrong answers:

e) Not in gravity-free space.
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Redaction: Jeffery, 2001jan01

010 qmult 00710 1 5 1 easy thinking: identical masses collide
4. Two identical point masses elastically collide in a 1-dimensional setup. Mass 1 had

velocity v before the collision and velocity zero after. Mass 2’s velocity was initially
zero and after the collision it was:

a) v. b) 2v. c) −v. d) −2v. e) still zero.

SUGGESTED ANSWER: (a)

Conservation of momentum alone allows only answer (a). Actually, you did
not need the information that mass 1’s velocity was zero after the collision. In
1-dimensional elastic collisions, conservation of momentum and kinetic energy
completely determine the outcome of a collision. The outcome of mass 1 at rest
and mass 2 having velocity v is consistent with conservation of momentum and
kinetic energy, and so it is the only possible outcome. (We are neglecting the
ghost solution where mass 1 goes through mass 2 without an interaction at all.)

The above result can be obtained from the full formulae for post-collision
velocities of a 1-dimensional elastic collision of point masses 1 and 2:

v′

1 =
(m1 − m2)v1 + 2m2v2

m1 + m2
,

v′

2 =
(m2 − m1)v2 + 2m1v1

m2 + m1
,

where the prime indicates post-collision and the unprime pre-collision. If m1 =
m2, then v′

1 = v2 and v′

2 = v1 always.

Wrong answers:

e) Where did all the momentum go.

Redaction: Jeffery, 2001jan01

010 qmult 10200 2 5 2 moderate math: goats, completely inelastic coll. fullmult
5.∗∗ Richthofen and Mannock are two goats with masses 80 kg and 50 kg, respectively.

They charge each other head-on on a icy pond—amazingly they stay upright, but
goats are sure-hooféd. Just before impact Richthofen is moving at 10.0 m/s—he’s
way out of control—and Mannock’s moving at −4.0 m/s. On impact they lock horns
literally (i.e., stick together). Treat the goats as point masses and their collision as an
ideal collision (i.e., one in which only the collision forces are non-negligible).

i) What is the center-of-mass velocity of the Richthofen-Mannock system during
the collision?

ii) Given that the hoof-ice coefficient of kinetic friction is 0.05 (which is the same as
steel on ice) how far does the Richthofen-Mannock system slide after the collision
before coming to rest?

a) (i) 10 m/s (ii) 1.1 m. b) (i) 4.6 m/s (ii) 22 m. c) (i) 1.7 m/s (ii) 1.1 m.
d) (i) 3.6 m/s (ii) 17 m. e) (i) 3.6 m/s (ii) 14 m.

SUGGESTED ANSWER: (b)
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i) Since the collision is an ideal collision momentum is conserved through the
collision event. Thus, the center-of-mass velocity is conserved through the
collision event. This center-of-mass velocity is

v =
m1v1 + m2v2

m1 + m2
= 4.6 m/s ,

where Richthofen is object 1 and Mannock is object 2.
ii) After the collision, the Richthofen-Mannock system slides and the only

external force acting on it is kinetic friction. From the work-kinetic-energy
theorem, we have

∆KE = W

0 − 1

2
mv2 = −µkimg∆s

∆s =
v2

2µkig
= 21.7 m .

Thus, the Richthofen-Mannock system slides about 22 m.

Wrong answers:

c) These were answers to the full-problem version of this problem.

Fortran-95 Code
xm1=80.d0

v1=10.d0

xm2=50.d0

v2=-4.d0

xmu=0.05

gg=9.8d0

xm=xm1+xm2

vcen=(xm1*v1+xm2*v2)/xm

xkecen=.5d0*xm*vcen**2

dels=vcen**2/(2.d0*xmu*g)

print*,’vcen,xkecen,dels’

print*,vcen,xkecen,dels

! 4.615384615384615 1384.6153846153843 21.73650450603764

Redaction: Jeffery, 2008jan01

004 qmult 00420 1 5 1 easy thinking: 24 factors in 360
6. The division of the circle into 360◦ was an arbitrary choice—and we don’t know

why. We just know the ancient Mesopotamian mathematicians and astronomers did
it this way—you know Mesopotamia—ancient Iraq: “the cradle of civilization”. Their
choice was just adopted by the ancient Greeks and got passed on to us. In the French
Revolutionary epoch, the decimal system was adopted for most measures, but the
revolutionaries didn’t get around (you might say) to the circle. We can guess that
one reasons is that the ancient Mesopotamians had a preference for whole number
arithmetic particularly in division and 360 has a lot of whole number factors. How
many whole number (i.e., integer) factors does 360 have counting 1 and 360 itself?
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a) 24. b) 360. c) 6. d) 7. e) 12.

SUGGESTED ANSWER: (a)

Below are the whole number factors of 360 table format:

count factor complement factor

2 1 360
4 2 180
6 3 120
8 4 90

10 5 72
12 6 60
14 8 45
16 9 40
18 10 36
20 12 30
22 15 24
24 18 20

Wrong answers:

b) A specious guess.

Redaction: Jeffery, 2008jan01

011 qmult 00200 1 4 2 easy deducto-memory: rotational kinematic equations
7. The rotational constant-angular-acceleration kinematic equations:

a) have no resemblance to the linear kinematic equations.
b) are exactly the same as the linear kinematic equations, except that the angular

kinematic equations relate ANGULAR rather than linear variables.
c) are exactly the same as the linear kinematic equations, except that the angular

kinematic equations relate LINEAR rather than angular variables.
d) do not allow for angular acceleration.
e) include torque terms.

SUGGESTED ANSWER: (b)

Wrong answers:

c) Oh, c’mon.

Redaction: Jeffery, 2001jan01

011 qmult 00232 1 1 5 easy memory: timeless equation use
8. The rotational constant-angular-acceleration equation

ω2 = ω2
0 + 2α∆θ

by itself alone does NEVER allows you to solve for:

a) α. b) ∆θ. c) ω0. d) ω. e) t.



6

SUGGESTED ANSWER: (e)

The equation is what I call the timeless equation.

Wrong answers:

a) Given the other 3 variables that appear in the equation you can solve for
this.

Redaction: Jeffery, 2008jan01

011 qmult 00310 1 3 3 easy math: find the initial omega 1
9. A wheel spins π radians in 10.0 s with an angular acceleration of 4.00 radians/s2. What

is its final angular velocity?

a) 80.1 radians/s. b) 203 radians/s. c) 20.3 radians/s.
d) 3.14 radians/s. e) 6.28 radians/s.

SUGGESTED ANSWER: (c)

Of the 5 standard variables (α, ω0, ω, ∆θ, t) of the (constant-angular-
acceleration) rotational kinematic equations, we don’t know ω nor ω0. We don’t
want to know ω0. This looks like a job for the rarely used 5th rotational constant-
acceleration kinematic equation

∆θ = −1

2
αt2 + ωt

since it doesn’t contain the unwanted variable ω0, and so allows a solution for the
unknown ω from one equation. Behold:

ω =
∆θ + (1/2)αt2

t
=

π + 200

10.0
= 20.3 radians/s .

Wrong answers:

b) Forgot to divide by time.

Fortran-95 Code
print*

pi_con=acos(-1.d0)

theta=pi_con

t=10.d0

alpha=4.d0

! theta=-(1/2)*alpha*t**2+omega*t ! Rarely used 5th kinematic

equation.

! omega=(theta+(1/2)*alpha*t**2)/t

omega=(theta+.5d0*alpha*t**2)/t

print*,’omega’

print*,omega

! 20.3141592653590

Redaction: Jeffery, 2008jan01
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011 qmult 10330 1 3 3 easy math: Waldo centrifuge, Waldo orbit fullmult
Extra keywords: just rotational kinematics

10.∗∗ Waldo’s back—you know, Waldo Pepper, the Playful Pig—just accept it. This time,
the Bold Boar has decided to become an astronaut and is training on NASA’s giant
centrifuge—the one in the film The Right Stuff. Let’s guess it has a radius of 10.0 m.
The centrifuge spins in the horizontal: i.e., the centrifuge axis is perpendicular to the
ground.

i) Starting from rest the centrifuge goes into a constant angular acceleration phase
for 10.0 s. At this point Waldo—who does indeed have a mass of 150 kg—notes
that the vertical weighing scale he is nauseatingly pressed on reads 2000 N. What
is the centripetal force on Waldo?

ii) The Sentient Swine now does some math—some correct math. What does Waldo
find for his angular velocity ω at the 10 s mark?

iii) Doing a little more correct math, the Heck-of-a-Hog now finds his angular
acceleration α from time zero to the 10 s mark. What is this angular acceleration?

a) (i) 2000 N (ii) 1.33 radians/s (iii) 0.133 radians/s2.
b) (i) 200 N (ii) 0.36 radians/s (iii) 0.036 radians/s2.
c) (i) 2000 N (ii) 1.15 radians/s (iii) 0.115 radians/s2.
d) (i) 2000 N (ii) 0.36 radians/s (iii) 0.036 radians/s2.
e) (i) 200 N (ii) 0.36 radians/s (iii) 0.00 radians/s2.

SUGGESTED ANSWER: (c)

i) Waldo’s pressing on the weighing scale causes it to read 2000 N means that
the weighting scale is forcing Waldo into circular motion with a force of
2000 N. The weighing scale force is a normal force. At least it can be called
that viewing it from the outside. Internally, the force is probably a spring
force of some kind. Note that there must be some normal force by the floor to
hold Waldo up against gravity too, but that doesn’t come into the problem.

ii) Well from

Fcentripetal =
mv2

r
= mω2r,

Waldo finds his his angular velocity is

ω =

√

F

mr
=

√

2000

150 × 10
=

√

4

3
≈ 1.15 radians/s .

iii) Since the angular acceleration is constant, we know that

α =
ω − ωinitial

t
≈ 0.115 radians/s2 ,

where ωinitial is the angular velocity and t is time.

Fortran-95 Code
print*
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t=10.d0

f=2000.d0

r=10.d0

xm=150.d0

omega=sqrt(f/(r*xm))

alpha=omega/t

print*,omega,alpha

print*,’omega,alpha’

! 1.1547005383792514 0.11547005383792515

Redaction: Jeffery, 2008jan01

012 qmult 00100 1 1 1 easy memory: rotational principles
11. Classical rotational dynamics principles are:

a) secondary principles derived from the fundamental principles of Newtonian
physics (i.e., Newton’s three laws, force laws, energy, etc.).

b) independent postulates completely unrelated to the fundamental principles of
Newtonian physics (i.e., Newton’s three laws, force laws, the energy concept,
etc.).

c) secondary principles derived from quantum mechanics.
d) all gross approximations derived from the fundamental principles of Newtonian

physics (i.e., Newton’s three laws, force laws, the energy concept, etc.).
e) independent, but very approximate, postulates completely unrelated to the

fundamental principles of Newtonian physics (i.e., Newton’s three laws, force
laws, the energy concept, etc.).

SUGGESTED ANSWER: (a)

This is, of course, the right answer for classical physics. But in quantum
mechanics it seems to me that intrinsic angular momentum (electron spin, etc.)
comes in as its own postulate.

Wrong answers:

b) Nope.

Redaction: Jeffery, 2001jan01

012 qmult 00220 1 1 2 easy memory: cross product standard values
12. Behold:

~a ×~b =











ab sin θn̂ in general;
0 for θ = 0◦ or 180◦;
abn̂ for θ = 90◦;

in general.

a) ~b × ~a. b) −~b × ~a. c) −~a ×~b. d) −~b · ~a. e) ~a ·~b.
SUGGESTED ANSWER: (b)

It is also called the vector product since the product is a vector. But “vector”
has two syllables and is less easy to say.
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Wrong answers:

c) Not in general. In the special case of ~a ×~b = 0, this is true.

Redaction: Jeffery, 2008jan01

012 qmult 00720 1 4 5 easy deducto-memory: gravitational torque
13. “Let’s play Jeopardy! For $100, the answer is: Its torque about any origin can be

calculated as if all the object’s mass were located at the center of mass.”

What is , Alex?

a) a contact force b) friction c) a tension force d) a normal force
e) gravity near the Earth’s surface

SUGGESTED ANSWER: (e)

For any system of particles of mass mi and position ri relative to any origin
and with ŷ specifying the upward direction, one has

τ =
∑

i

~ri × (−migŷ) =

(

∑

i

mi~ri

)

× (−gŷ) = ~r × (−mgŷ) ,

where we have used the center of mass definition

~r =

∑

i mi~ri

m

with m being total mass.

Wrong answers:

a) Contact force: no way.

Redaction: Jeffery, 2001jan01

012 qmult 01210 1 4 3 easy deducto-memory: no-slip condition
14. “Let’s play Jeopardy! For $100, the answer is: The condition that is required for

wheels in most ordinary circumstances: e.g., for car wheels.”

What is the condition, Alex?

a) no-trip b) no-rip c) no-slip d) no-grip e) no-blip

SUGGESTED ANSWER: (c)

There are other useful conditions: no-tip (poor service), no-crip (no gangs),
no-gyp (no swindling), no-kip (no salted herrings), no-flip (and no-flop), no-split
(infinitives), no-spit (speaks for itself), . . .

Wrong answers:

b) Well this one too actually.

Redaction: Jeffery, 2008jan01

012 qmult 11250 2 3 4 moderate math: rolling ball on incline fullmult
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15.∗∗ A uniform solid ball of mass 10.0 kg starting from REST rolls down an incline of
angle θ = 30◦. Note the ball is a ROLLER, not a SLIDER. There is no slipping
between the ball and incline: i.e., the no-slip condition is imposed.

i) Find the ball’s center-of-mass acceleration. HINT: You could check an equation
table.

ii) What is its center-of-mass velocity after 10 s?

iii) How far has it traveled down the incline in 10 s?

a) (i) 4.9 m/s2 (ii) 49 m/s (iii) 490 m. b) (i) 4.9 m/s2 (ii) 49 m/s (iii) 245 m.
c) (i) 3.5 m/s2 (ii) 35 m/s (iii) 350 m. d) (i) 3.5 m/s2 (ii) 35 m/s (iii) 175 m.
e) (i) 4.9 m/s2 (ii) 4.9 m/s (iii) 49 m.

SUGGESTED ANSWER: (d)

i) Somewhere along the line, we found the result for a roller on an incline with
the no-slip condition imposed:

a =
g sin θ

1 + I/(mr2)
.

Applying this result, we find:

a =
g sin θ

1 + I/(mr2)
=

9.8 × 1/2

1 + 2/5
= 3.5 m/s2 .

ii) From one of the constant-acceleration kinematic equation, we find

v = at = 35 m/s .

iii) From one of the constant-acceleration kinematic equation, we find

x =
1

2
at2 = 175 m .

Fortran-95 Code
print*

t=10.d0

theta=30.d0

gg=9.8d0

xrotinert=.4d0

a=gg*sin(theta/raddeg)/(1.d0+xrotinert)

v=a*t

x=.5d0*a*t**2

print*,’a,v,x’

print*,a,v,x

! 3.5 35.0 175.0

Redaction: Jeffery, 2008jan01
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013 qmult 00100 1 1 3 easy memory: rotational equilibrium
16. To be in rotational equilibrium relative to some origin in an inertial frame, an object

must have (relative to that origin):

a) zero angular momentum. b) non-zero angular momentum.
c) constant angular momentum. d) non-constant angular momentum.
e) no hair.

SUGGESTED ANSWER: (c)

Wrong answers:

a) No. It can have non-zero angular momentum.
b) No. It can have zero angular momentum.
d) Exactly wrong.
e) Black holes have no hair.

Redaction: Jeffery, 2001jan01

013 qmult 00200 2 5 3 moderate thinking: static equilibrium
17. In STATIC equilibrium for a rigid body:

a) there is no center-of-mass or rotational acceleration, but there can be
NONZERO center-of-mass velocity and angular velocity.

b) there is no center-of-mass or rotational acceleration, and NO center-of-mass or
rotational velocity. If static equilibrium exists in a specific reference frame, it
exists in ALL reference frames no matter how those reference frames may be
moving.

c) there is no center-of-mass or rotational acceleration, and NO center-of-mass or
rotational velocity. If static equilibrium exists in a specific reference frame, it
exists ONLY in reference frames NOT moving with respect to the specific
reference frame.

d) there are no forces at all.
e) there are no torques at all.

SUGGESTED ANSWER: (c) The students have to absorb the idea of moving
frames of reference.

Wrong answers:

b) A table in static equilibrium on a train, is not in static equilibrium relative
to the ground.

d) There can be no net force.
e) There can be no net torque.

Redaction: Jeffery, 2001jan01

013 qmult 00400 1 3 5 easy math: simple beam torque calculation
18. An object of mass 1 kg sits on a horizontal beam at 1 m from a point fulcrum. What

is the torque about the fulcrum that the weight of the mass causes?

a) 1 N m. b) 2 N m. c) 3 N m. d) 4 N m. e) 9.8 N m.

SUGGESTED ANSWER: (e)
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But the student does really have to know how to calculate a torque. Note
that the units of torque are dimensionally the same as energy. But despite this
dimensional likeness, torque and energy are different things.

Wrong answers:

Redaction: Jeffery, 2001jan01

013 qmult 00500 2 3 1 moderate math: torque calculation with a beam
19. Two objects are sitting on a horizontal beam. The beam rests on a point fulrum at

its center of mass. The beam is free to rotate about the fulcrum. Object 1 sits on
the left-hand side of the pivot at a distance ℓ1 from the fulcrum. Object 2 sits on the
right-hand side at a distance ℓ2. Given m1 = Nm2, what is ℓ2 in terms of ℓ1? HINT:

Draw a diagram.

a) ℓ2 = Nℓ1. b) ℓ2 = ℓ1/N . c) ℓ2 = ℓ1. d) ℓ2 = 2ℓ1. e) ℓ2 = 0.

SUGGESTED ANSWER: (a)

Sheer common sense and deductions should lead to the right answer. For
equilibrium, τnet = −m1gℓ1 + m2gℓ2 = 0 taking the fulcrum as the origin. Now
g cancels out. Masses determined by balancing are independent of g. Balances
really measure mass, not weight. Thus, ℓ2 = ℓ1m1/m2 = ℓ1N .

Note that the beam gravity force and fulcrum normal force exert no torques
since they both effectively act at the fulcrum point. Also note that the beam
does not have to be uniform for it to have zero torque: it just have to have its
center of mass at the fulcrum point. If the masses are removed the beam stays
balance since the torques about the fulcrum point are still zero.

Wrong answers:

e) Not unless N = 0.

Redaction: Jeffery, 2001jan01

013 qmult 00600 1 1 3 easy memory: indeterminate equilibrium cases
20. In a planar or 2-dimensional case of static equilibrium with no special rules relating

forces, can you solve for four unknown forces assuming perfectly rigid objects?

a) No. The system is INDETERMINATE: you only have FOUR equilibrium
equations.

b) Yes. The system is DETERMINATE since you have FOUR equilibrium
equations.

c) No. The system is INDETERMINATE: you only have THREE equilibrium
equations.

d) Yes. The system is DETERMINATE: you have THREE equilibrium
equations.

e) No. The system is INDETERMINATE: you only have TWO equilibrium
equations.

SUGGESTED ANSWER: (c)

Wrong answers:



13

e) Nah you have three: the x and y force equations and the z torque equation.

Redaction: Jeffery, 2001jan01
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010 qfull 00500 2 5 0 moderate thinking: bullet colliding with plank
21. A 10 g bullet is shot vertically upward at 1000 m/s. Just after firing it passes straight

through a 10 kg plank resting across a couple of rafters—the roof hasn’t been added
yet. The bullet rises to a MAXIMUM HEIGHT of 500 m above the rafters after
going through the plank. Assume NO air drag and exact 1-dimensionality. HINT:

The collision with the plank is NOT elastic.

a) What is the bullet’s velocity immediately after the collision with the plank (i.e.,
immediately after it has exited the plank)?

b) What is the plank’s velocity immediately after the collision (i.e., immediately after
the bullet has exited the plank)? HINT: Make the ideal collision approximation.

c) How high does the plank rise above its initial position?

d) Approximately calculate the bullet’s speed when it returns approximately to the
ground level.

e) Is it dangerous to fire bullets straight up into the air? First assume no air drag and
show by SYMBOLIC CALCULATION whether the return-to-Earth bullet
velocity is dangerous or not.

Next assume there is air drag and argue whether the return-to-Earth velocity
is dangerous or not. HINT: Raindrops reach a terminal speed of 7 m/s after a
fall from rest of about 6 m. Also think of everyday experiences.

SUGGESTED ANSWER:

a) By conservation of energy,

1

2
m1v

2
0 = m1g∆y ,

where m1 is the bullet mass, v0 is the bullet’s immediate post-collision speed,
and ∆y is maximum bullet height. Thus the bullet’s immediate post-collision
speed is given by

v0 =
√

2gy = 99 m/s

to 2-digit accuracy.
One can, of course, use the timeless equation too:

v2 = v2
0 + 2a∆y

where in this case v = 0, v0 is the unknown to be solved for, a = −g, and
∆y = 500 m. The solution is

v0 =
√

2g∆y

as before.

b) In the ideal collision approximation, momentum is conserved through the
collision. By conservation of momentum,

m1v1 = m1v1′ + m2v2′ ,
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m1 is the bullet mass, where v1 is the pre-collision bullet velocity, m2 is the
plank mass, and v2′ is the post-collision plank velocity. It follows that

v2′ =
m1

m2
(v1 − v1′) = 0.90 m/s

to 2-digit accuracy.

c) By conservation of energy,

1

2
m2v

2
2′ = m2g∆y ,

where ∆y is maximum plank height and the other symbols are as in the
part (b) answer. It follows that

∆y =
v2
2′

2g
= 0.041 m = 4.1 cm

to 2-digit accuracy.

d) By conservation of energy, the bullet’s final speed when it gets back to Earth
is roughly equal to its immediate post collision speed vpost = 99 m/s.

e) In the absence of air drag, bullets would come down at the same speed
they went up. This follows from the 1-dimensional constant-acceleration
kinematic equation

v2 = v2
0 + 2a∆y ,

where v0 is initial velocity and ∆y is change position from the initial position.
An upward fired bullet is only accelerated downward by gravity. So it rises,
stops, falls, and eventually gets back to ∆y = 0 where its speed is the same
as the muzzle speed and its velocity is given by

v = −v0 .

Obviously, the bullet is deadly coming down.
Now the no-air-drag case is unrealistic, except in vacuum cases such

as on the Moon. Air drag changes things considerably. The bullet is
significantly slowed by air drag going up and won’t reach the same height as
in vacuum. Thus, it will have a shorter distance to fall and falling there will
also be air drag. Remember that at the top of the trajectory, it’s velocity is
zero and then gravity starts accelerating it downward.

Now air drag is speed dependent and increases from zero as speed
increases. It always opposes the direction of motion. As the bullet accelerates
downward air drag increases slowing its fall. If the fall is long enough, the
bullet will reach terminal speed where air drag and gravity cancel: i.e.

f(vterm) = mg

where m is the bullet mass, vterm is the terminal speed, and f(v) is the air
drag force’s magnitude. Since air drag increases with speed, terminal speed
increases with mg.
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Air drag is a pretty complex force in general. It must depend on the
shape, orientation, and texture of the body. One thing it does depend linearly
to a high degree is cross-sectional area of the object perpendicular to the
direction of motion. If we divide through by cross-sectional area A, we get

f(vterm)

A
=

mg

A
= σg

where σ is the area density of the object. For many kinds of objects, area
density and ordinary volume density are proportional: e.g., spheres, cubes,
any standardized shape. Thus, often terminal speed increases with density
if f(vterm) increases with vterm. Since, in fact, we know from everyday life
that terminal speeds do usually increase with density in a non-wild manner,
we can guess that f(vterm) goes as some power of vterm.

Now water drops and bullets have very roughly speaking the same shape.
Water drops have a terminal speed of about 7 m/s. A steel bullet has a
density of about 8 times that of water, and so we can guess that bullet
terminal speeds will of order of magnitude 50 m/s assuming. Everyday
experience suggests such bullet speeds are dangerous if not necessarily lethal.
So if a falling bullet reaches terminal speed, it is probably dangerous. One
guesses that it should reach terminal speed or a fair fraction of it, since
everyday experience suggests bullets will rise tens of meters before they start
to fall. It takes longer falling distances for bullets than raindrops to reach
terminal speed, but tens of meters is probably of order enough. Even if the
bullet doesn’t reach terminal velocity it will still probably moving pretty fast
as just ordinary experience with falling objects tells us. I’d say that a falling
bullet would be dangerous, but I couldn’t offhand argue that it would be
necessarily deadly. A unfortunate impact site on a body could be very bad
though.

Consulting the web (which isn’t possible in a test mise en scène yet)
gives some help. Bullet terminal velocity is general not readily predictable
even for bullets of the same type because it depends on bullet orientation and
whether the bullet is tumbling or not. Web sources suggest that typically
terminal velocities are of order 100 m/s: this is subsonic, but still pretty
dangerous. Depending on where it hits, 100 m/s bullet could be deadly. See

http://www.loadammo.com/Topics/March01.htm .

Obviously firing into the air is criminally negligent.

Fortran-95 Code
print*

gg=9.8d0

xm1=.01d0

v1=1000.d0

y1=500.d0

xm2=10.d0

v2=0.d0

v1p=sqrt(2.d0*gg*y1)

v2p=xm1*(v1-v1p)/xm2



17

y2=v2p**2/(2.d0*gg)

print*,’v1p,v2p,y2’

print*,v1p,v2p,y2

! 98.99494936611666 0.9010050506338834 0.0414188827177432

Redaction: Jeffery, 2001jan01

012 qfull 00640 3 3 0 tough math: Pippa on merry-go-round

22. Wee Pippa Passing runs up to a playground merry-go-round, initially at rest, and
jumps RADIALLY onto the rim (i.e., all her horizongal impulse is pointed to the
center of the merrry-go-round).

a) What is the torque she exerts about the rotational axis of the merry-go-round?
Does the merry-go-round start to rotate? Why or why not? Does the merry-go-
round move at all? Why or why not?

b) Pippa and the merry-go-round both can have angular momentum about the
merry-go-round axis. She and the merry-go-round are coupled together by the
static frictional force between her feet and the surface. But Pippa can directly
control the relative velocity between herself and the merry-go-round by walking
or running: thus she can change the coupling condition. When she is at rest
on the merry-go-round, she and the merry-go-round constitute one rigid rotator.
But when she moves they constitute two rigid rotators about the merry-go-round
axis.

Say Pippa starts running just on the rim of the merry-go-round just after
jumping on. The merry-go-round axis is frictionless: thus the total angular
momentum of the system about the axis cannot change. Using conservation
of angular momentum for an isolated system find an expression for the merry-go-
round angular frequency ωm in terms of Pippa’s relative angular frequency ωp rel

and the rotational inertias about the axis of Pippa Ip and the merry-go-round
Im. Note that ωp rel = ωp − ωm. Show your derivation.

c) Give the expression for Pippa’s final angular velocity to the ground (i.e., ωp)
using the part (b) result. What would Pippa’s final angular velocity be in the
limits that Im → ∞ and Im → 0? Show your derivation.

d) Pippa runs on the rim at 3.0 m/s relative to the rim. The radius of the merry-
go-round is 3 m. The tangential rim velocity of the merry-go-round is −2.0 m/s
when Pippa is running. Pippa has a mass of 40 kg. Assuming the merry-go-round
is a uniform disk, what is its mass. Show your calculation.

e) Is it at all possible with Pippa and merry-go-round starting from rest relative
to the ground that both Pippa and the merry-go-round could be made to spin
in the same direction relative to the ground without external torques about the
merry-go-round axis? Why or why not?

SUGGESTED ANSWER:

a) Since she jumps on radially, she exerts zero torque about the axis. Therefore,
merry-go-round doesn’t move. Her linear momentum becomes the linear
momentum of the Pippa-merry-go-round-Earth system since the merry-go-



18

round is rigidly attached to the Earth Thus, effectively the linear momentum
disappears into the great Earth momentum sink and the merry-go-round
doesn’t noticeably move. Actually, there might be some flexing that is not
apparent to the eye.

b) For the system, the total angular momentum L is given by

L = Imωm + Ipωp

= Imωm + Ip(ωp rel + ωm)

= (Im + Ip)ωm + Ipωp rel .

Sans external torques, L is conserved. Thus we can write the equation for
both before and after Pippa starts running and solve for the final ωm. Doing
so gives

ωm =
L − Ipωp rel

Im + Ip

=
(Im + Ip)ωm,0 + Ipωp rel,0 − Ipωp rel

Im + Ip

= ωm,0 +

(

Ip

Im + Ip

)

(ωp rel,0 − ωp rel) ,

where we denote the inital values with subscript 0. Note the initial values in
equation are for after Pippa has jumped on merry-go-round, but before she
starts running. In this case, of course, ωm,0 = ωp rel,0 = 0: thus

ωm = − Ip

Im + Ip
ωp rel .

c) Pippa’s final angular velocity relative to the ground is

ωp = ωp rel + ωm = ωp rel

(

1 − Ip

Im + Ip

)

.

If Im → ∞, ωp → ωp rel. Thus, if the merry-go-round has infinite rotational
inertia, it will not move relative to the ground. If Im → 0, then ωp → 0.
Thus, if the merry-go-round rotational inertia is vanishingly small, Pippa
cannot move relative to the ground by running around the rim. Weird isn’t
it.

d) Multiplying the part (b) answer by r gives

vm = − Ip

Im + Ip
vp rel

for the merry-go-round rim velocity. Rearranging gives

Im = −Ip

(

1 +
vp rel

vm

)

.
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Now the rotational inertias about the merry-go-round axis are Im =
(1/2)mmr2 and Ip = mpr2 where the radii are the same since Pippa is
running on the rim. Thus one finds

mm = −2mp

(

1 +
vp rel

vm

)

= 40 kg .

It is a very light merry-go-round.

e) No. The system has zero total angular momentum at the start and sans
external torques must continue to have zero total angular momentum. If
both Pippa and the merry-go-round spun in the same sense, the total z
angular momentum would not be zero.

Redaction: Jeffery, 2001jan01

013 qfull 00310 2 3 0 moderate math: equilibrium ladder
23. A ladder leans against a wall in static equilibrium. Ladder, wall, and ground are

perfectly rigid. The ladder has mass m, length ℓ, and center of located at ℓcm along
its length measuring from its base. The problem is 2-dimensional: the ladder and wall
are seen in the xy plane and a z axis is the only rotation axis.

a) Draw a good diagram marking on all possible forces: gravity, ground normal force
FN1 ground friction force Ff1 wall normal force FN2 and. wall friction force Ff2.
Mark the forces where they act; in the case of gravity, the center of mass is the
appropriate place. Draw the ladder leaning to the RIGHT so that we are all
consistent. The angle between the ladder and the VERTICAL is θ. Make the
diagram large enough to be easily read.

b) Write out all the equations of equilibrium including all possible forces. Just so we
are all on the same wavelength, take the origin for the torque equation to be the
contact point between ladder and ground. Why is this a good choice? HINT:

Using moment arms is a convenient way to determine the torques, but write them
out in terms of ℓ, ℓcm, and trigonometric functions of θ. Also, in setting up the
equations you must adopt some conventions about which directions are positive
for which forces and what is the positive torque direction. As long as you are
consistent everything works out the same physically no matter what conventions
you adopt.

c) In our idealized system, we have have no general formulae for normal forces or
friction forces. We must must solve for them from the laws of motion or rotational
motion. Given only m, g, θ as knowns, can we solve for all of the for the normal
and wall forces? Explain your answer?

d) Assuming the wall is frictionless, derive the formulae for FN1, Ff1 and FN2. Are
these general formulae for these forces? Explain your answer.

e) Given ordinary static friction between the ladder and ground and still zero friction
for the wall, what must happen as θ increases, but before it reaches 90◦? Explain
your answer.

f) Again assume the wall is frictionless. Say the ladder is just on the verge of slipping
at θslip. Derive the formula for the static friction coefficient of the ground.
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g) Assuming the floor is frictionless, derive the formulae for FN1, FN2, and Ff2.
What ordinary friction rule is violated in this case?

SUGGESTED ANSWER:

a) You will have to imagine the diagram.

b) The three equations of equilibrium are

0 = Ff1 − FN2 ,

0 = FN1 + Ff2 − mg ,

0 = −mgℓcm sin θ + Ff2ℓ sin θ + FN2ℓ cos θ ,

where we have taken the ladder base on the ground as the origin for
the torque equation. The signed moment arms were easily determined
geometrically. One could, of course, use the torque definition and the
trigonometric identities

sin(π − θ) = sin θ and sin
(

θ +
π

2

)

= cos θ

to find the torques. In writing down the torque equation, we have taken
counterclockwise as positive.

In principle, we could choose any point in the plane of the problem as the
origin for the torque equation. For equilibrium, clearly the net torque about
any origin at all must be zero: individual torques remain origin dependent,
but forces friction and normal forces are, of course, origin independent. The
choice of origin is a good one because the torque of the forces F1 and Ff1 are
zero for this choice. Thus, the choice of origin simplifies the equations to be
solved.

We cannot solve for normal and frictional forces since we only three
equations of equilibrium and four unknowns. The problem is indeterminate
using the idealized perfectly rigid objects that we have invoked. Nature has
no problem though giving those forces definite values. This is because in
reality all objects show some deformation under applied force (unless the
applied force is uniform field force as gravity is for most small objects) and
the deformation causes an equal and opposite restoring force. The force laws
governing those deformations and restoring forces provide enough constraints
that the realistic problem is always determinate. It is well beyond our scope,
however, to go into elasticity theory.

c) No. There are four unknown forces and only three equations of equilibrium.
We cannot solve for the unknowns without more information.

d) Given Ff2 = 0, we can solve the equations for the three unknown forces by
inspection. We obtain

FN1 = mg ,

Ff1 = mg
ℓcm

ℓ
tan θ

FN2 = Ff1 = mg
ℓcm

ℓ
tan θ .
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These are NOT general formulae for these forces. They are formulae for
what the forces must be given our static system.

e) Given Ff2 = 0, we can solve the equations for the ground friction Ff1 must
be to maintain static equilibrium. We obtained this formula in the part (d)
answer. However, static friction has an upper limit µst|FN|. If θ grows
sufficiently large, then this limit will be exceeded since according to our
formula for Ff1 goes to infinity as θ → 90◦ while the FN1 stays constant. So
static equilibrium will fail and the ladder will slide to the ground. I once
saw this happen with a worker—who was not hurt to save suspense—on a
ladder in the computer room of the astronomy department of the University
of Barcelona.

f) Using the approximate law |Fst,max| = µst|FN| and the part (d) answer, we
find

µst =

∣

∣

∣

∣

Ff1

FN1

∣

∣

∣

∣

=
ℓcm

ℓ
tan θslip .

g) Given Ff1 = 0, it follows from the equations in the part (d) answer that

FN1 = 0 ,

Ff2 = mg
ℓcm

ℓ
,

FN2 = mladderg

(

1 − ℓcm

ℓ

)

.

It certainly violates our ordinary friction rules to have a wall frictional force
without a wall normal force. But those rules don’t actually account for all
cases. Here the wall must be sticky—maybe with fresh paint.

Redaction: Jeffery, 2001jan01
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Equation Sheet for Introductory Physics Calculus-
Based

This equation sheet is intended for students writing tests or reviewing material. Therefore
it is neither intended to be complete nor completely explicit. There are fewer symbols than
variables, and so some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret
and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 N m2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 N m2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13) MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(N m2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ
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c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)

sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]
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sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a

6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)
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~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2

xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1
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x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2
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~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω

13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V
ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂
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Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum

~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet
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~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics

~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sin γτ Lz = Iω τz,net = Iα
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I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r
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P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant

REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5× 1011 m ≈ 1 AU

RSun,equatorial = 6.955 × 108 ≈ 109 × REarth,equatorial MSun = 1.9891 × 1030 kg


