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Intro Physics I EXAM 2
2012 February 29, Wednesday NAME:

Instructions: There are 20 multiple-choice problems each worth 1 mark for a total
of 20 marks altogether. Choose the BEST answer, completion, etc., and DARKEN fully
the appropriate circle on the table provided below. Read all responses carefully. NOTE

long detailed responses won’t depend on hidden keywords: keywords in such responses
are bold-faced capitalized. Harder/longer multiple-choice problems (which are sometimes
based on full-answer problems) are marked by asterisks: ∗ for easy, ∗∗ for moderate, ∗ ∗ ∗
for hard: all in the judgment of the instructor.

There are THREE full-answer problems worth 10 marks for a total of 30 marks
altogether. Answer them all. It is important that you SHOW (SHOW, SHOW,

SHOW) how you got the answer for the full-answer problem. Don’t give up on problems
where you can’t do the first part: sometimes later parts can be done independently. Some
full-answer problems may be multiple-pagers: make sure you have answered everything.
And BOX-IN your final answers.

This is a CLOSED-BOOK exam. NO cheat sheets allowed. An EQUATION

SHEET is provided. Calculators are permitted—but ONLY for calculations. There are
SCRATCH PAGES for auxiliary calculations. Remember your name (and write it down
on the exam too).

The exam is out of 50 marks altogether and is a 50-minute exam.

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 11. O O O O O

2. O O O O O 12. O O O O O

3. O O O O O 13. O O O O O

4. O O O O O 14. O O O O O

5. O O O O O 15. O O O O O

6. O O O O O 16. O O O O O

7. O O O O O 17. O O O O O

8. O O O O O 18. O O O O O

9. O O O O O 19. O O O O O

10. O O O O O 20. O O O O O
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005 qmult 00532 1 1 1 easy memory: Newton’s 2nd law: 2
1. Newton’s 2nd law is:

a) ~F = m~a. b) m~F = ~a. c) E = mc2. d) E = mc3. e) m = Ec2.

SUGGESTED ANSWER: (a)

Wrong answers:

c) This is the Einstein equation.

Redaction: Jeffery, 2008jan01

005 qmult 00710 2 3 5 moderate math: stopping a bike
Extra keywords: physci KB-60-21

2. A bicycle-rider system has a mass of 80 kg. The bike is traveling on level and has
initial velocity 6 m/s north. What is the constant force needed to stop the bike in 4 s?

a) 80 N south. b) 80 N north. c) 80 N east. d) 100 N south.
e) 120 N south.

SUGGESTED ANSWER: (e)

The acceleration to stop the bike is

a =
v − v0

t
,

where v = 0 is the final velocity, v0 = 6 m/s is the initial velocity, t = 4 s is the
stopping time, and I’ve chosen north at the positive direction. Thus the constant
stopping force is thus

F = ma = m

(

v − v0

t

)

= 80 × (−1.5) = −120 N .

South is the negative direction and thus the stopping force is 120 N south.

Wrong answers:

c) East. Are you trying to tip the bike.

Redaction: Jeffery, 2001jan01

005 qmult 00950 2 5 4 moderate thinking: diving woman and gravity
Extra keywords: physci KB-60-27

3. What is the approximate mass of a woman who weighs 500 N? What is gravitational
force that Earth exerts on her. After she jumps UPWARD from a diving board,
what is her acceleration in the absence of air drag?

a) About 50 kg, 500 N, and 9.8 m/s2 downward once she starts moving downward,
but ZERO before that.

b) About 50 kg, 50 N, and 9.8 m/s2 downward once she starts moving downward,
but ZERO before that.

c) About 50 kg, 50 N, and 9.8 m/s2 downward at ALL times.
d) About 50 kg, 500 N, and 9.8 m/s2 downward at ALL times.
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e) None of these questions can be answered with the given information.

SUGGESTED ANSWER: (d)

Remember that weight near the Earth’s surface is mg where m is mass and
g = 9.8 m/s2 is the acceleration due to gravity constant. Now 500 N obviously
describes the woman’s weight: thus her mass is this value divide by about 10.
Her weight is the gravitational force that Earth exerts on her. Once she’s left
the board the only force on her is gravity and she must accelerate downward at
9.8 m/s2 no matter what direction she is moving in.

Wrong answers:

e) As Lurch would say: “Aaarh.”

Redaction: Jeffery, 2001jan01

005 qmult 01150 1 3 4 easy math: example tension fore of a rope
4. A MOTIONLESS mass of 10 kg is suspended from a rope. What is the tension force

that the rope exerts on the mass?

a) 100 N downward. b) 200 N downward. c) 200 N upward.
d) 100 N upward. e) 200 N horizontally.

SUGGESTED ANSWER: (d)

Well one has to remember about tension. And to be motionless gravity has
to be balanced by tension.

Wrong answers:

Redaction: Jeffery, 2001jan01

005 qmult 11112 2 3 3 moderate math: fuzzy dice at angle 2 fullmult
5.∗∗ You are in a car accelerating at a constant 7.5 m/s2 with constant direction. The car

is on level ground. There are fuzzy dice hanging by a cord from the mirror. The dice
cord is a (massless) ideal rope. Assuming the dice are a point mass, what is the angle
of the dice cord from the VERTICAL? HINT: Draw a free body diagram for the
dice. Remember the class mantra: “ ~Fnet = m~a is always true and it’s true component
by component”.

a) 27◦. b) 32◦. c) 37◦. d) 42◦. e) 47◦.

SUGGESTED ANSWER: (c)

I omit the diagram.
Note the fuzzy dice, like the car, must be accelerating in the x-direction and

at the car’s rate of acceleration. They are constrained to do so.
Since the cord is massless ideal rope only two forces act on it. The dice

tension force at one end and the mirror holder tension force at the other end.
Gravity can’t act on the cord since it is massless. Because the only forces on
the cord are at the endpoints the cord must be follow a straight line and tension
force it exerts on the dice must be aligned with the cord. The tension must be a
constant in the cord since no parallel forces act on it except at the endpoints.
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We have the two following equations for the dice from ~F = m~a using a
horizontal-vertical set of coordinate axes:

max = T sin θ and 0 = T cos θ − mg ,

where m is the dice mass, T is the cord tension, and θ is the angle from the
vertical.

Although solving a problem symbolically is best, I usually set to zero
immediately quantities that are zero: this saves me from tedious generality.

In this case, we don’t know m, T , or θ. So we have 3 unknowns in only
2 equations, and so in general can’t solve for all the unknowns. But that is in
general. Sometimes in particular cases partial solutions can be extracted. In this
case, we can divide

max = T sin θ by mg = T cos θ

to get
ax

g
= tan θ ,

and thus

θ = tan−1

(

ax

g

)

= 37.4◦ .

Curiously the angle doesn’t depend on the mass. Fuzzy dice or an elephant,
it’s all the same. The cord tension does depend on the mass, of course. In fact,
measuring the angle of a hanging object is a way of measuring acceleration:

ax = g tan θ .

We have no way to solve for m and T with the information given.

Wrong answers:

a) Too low.

Fortran-95 Code
print*

gg=9.8d0

ax=7.5d0

theta=atan(ax/gg)*raddeg

print*,’raddeg,theta’

print*,raddeg,theta

! 57.2957795130823 37.4270513594566

Redaction: Jeffery, 2008jan01

005 qmult 01230 1 2 5 moderate memory: friction coefficient sizes
6. Which is larger: the coefficient of static or kinetic friction?

a) They are always equal.
b) Neither. The larger depends on the materials involved and its about a 50-50 split

on which is larger.
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c) The kinetic coefficient is always larger.

d) The kinetic coefficient is usually larger.

e) The static coefficient is almost always (always?) larger.

SUGGESTED ANSWER: (e)

The static coefficient is almost always larger. I hesitate to say always because
perhaps there is some weird material interface where it isn’t. One can sort of
understand why static should be larger. In a sliding situation some microscopic
bonds may not have a chance to form. Note the fact that the static coefficient is
larger is why its recommended that in car slides on ice that you pump your breaks
rather than locking them. This is so that the wheels keep rolling just fast enough
to maintain a static friction resistance to motion. Actually, it is probably very
difficult to do this trick optimally, and I’ve usually just lock my breaks on the few
uncontrolled, but short, ice skids I’ve been in. And if you are skidding sideways
into oncoming traffic (I wasn’t at the wheel that time), you can’t do much. But
computerized systems can reduce skid distance by 30 % or more (reference ???).

Wrong answers:

Redaction: Jeffery, 2001jan01

006 qmult 00410 1 1 3 easy memory: centripetal acceleration in UCM

Extra keywords: physci

7. In uniform circular motion, the acceleration has:

a) a constant magnitude and always points OUTWARD from the center of motion.

b) a constant magnitude and always points ALONG the circular path (i.e., tangent
to the circular path).

c) a constant magnitude and always points INWARD to the center of motion.

d) a zero value.

e) a nonconstant magnitude, but a constant direction.

SUGGESTED ANSWER: (c) The magnitude of the acceleration is a constant,
but its direction is continually changing so that it always points toward the center.

Wrong answers:

d) I’ve lived in vain.

Redaction: Jeffery, 2001jan01

006 qmult 00450 1 4 3 easy deducto-memory: centripetal force defined

8. The centripetal force is:

a) a mysterious force that APPEARS whenever an object goes into uniform
circular motion.

b) a mysterious force that tries to throw you OFF playground merry-go-rounds.

c) in fact m~a of ~Fnet = m~a when this equation is specialized to the case of uniform
circular motion. It is NOT a mysterious force that appears whenever you have
uniform circular motion: it is a force requirement to be satisfied for uniform
circular motion. Particular physical forces (e.g., gravity, tension force, and normal
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force) must act (sometimes in combination) to give a centripetal force which then
causes uniform circular motion.

d) in fact m~a of ~Fnet = m~a when this equation is specialized to the case of uniform
circular motion. The force itself is ALWAYS a field force emanating from the
center of motion that pulls on the circling object atom by atom.

e) a mysterious force that DISAPPEARS whenever an object goes into circular
motion.

SUGGESTED ANSWER: (c)

At least it is easy with all the easy ways to eliminate wrong answers and the
fact that it conforms to the longest-answer-is-right rule.

I the term centripetal force is reserved for circular motion, but that motion
doesn’t have to be uniform (i.e., constant speed) and it need only be a part of a
circle. See Fr-108, 200, 557.

Wrong answers:

d) No it’s not always a field force. It can be a tension force (which is a contact
force) in the case of a sling for example. It can be friction or a normal force.
Gravitational orbits are, of course, important cases where the force is indeed
a field force.

e) All things are wrong.

Redaction: Jeffery, 2001jan01

006 qmult 00474 3 5 3 tough thinking: lifting from a hump

Extra keywords: physci KB-61-39

9. There is a hump on the road with a radius of curvature of 100 m just at the top. In
an idealized picture, above about what horizontal speed must a car at the top of the
hump lift from the hump?

a) 12 m/s. b) 25 m/s. c) 31 m/s. d) 36 m/s. e) 43 m/s.

SUGGESTED ANSWER: (c)

The car at the top of the hump is executing circular motion about the hump’s
center of curvature which, of course, is a point beneath the ground. But to execute
circular motion there must be a centripetal force. The combination of gravity on
the car and the normal force of the ground supplies the centripetal force on the
car. But the ground normal force is the reaction force to the car normal force on
the ground. As the car moves faster, there is less car normal force because more
of the gravity force on the car is needed to keep the car moving in a circle and
less is pushing the car into the road. The car normal force goes to zero when all
of the gravity force is needed to maintain circular motion. But this means that
the ground normal force goes to zero by the 3rd law. Now neither normal forces
can be attractive. So when the car’s speed exceeds the speed where the entire
gravity force is needed to supply the centripetal force then there is not enough
force to keep the car on the hump and it must lift.

The explanation is a bit complex, but the phenomenon of cars lifting as you
drive to fast over humps is not uncommon.
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The maximum car speed without lifting is given when the centripetal force
is just the gravitational force alone:

mg = m
v2

r

which leads to

v =
√

rg =
√

100. × 9.8 ≈
√

1000 ≈ 30 m/s ,

or more exactly, 31.3 m/s If the car speed exceeds 31.3 m/s, the car tends to lift.
Now 31.3 m/s is 112 km/h or 70 mi/h. The hump in this case is not very curved,
and so a pretty high velocity is needed just to lift from the top.

Fortran-95 Code
print*

gg=9.8d0

rr=100.d0

vv=sqrt(gg*rr)

vv2=vv*(1.d0/1000.d0)*(3600.d0)

vv3=vv2*(1.d0/1.609344d0)

print*,’vv,vv2,vv3’

print*,vv,vv2,vv3

! 31.3049516849971 112.697826065989

70.0271825451795

Wrong answers:

c) Did you forgot to take the square root?

Redaction: Jeffery, 2001jan01

006 qmult 00770 2 5 2 moderate thinking: circular motion in non-inertial frame
Extra keywords: physci KB-59-21 , but I’ve corrected it

10. In what situations, if any, can a body move in a circular path at constant speed
without a centripetal force?

a) None. b) In certain special non-inertial frames.
c) In all non-inertial frames. d) In all inertial frames. e) Always.

SUGGESTED ANSWER: (b)

Is there an example of such a special inertial frame? Sure. Consider a bug
sitting anywhere on an old-fashioned record turntable. From the bug’s perspective
the whole outside world is going around him/her. But there is no centripetal force
causing the whole outside world to do this.

As another example, consider the Earth-Sun system. From the Earth’s point
of view, the Earth is at rest and the Sun orbits the Earth. Geometrically this is
perfectly true. But the Earth’s frame is not inertial and the Sun’s is—or at least is
much more inertial than the Earth’s. In the Sun’s inertial frame the Earth orbits
the Sun. The gravitational force of the Earth on the Sun causes this acceleration.
The Earth’s gravitational force on the Sun is equally strong in magnitude by the
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3rd law, but because of the Sun’s much greater mass, it’s the Earth that orbits in
the Sun’s inertial frame. Actually, the Sun is somewhat accelerated around the
center of mass of the solar system, somewhat accelerated around the center of
mass of the Milky Way, somewhat accelerated around the center of mass of the
Local Group (of galaxies), and somewhat accelerated in some other astronomical
frames too.

Wrong answers:

a) This answer is wrong unless it is understood that the question is taken as
referring to inertial frames, but I am not implying such an “understood.”
Clearly not since answer (b) is the right general answer.

e) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

006 qmult 00100 1 1 1 easy memory: five special forces
11. Five special forces in physics are:

a) gravitational force, normal force, tension, friction force, and the linear force (the
Hooke’s law force).

b) gravitational force, normal force, tension, friction force, and left force (the
Captain Hooke’s law force).

c) gravitational force, normal force, tension, friction force, and right force.
d) gravitational force, normal force, tension, friction force, and air force.
e) gravitational force, normal force, tension, friction force, and the Force.

SUGGESTED ANSWER: (a)

Wrong answers:

b) Avast mateys.
e) May the Force be with you.

Redaction: Jeffery, 2001jan01

007 qmult 00132 1 1 4 easy memory: conservation of energy 2
Extra keywords: physci

12. In the physics, the conservation of energy means energy:

a) shouldn’t be wasted on cars. b) is never destroyed.
c) is never created. d) is never created or destroyed.
e) is perpetually created.

SUGGESTED ANSWER: (d)

Wrong answers:

e) Well no.

Redaction: Jeffery, 2001jan01

007 qmult 00200 1 4 2 easy deducto-memory: work defined
13. “Let’s play Jeopardy! For $100, the answer is: In physics, it is a macroscopic process

of energy transfer.”
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What is , Alex?

a) energy b) work c) force d) weight e) sloth

SUGGESTED ANSWER: (b)

Wrong answers:

e) Now is this likely?

Redaction: Jeffery, 2008jan01

007 qmult 00282 1 3 1 easy math: work lifting ostrich
Extra keywords: physci KB-93-21

14. The work done by the lifting force of a person lifting a 30 kg ostrich to a height of
30 m without acceleration is about:

a) 9000 J. b) 900 J. c) 300 J. d) 3 J. e) 4500 J.

SUGGESTED ANSWER: (a)

For there to be no acceleration, the lifting force must cancel gravity.
Therefore

~Flift = mgŷ .

The work done by the lifting force is

W =

∫

∆y

~Flift · d~s = mg

∫

∆y

dy = mg∆y ≈ 30 × 10 × 30 × 1 = 9000 J ,

where ∆y is the y displacement of the ostrich center of mass.
One actually barely needs a calculation. The work done by the lifter must

create the gravitational potential energy which is mg∆y.
I think that in practice, lifting an ostrich might take more work than this.

But on the other hand, it’s a rather small ostrich. They usually weigh between
about 60 kg and about 130 kg. Still it’s likely to be kicking.

Wrong answers:

b) Maybe you forgot to multiply by g.

Redaction: Jeffery, 2001jan01

007 qmult 00310 1 1 3 easy memory: work-kinetic-energy theorem
15. The work-kinetic-energy theorem is:

a) KE =
1

2
mv2. b) ∆E = Wnon. c) ∆KE = W . d) ∆KE =

1

2
W .

e) ∆KE =
1

2
mv2.

SUGGESTED ANSWER: (c)

Wrong answers:

a) This is the kinetic energy formula.
b) This is the work-energy theorem.

Redaction: Jeffery, 2008jan01
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008 qmult 00120 1 4 1 easy deducto-memory: general potential energy formula
16. “Let’s play Jeopardy! For $100, the answer is: ∆PE = −W .”

a) What is the formula relating POTENTIAL energy change in a conservative force
field to work done by the conservative force (i.e., what is the general potential
energy formula), Alex?

b) What is Faraday’s law, Alex?
c) What are capacitors, Alex?
d) What is . . . no, no wait . . . what is unicorn circular motion, Alex?
e) What is the formula relating KINETIC energy change in a conservative force

field to work done by the conservative force (i.e., what is the work-kinetic-energy
theorem), Alex?

SUGGESTED ANSWER: (a)

Wrong answers:

d) A rhinoceros chasing its tail?
e) U is pretty much common for potential energy and never used for kinetic

energy to my knowledge.

Redaction: Jeffery, 2001jan01

008 qmult 00144 1 1 1 easy memory: nonconservative force example
17. An example of nonconservative force is:

a) kinetic friction. b) gravity. c) the linear force. d) work.
e) power.

SUGGESTED ANSWER: (a)

Wrong answers:

d) Not a force.
e) Not a force.

Redaction: Jeffery, 2001jan01

008 qmult 00220 1 1 4 easy memory: workless constraint forces
18. Frequently, in conservation-of-mechanical energy problems, one encounters non-

conservative forces that guide the motion and cause accelerations. Mechanical
energy is conserved because these do work because they are always

to the direction of motion. Actually, conservative forces can also be
when they are .

a) work-doing constraint forces; parallel
b) work-doing constraint forces; perpendicular
c) workless constraint forces; parallel
d) workless constraint forces; perpendicular
e) worthless unconstrained forces; peculiar

SUGGESTED ANSWER: (d)

Wrong answers:
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a) Exaclty wrong.

Redaction: Jeffery, 2008jan01

008 qmult 00272 1 3 3 easy math: dog drops brick mech. energy conserved 2
Extra keywords: physci

19. A brick has mass 2.0 kg. A dog—from a joke that I’ll tell you someday—drops the
brick (which it was holding in its mouth or, one might say, with its jowl) 2.0 m. The
brick started from rest and air drag is negligible. What is the kinetic energy of the
brick just before it hits the ground?

a) 9.8 J. b) 19.6 J. c) 39.2 J. d) about 50 J. e) about 160 J.

SUGGESTED ANSWER: (c)

From the work-energy theorem

∆E = Wnon ,

one obtains

KE = KE0 − ∆PE + Wnon = 0 − mg∆y + 0 = 39.2 J ,

where KE0 = 0, ∆y = −2.0 m, and Wnon = 0.

Wrong answers:

d) Well no.

Redaction: Jeffery, 2001jan01

008 qmult 0364 1 1 4 easy memory: restoring force of table and gravity
20. A block sits at rest on table. Gravity pulls it down and a normal force pushes it up.

The two forces cancel each other. The block is in static equilibrium—a stable static
equilibrium. If a tiny force pushes the block up, the normal force turns off since it is
a contact force. If a tiny force pushes the block down, the normal force strengthens
to cancel it since it is a force of reaction—as Marx would say. Together, gravity and
the normal force constitute a:

a) strong force. b) friction force. c) linear or Hooke’s law force.
d) restoring force. e) weak force.

SUGGESTED ANSWER: (d)

Wrong answers:

a) Ambiguous.

Redaction: Jeffery, 2008jan01
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005 qfull 00950 2 3 0 moderate math: rocket pod descent on Callisto
Extra keywords: David Bowman and 2001: A Space Odyssey

21. As this is (or was within living memory) 2001, let’s say you are David Bowman and
you’ve just arrived at Jupiter. Before going off to investigate that monolith (and go
beyond humankind), you decide on a little excursion to Callisto, one of Jupiter’s 4
major moons. Assume you are so close to Callisto’s surface throughout the maneuvers
of this question the gravitational field gCal can be approximated as a constant.

a) As your landing pod descends straight down to the Callisto surface and when
your are relatively close to touchdown, your rocket thrust is 3260 N and your
descent velocity is CONSTANT. What is the gravitational force on your pod?
Take the upward direction as the positive direction.

b) Say you reduce thrust to 2200 N and find that the pod has a downward
acceleration of 0.39 m/s2. What is the mass of your pod including yourself?

c) What’s the free-fall acceleration magnitude due to gravity near the Callisto
surface (i.e., gCal, the analog to g for gravity near Earth’s surface)? The free-fall
acceleration acceleration magnitude is also the gravitational field magnitude.

d) Say you have a mass of 70 kg. What’s your WEIGHT on Callisto and what
is your Callisto weight divided by your Earth weight (i.e., what is the weight
RATIO)?

e) Now the hard part. After finishing your excursion on the icy surface, you
launch and go into uniform circular motion, low-Callisto orbit. The gravitational
acceleration is approximately the same as the surface gravitational acceleration
and the radius of the orbit is approximately just Callisto’s radius of 2400 km.
Calculate the ORBITAL SPEED. Then find the ORBITAL PERIOD P (i.e.,
the time to orbit once) in seconds and in hours. HINT: Remember centripetal

acceleration and ~Fnet = m~a.

SUGGESTED ANSWER:

a) Well ~F = ma is always true and its always true component by component.
If there is no acceleration, then the force of gravity must cancel the rocket
thrust. Thus the gravitational force is

Fg = −mg = −Fth,a = −3260 N

and the direction is downward to the center of Callisto, of course.

b) Well ~F = ma is always . . . , and so

ma = Fth,b − mg

and

m =
Fth,b − mg

a
=

Fth,b − Fth,a

a
=

−1060

−0.39
= 2720 kg .

c) Using parts (a) and (b),

gCal =
|Fg|
m

=
Fth,a

m
= 1.2 m/s2 .
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The actual equatorial value is 1.235 m/s2 (Wikipedia: Callisto (moon)).

d) Using part (c),
WBow,Cal = mBowgCal = 84 N .

The weight ratio is given by

WBow,Cal

WBow,Earth
=

mBowgCal

mBowg
=

gCal

g
≈ 1.2

10
= 0.12 .

e) Well the magnitude of centripetal acceleration for uniform circular motion is

acen =
v2

r
.

The only force causing this acceleration is gravity. Thus

Fg = mgCal = macen = m
v2

r
.

The orbital speed is then

v =
√

gCalr = 1700 m/s

and the orbital period P is

P =
2πr

v
= 2π

√

r

gCal
= 8900 s = 2.5 h .

Fortran Code
print*

fa=3260.

fb=2200.

aa=-0.39

xmpod=(fb-fa)/aa

gg=fa/xmpod

xmbowman=70.*gg

ratio=gg/9.8

print*,’xmpod,gg,xmbowman,ratio’

print*,xmpod,gg,xmbowman,ratio

* 2717.94873 1.19943392 83.9603729 0.122391216

rcal=2400.e+3

vv=sqrt(gg*rcal)

pp=2.*pi*sqrt(rcal/gg)

print*,’vv,pp,pp/3600.’

print*,vv,pp,pp/3600.

* 1696.65601 8887.8623 2.46885061

Redaction: Jeffery, 2001jan01
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006 qfull 00700 1 3 0 easy math: general drag force in falling from rest case
22. An object falling from rest is subject to a drag force of magnitude f(v), where v is the

object’s speed. The function f(v) is monotonically increasing with v and f(0) = 0,
but is otherwise general. The inverse function to f(v) is f−1(x).

a) Apply Newton’s 2nd law to the object taking the downward direction as positive.
HINT: You just write down the Newton’s 2nd law for this particular case.

b) What is terminal velocity, what is the condition necessary for it to hold for a
falling object, and why should the falling object reach it? What is the formula
for the terminal velocity vter? Make use of f−1(x).

c) The evolution to terminal velocity can be crudely divided into two phases: a
linear growth phase (when the velocity is growing approximately linearly) and
an asymptotic phase (when the velocity is asymptotically approaching terminal
velocity). The characteristic time tch boundary between the two phases is
obtained by setting f(v) = 0 in the equation of motion and solving for the time
when v = vter. Beyond this time, the pure linear growth must be over. DERIVE

the formula for tch. Then DERIVE the formula for the characteristic length ℓch

which is the distance fallen in time tch assuming f(v) = 0.

d) The formula
v = vter(1 − e−t/tch )

is a crude approximate solution for velocity in general. SKETCH a v-versus-t
plot for the approximate solution.

If we have linear drag f(v) = bv (where b) is a constant, then the approximate
solution becomes exact. There are cases where linear drag holds: for very low
speeds and no turbulence. Find tch and ℓch for the linear drag force case. Verify by
substitution into the equation of motion (i.e., our Newton’s 2nd law application
from) that the velocity formula is exact for f(v) = bv. A good way to do this is
to evaluate with the solution the left-hand side (LHS) and right-hand side (RHS)
of the equation of motion separately. Then observe that LHS and RHS are equal.

SUGGESTED ANSWER:

a) Behold:
mg − f(v) = ma .

b) Terminal velocity is a constant velocity that an object falling in a fluid
medium reaches if it falls sufficiently long. The condition needed for terminal
velocity is that the gravitational and the drag forces on the object cancel.
The two forces are equal in magnitude, but opposite in direction. When the
condition holds, the net force on the object is zero, its acceleration is then
zero, and it has a constant velocity which is the terminal velocity itself. An
object should reach terminal velocity. Initially f(v) is zero and the object
accelerates. As v increases, mg − f(v) decreases, but stays positive and
so the acceleration is positive and velocity continues to increase. But when
mg−f(v) reaches zero, the acceleration goes to zero, and the object’s velocity
becomes constant and stays constant. This constant velocity is the terminal
velocity.
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It takes a mathematical analysis to show this, but for usual drag forces
terminal velocity is formally only reached at time equals infinity. The velocity
asymptotically approaches terminal velocity. In reality, the fluid medium
is subject to velocity fluctuations and once the difference between object
velocity and terminal velocity becomes smaller than these, the object has
effectively reached terminal velocity. This happens usually at much less than
time equals infinity. It usually happens after a few times the characteristic
time that we find in the part (c) answer.

The terminal velocity formula is

vter = f−1(mg) .

c) If

mg = ma ,

then

v = gt ,

and so

tch =
vter

g
.

The characteristic length is

ℓch =
1

2
gt2ter =

v2
ter

2g
.

d) You will have to imagine the sketch.
for the linear drag force case, we find

vter =
mg

b
and tch =

m

b
.

Now for the verification that the approximate solution is exact for the linear
drag force case. We have

LHS = mg − bv = mg − bvter(1 − e−t/tch) = mge−t/tch

and

RHS = ma = m
vter

tch
e−t/tch = mge−t/tch .

Since LHS = RHS, the solution satisfies the equation of motion, and, so it
is, in fact, the exact solution—the verification is complete.

Redaction: Jeffery, 2008jan01

008 qfull 00420 2 3 0 moderate math: Lance Armstrong work and power
Extra keywords: save for exams

23. Lance Armstrong has won the Tour de France bicycle race a record 7 times.
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a) What is the main forward EXTERNAL force on the Armstrong-bike system.
What are at least two of the main reverse EXTERNAL forces on the Armstrong-
bike system. The forward forces acting alone accelerate and the reverse forces
acting alone decelerate. Assume that Lance is riding on a completely horizontal
road. HINT: We are not concerned with internal forces: e.g., forces that Lance
Armstrong exerts on the bike and that the bike exerts on Lance.

b) Say Lance biked 135 km (still on the horizontal road) and started and ended at
rest. What is the NET work done on the Armstrong-bike system by all external
forces? A numerical value is expected for the answer.

c) Say Lance travels at an average speed of 12.0 m/s for the distance of 135 km. How
long was the trip in seconds? How long was the trip in hours?

d) Say Lance outputs about 2.0 kW of power on average (which may be a little too
high in reality) during his trip of 135 km. This power is total power: some of the
energy goes into kinetic energy of his body and bike before becoming waste heat
and some goes into heat directly. How much energy has has he output in total in
joules?

e) Assuming Lance outputs about 0.15 kW of power for the REST of the of 24
hours, what is his daily average output power in WATTS (i.e., his sustained
metabolic rate)? By “average”, it is meant the kind of average that allows one to
calculate the energy Lance outputs in any period of time by multiplying by that
time.

SUGGESTED ANSWER:

a) Static friction of the road on the Armstrong-bike system is the main force
forward external force. It acts directly on the bike tires, of course. If you
imagine a case of zero road friction, Lance wouldn’t be able to move himself
much: the air might blow him along or he could try paddling air—once
moving he might go a long way, of course.

The question of reverse external forces is a bit involved. Air drag is
almost certainly the dominant one in terms of removing kinetic energy from
the Armstrong-bike system. However, if the wind is blowing at Lance’s back
and he is moving slower than the wind, air drag will give him a forward
external force. But usually he will be moving faster than wind speed. Air
drag can be reduced by traveling in the wake of other bikers and I believe
this a common strategy.

When braking the static friction force of the road on the bike is a main
revserse external force. But Lance probably tries not to brake at all, except
after crossing the finish line. Still he might have to brake at corners if there
is no banking and for strategic reasons or safety reasons. Certainly, I would
count the static friction force as a main reverse external force for control
purposes though probably not for work done.

Rolling friction is probably the reverse external force that does the most
work against the motion after air drag. But this is just a guess.

I will accept any two of air drag, static friciton, and rolling friction as
answers. Three answers I will not accept are kinetic friction, gravity, and
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the normal force.
Kinetic friciton as a reverse external force is probably minor. Probably

Lance only skids obviously in emergencies or when showing off, but all
fast accelerations and braking may actually involve little skidding. I’m not
enough of a bike expert to know.

If Lance were ascending or descending, gravity would also act on the
Armstrong-bike system acting. Ascending it is a reverse external force;
descending, a forward external force.

The normal force is always perpendicular to the direction of motion. So
it is never a forword or reverse external force and it does no work at all on
the Armstrong-bike system.

b) Since the system starts and ends at rest, there is zero change in kinetic
energy, and thus the external forces have done zero net work on the system.
Recall the work-kinetic energy theorem:

∆KE = W ,

where ∆KE is the change in kinetic energy and W is the net work done by
all external force. If ∆KE = 0, then W = 0.

Of course, a lot of internal work was done by Lance on the bike and the
Armstrong-bike system did a work on the external world—but the sum would
be zero since that work is equal in magnitude, but opposite in sign the work
the external world did on him. In fact, all the kinetic energy generated from
Lance’s internal store of chemical energy went into waste heat. But he has
moved far and fast. If the bike ascended during the trip, some gravitational
potential energy will have been added to the Armstrong-bike system. If
the bike descended during the trip, some gravitational potential energy was
removed and ended up as waste heat.

c) Well this is an old exhaustion time question. Clearly,

t =
d

v
=

135 × 103

12
= 11.25 × 103 s = 3.13 h .

d) Behold:

E = pt = 2000 × 11.25 × 103 = 22.5 × 106 J = 22.5 MJ .

e) Behold:

pave =
22.5 × 106 + 150 × (86400 − t)

86400
= 390 W .

NOTE: The numbers used in this question are actually only approximate. It’s
hard to get reliable numbers. However, the sustained metabolic scope of about
5 that one gets from the numbers is at about the actual human upper limit.
Sustained metabolic scope is the ratio of sustained metabolic rate (which is
average daily power which is about 390 W for “Lance”) to basal or resting
metabolic rate which is about 80 W (which is typical for Tour-de-France cyclists
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and anyone else). Only elite endurance athletes like Tour-de-France cyclists and
maybe exceptional traditional hunters have sustained metabolic scopes of about
5. Most folks in fairly sedentary lifestyles have sustained metabolic scopes of 1.4
to 1.8.

Fortran-95 Code
print*

daysec2=86400.d0

bmr=6870.d0*(1.d3/daysec2) ! typical value

smr=33000.d0*(1.d3/daysec2) ! typical value

print*,’bmr,smr in watts’

print*,bmr,smr

! 79.51388888888889 381.9444444444444

phigh=2.d3

plow=150.d0

d=135.d3

v=12.d0

t=d/v

th=t/3600.d0

en=t*phigh

trest=daysec2-t

pave=(en+trest*plow)/daysec2

print*,’t,th,en,pave’

print*,t,th,en,pave

! 11250.0 3.125 22500000.0 390.8854166666667

Redaction: Jeffery, 2008jan01
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Equation Sheet for Introductory Physics Calculus-
Based

This equation sheet is intended for students writing tests or reviewing material. Therefore
it is neither intended to be complete nor completely explicit. There are fewer symbols than
variables, and so some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret
and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67428(67)× 10−11 N m2/kg2 (2006, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 N m2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13) MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(N m2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ
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c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)

sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]
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sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a

6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)
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~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2

xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1
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x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2
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~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω

13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V
ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂
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Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum

~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet
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~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt


