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Intro Physics Semester I Name:

Homework 5: Classical Mechanics I: One or two full answer questions will be marked. There will
also be a mark for completeness. Homeworks are due usually the day after the chapter they are for is
finished. Solutions will be posted soon thereafter. The solutions are intended to be (but not necessarily are)
super-perfect and often go beyond a fully correct answer.

Answer Table Name:

a b c d e a b c d e

1. O O O O O 31. O O O O O

2. O O O O O 32. O O O O O

3. O O O O O 33. O O O O O

4. O O O O O 34. O O O O O

5. O O O O O 35. O O O O O

6. O O O O O 36. O O O O O

7. O O O O O 37. O O O O O

8. O O O O O 38. O O O O O

9. O O O O O 39. O O O O O

10. O O O O O 40. O O O O O

11. O O O O O 41. O O O O O

12. O O O O O 42. O O O O O

13. O O O O O 43. O O O O O

14. O O O O O 44. O O O O O

15. O O O O O 45. O O O O O

16. O O O O O 46. O O O O O

17. O O O O O 47. O O O O O

18. O O O O O 48. O O O O O

19. O O O O O 49. O O O O O

20. O O O O O 50. O O O O O

21. O O O O O 51. O O O O O

22. O O O O O 52. O O O O O

23. O O O O O 53. O O O O O

24. O O O O O 54. O O O O O

25. O O O O O 55. O O O O O

26. O O O O O 56. O O O O O

27. O O O O O 57. O O O O O

28. O O O O O 58. O O O O O

29. O O O O O 59. O O O O O

30. O O O O O 60. O O O O O



2

005 qmult 00100 1 4 2 easy deducto-memory: dynamics defined 1
1. “Let’s play Jeopardy. For $100, the answer is: The branch of physics that explains motion and

acceleration in terms of forces and masses.”

What is , Alex?

a) kinematics b) dynamics c) statics d) economics e) cinematics

SUGGESTED ANSWER: (b)

Wrong answers:

Redaction: Jeffery, 2001jan01

005 qmult 00110 1 4 5 easy deducto-memory: dynamics defined 2
2. Dynamics is that branch of physics that:

a) explains motion and acceleration in terms of the kinematic equations.
b) explains motion and acceleration in terms of error analysis.
c) treats dynamos.
d) treats electricity and magnetism or electromagnetism.
e) explains motion and acceleration in terms of forces and masses.

SUGGESTED ANSWER: (e)

Wrong answers:

Redaction: Jeffery, 2001jan01

005 qmult 00130 1 5 1 easy thinking: statics defined
3. The area of physics dealing with ONLY cases of balanced forces (or equilibrium) is called:

a) statics. b) dynamics. c) kinematics. d) kinesiology. e) cinema.

SUGGESTED ANSWER: (a)

An easy thinking question. Statics may not have been mentioned explicitly in class. Technically
the torques needed to be balanced too, but mentioning that would obscure the question. See French,
p. 119. Memory and deduction should help here. But the name alone should be enough.

Wrong answers:

e) As Lurch would say, AAAAARGH.

Redaction: Jeffery, 2008jan01

005 qmult 00310 1 5 3 easy thinking: what forces do
4. Forces can cause accelerations relative to inertial frames or cancel other forces. Another manifestation

(which actually follows from their property of causing acceleration) is that they can cause:

a) velocity (without causing acceleration).
b) mass.
c) bodies to distort: i.e., flex, compress, stretch, etc.
d) bodies to live
e) bodies to rule.

SUGGESTED ANSWER: (c)

Forces do so much that with suitable qualification almost anything can be a predicate here.
But in a definitional general sense “cause acceleration relative to inertial frames” and “cancel
other forces” are the main properties. They also distort bodies. This is not really an independent
property of force. If accelerations of a body happen relative to other parts of a body, then there will
be deformations. Constant velocity deformations can happen too, but an acceleration was needed
to create the velocity doing the deforming in the first place.

If we don’t see either an acceleration or a distortion, then how do we know or measure force?
Well we often use the 2nd or 3rd law in cases where acceleration zero and distortion is invisible:
but distortion is there even if we don’t see it. For instance, the normal force of a macroscopically
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rigid body may not manifest itself either way. But there is a microscopic distortion with the normal
force surface nonetheless.

Wrong answers:

a) This is one thing they don’t cause. You could twist the meaning of the words to make it true,
but it would just be a twisted case.

b) Arguable in some far-out high energy physics way.
d) Again sure, but they don’t have to.
e) Nonsense answer.

Redaction: Jeffery, 2001jan01

005 qmult 00400 1 1 4 easy memory: inertial frames defined
5. Accelerations with respect to —which we will call natural frames for the nonce—though

no one calls them that—and only they require forces as causes as prescribed by Newton’s 2nd law
(~Fnet = m~a ) in the classical limit. What are natural frames? They have been elusive historically.
Newton hypothesized that a primary natural frame defined by the mean position of the fixed stars—
absolute space as he called it. But the fixed stars move—as Newton knew himself—and revolve around
the center of the Milky Way in complex orbits—as Newton did not know himself. The Milky Way and
other galaxies are also in complex orbits in galaxy clusters or otherwise in complex relative motions.
In modern cosmological theory, natural frames are frames of reference attached to points in space that
participate in the mean expansion of the universe. Space is growing—just accept it. Not all space—not
space within bound systems like you, me, and the Milky Way—but the space in between bound systems
like galaxy clusters. To every point participating in the mean expansion of the universe attach the origin
of a local pimary natural frame. It is called local because sufficiently close to the origin, the frame has
the behavior given above. As you move away from the origin, there is a progressive departure from the
behavior, but you have to move over distance scales larger than a galaxy cluster for that to become
very noticeable. Now any frame in uniform motion (i.e., unaccelerated) with respect to a local primary
natural frame is also a local natural frame. Say the pimary frame is unprimed and the non-primary is
primed. Then we have

~r ′ = ~r − ~rprime ,

where is ~rprime is the position of the primed frame in the unprimed frame. Differentiate twice and
you get ~a ′ = ~a. So accelerations in the unprimed frame are exactly those of the primed frame. So
Newton’s 2nd law (~Fnet = m~a ) must be obeyed for accelerations relative to non-primary local frames.
Forces themselves are frame-independent in classical mechanics. If you need relativistic physics the story
changes.

Actually, Newton’s 2nd law can be generalized to non-natural frames by introducing what are called
inertial forces which are not real forces, but force-like terms that account for using non-natural frames.
In fact, using inertial forces is usually the best approach to non-natural frames.

By the by, we can actually identify natural frames in the universe and our own local one very
precisely using astronomical measurements. However, for many purposes we can find non-natural frames
that are sufficiently close to being natural frames that they can be used as natural frames to some degree
of approximation. The local Earth surface (i.e., the ground) is natural enough for many purposes: not
long-range gunnery or large-scale weather phenomena. If you need a more natural natural frame, you can
use the fixed stars. For highest accuracy, we can use the local primary natural frame using cosmological
knowledge.

a) rotating frames. b) accelerated frames. c) non-inertial frames. d) inertial frames.
e) picture frames.

SUGGESTED ANSWER: (d)

Every “natural” should be replaced by “inertial”. “Inertial” makes little sense, but by
convention we are stuck with it.

Wrong answers:

c) Exactly wrong.

Redaction: Jeffery, 2008jan01

005 qmult 00510 1 1 3 easy memory: number of Newton’s laws
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6. How many laws of motion did Newton posit?

a) 1. b) 2. c) 3. d) 4. e) 5.

SUGGESTED ANSWER: (c)

Wrong answers:

b) Logically he needed only two: his 2nd and 3rd laws. The 1st law is a special case of the 2nd.
But for historical and heuristic reasons he must have felt he needed the 1st law.

Redaction: Jeffery, 2008jan01

005 qmult 00520 3 5 3 tough thinking: 1st law redundant
7. Newton’s 1st law is.

a) PHYSICALLY INDEPENDENT of the other two laws of motion and CANNOT be dispensed
with as an axiom of Newtonian physics.

b) PHYSICALLY INDEPENDENT of the other two laws of motion, but nonetheless it CAN be
dispensed with as an axiom of Newtonian physics.

c) actually a SPECIAL CASE of the 2ND LAW. The case when the net force is zero. Therefore
logically we need only two laws of motion. Perhaps for clarity Newton formulated his explicit 1st
law and perhaps for the same reason physicists have retained it.

d) actually a SPECIAL CASE of the 3RD LAW. The case when the net force is zero. Therefore
logically we need only two laws of motion. Perhaps for clarity Newton formulated his explicit 1st
law and perhaps for the same reason physicists have retained it.

e) is INCORRECT, but is kept in the books for historical reasons.

SUGGESTED ANSWER: (c)

A tough thinking question. The students really have to grasp Ockham’s razor (which could be
painful) and recognize how many basic principles are needed.

Actually, I’m getting tired of the 1st law. Despite the weight of history, maybe we should just
junk it from the textbooks and talk of the two laws of motion with F = ma having the special case
of a = 0.

Wrong answers:

e) Oh, c’mon.

Redaction: Jeffery, 2008jan01

005 qmult 00530 1 1 3 easy memory: Newton’s 2nd law: 1
8. Newton’s 2nd law is:

a) m = ~Fnet~a.

b) ~a = m~Fnet.

c) ~Fnet = m~a.
d) For every force there is an equal and opposite force.
e) For every acceleration there is an equal and opposite acceleration.

SUGGESTED ANSWER: (c) “All I ever learnt in physics was ~Fnet = m~a.”

Wrong answers:

Redaction: Jeffery, 2001jan01

005 qmult 00534 1 5 1 easy memory: Newton’s 2nd law class mantra 1
9. From here on in this course, a key thing to remember (to recite to yourself) when faced with any force

problem is that Newton’s 2nd law (~Fnet = m~a) is:

a) ALWAYS VALID. And it is a VECTOR equation, and so is always VALID component by

component. And ~Fnet is the VECTOR sum of all forces acting on the body of mass m. It is not
any particular force. If all the forces sum to zero vectorially, ~Fnet = m~a = 0. If you are given the
acceleration, then you can often use ~Fnet = m~a to solve for an unknown force.

b) ALWAYS VALID. And it is a SCALAR equation. And ~Fnet is the SCALAR sum of all
forces acting on the body of mass m. It is not any particular force. If all the forces sum to zero,



5

~Fnet = m~a = 0. If you are given the acceleration, then you can often use ~Fnet = m~a to solve for an
unknown force.

c) ONLY VALID when there is a NON-ZERO net force. Because the 2nd law is a VECTOR

equation, it is valid (when it is valid) component by component. And ~Fnet is the VECTOR sum
of all forces acting on the body of mass m. It is not any particular force. If you are given the
acceleration, then you can often use ~Fnet = m~a to solve for an unknown force.

d) ALWAYS INVALID.
d) NEVER VALID.

SUGGESTED ANSWER: (a) “All I ever learnt in physics was ~Fnet = m~a.”

Wrong answers:

b) Not scalar.
c) It is perfectly valid when ~a = 0.
d) Oh, c’mon.
e) Oh, c’mon, again.

Redaction: Jeffery, 2001jan01

005 qmult 00542 1 5 1 easy thinking: acceleration and third law
Extra keywords: also physci KB-59-15

10. If Newton’s 3rd law is true, why then does anything accelerate at all?

a) The equal and opposite forces DO NOT have to be on the same body.
b) The equal and opposite forces DO have to be on the same body.
c) Nothing moves at all as Parmenides argued in the 5th century BC. Motion is but seeming. Anyway

Parmenides seems to have been a pretty smart guy since he’s credited with the spherical Earth
theory and the discovery that the Moon shines by reflected light.

d) Acceleration has nothing do with forces.
e) Forces have nothing do with acceleration.

SUGGESTED ANSWER: (a) I’ve provided some leading answers.

Wrong answers:

b) Straight nonsense, since it leads to the opposite conclusion.
c) Parmenides was not really saying that nothing moves at all. He was just arguing from certain

premises which he did not necessarily affirm. Actually it is hard to quite know for sure about
the big P, since his own words only survive in fragments from his poem in which he lets
the unnamed goddess speak for him in oracular manner. Shortly after Parmenides, natural
philosophers gave up on poetry and the two have seldom overlapped since. Omar Khayyam (if
he really was a poet) and Chaucer (really more of popularizer of science than a practitioner)
are possible cases. See D. Furley, “The Greek Cosmologists”, p. 36 ff, esp. 41.

Redaction: Jeffery, 2001jan01

005 qmult 00540 1 4 5 easy deducto-memory: force laws needed
11. “Let’s play Jeopardy! For $100, the answer is: Laws that prescribe forces for physical systems. They

must exist independent of Newton’s 3 laws of motion in order for Newtonian physics to be useful.”

What are , Alex?

a) Newton’s 3 laws b) accelerations c) velocities d) force inequalities e) force laws

SUGGESTED ANSWER: (e)

Wrong answers:

a) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

005 qmult 00570 1 1 5 easy memory: newton defined
12. The base SI unit of force is the:

a) farad (F); 1 F = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.
b) henry (H); 1 H = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.
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c) watt (W); 1 W = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.
d) joule (J); 1 J = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.
e) newton (N); 1 N = 1 kg m/s2 ≈ 0.22481 lb ≈ 1/5 lb.

SUGGESTED ANSWER: (e) This definition of the newton relies on the exact nature of the
2nd law in the classical limit.

Wrong answers:

a) The unit of capacitance.
b) The unit of inductance.
c) The unit of power.
d) The unit of energy.

Redaction: Jeffery, 2008jan01

005 qmult 00710 2 3 5 moderate math: stopping a bike
Extra keywords: physci KB-60-21

13. A bicycle-rider system has a mass of 80 kg. The bike is traveling on level and has initial velocity 6 m/s
north. What is the constant force needed to stop the bike in 4 s?

a) 80 N south. b) 80 N north. c) 80 N east. d) 100 N south. e) 120 N south.

SUGGESTED ANSWER: (e)

The acceleration to stop the bike is

a =
v − v0

t
,

where v = 0 is the final velocity, v0 = 6 m/s is the initial velocity, t = 4 s is the stopping time, and
I’ve chosen north at the positive direction. Thus the constant stopping force is thus

F = ma = m

(

v − v0

t

)

= 80 × (−1.5) = −120 N .

South is the negative direction and thus the stopping force is 120 N south.

Wrong answers:

c) East. Are you trying to tip the bike.

Redaction: Jeffery, 2001jan01

005 qmult 00900 1 1 1 easy memory: force law for gravity
14. The magnitude of the gravitational force on an object of mass m for a uniform gravitational field (such

as the gravitational field near the Earth’s surface for human-size and somewhat larger objects) is given
by the formula:

a) F = mg. b) F = m/g. c) F = g/m. d) F = ma. e) F = m/a.

SUGGESTED ANSWER: (a)

Wrong answers:

d) Oh, c’mon.

Redaction: Jeffery, 2008jan01

005 qmult 00910 1 1 4 easy memory: solving mg=ma equation of motion
15. Newton’s 2nd law applied to the vertical direction with only the gravity force acting and down defined

as positive leads to the scalar equation of motion:

a) g = m/a. b) g = ma. c) mg = a. d) mg = ma. e) m/g = m/a.

SUGGESTED ANSWER: (d)

Wrong answers:

e) A nonsense answer.
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Redaction: Jeffery, 2008jan01

005 qmult 00920 1 3 3 easy math: person’s weight
Extra keywords: physci

16. If you have a mass of 60 kg and g = 9.8 m/s2, you weigh about:

a) 10 N. b) 60 N. c) 600 N. d) 500 N. e) 20 N.

SUGGESTED ANSWER: (c)

Actually you need to remember the gravitational force is the cause of weight. In this case,

F = mg = 60 × 9.8 ≈ 600 N .

Wrong answers:

Redaction: Jeffery, 2001jan01

005 qmult 00930 2 5 2 easy math: gravity field force and contact forces
17. The force of gravity reaches out across space and pulls on each bit of your body independently of every

other bit. We call a force like this a FIELD FORCE or a BODY FORCE. Why don’t you accelerate
downward, except when off the ground.

a) The GROUND FORCE reaches out across space and pushes upward on each bit of your body
independently of every other bit. The ground force is also a FIELD FORCE.

b) The ground exerts a force on the soles of your feet and the soles of your feet on the next layer
of your body and the next layer of your body on the next layer of your body and so on until the
top of your head. Each layer pushes up with only enough force to balance the gravity force on the
mass above. The ground force and the forces exerted by the layers of our bodies are CONTACT

FORCES. A CONTACT FORCE acts over a very short range: so short that if the distance
between the two objects exerting equal and opposite contact forces on each other is more than
microscopic there is no contact force at all.

c) Since you are always off the ground, the question has no answer.
d) Since you are always off the ground, the question is hypothetical and the answer, speculative.
e) In orbit, you don’t accelerate downward and you are certainly off the ground. So being on the

ground may have nothing to do with why you don’t accelerate downward.

SUGGESTED ANSWER: (b)

Actually, the students should get the answer easily by deduction, but it takes clear thinking
and maybe a bit more physics than has been yet taught to see why answer (b) is right.

Wrong answers:

a) Why should the ground exert a force on the top of your head or elsewhere only when your feet
touch the ground. Well whether it could or not, it doesn’t.

c) We’re not always off the ground and even if we were, other things are on the ground and the
question could be answered for those other things.

d) We’re not always off the ground and even if we were then other things are on the ground and
the question isn’t hypothetical and the answer isn’t speculative for them.

e) In orbit you are in free fall. You are accelerating downward toward the Earth’s center. You
just keep missing the Earth. Also this doesn’t seem to answer the question.

Redaction: Jeffery, 2001jan01

005 qmult 00940 1 4 4 easy deducto-memory: mass and weight
Extra keywords: physci KB-13

18. “Let’s play Jeopardy! For $100, the answer is: they are, respectively, the resistance of a body to
acceleration and the magnitude of the force of gravity on a body.”

What are and , Alex?

a) acceleration; normal force b) mass; normal force c) force; weight d) mass; weight
e) gravity; momentum
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SUGGESTED ANSWER: (d)

Wrong answers:

b) The normal force can be equal to weight if the normal force cancels gravity as it frequently
does.

Redaction: Jeffery, 2001jan01

005 qmult 00950 2 5 4 moderate thinking: diving woman and gravity
Extra keywords: physci KB-60-27

19. What is the approximate mass of a woman who weighs 500 N? What is gravitational force that Earth
exerts on her. After she jumps UPWARD from a diving board, what is her acceleration in the absence
of air drag?

a) About 50 kg, 500 N, and 9.8 m/s2 downward once she starts moving downward, but ZERO before
that.

b) About 50 kg, 50 N, and 9.8 m/s2 downward once she starts moving downward, but ZERO before
that.

c) About 50 kg, 50 N, and 9.8 m/s2 downward at ALL times.
d) About 50 kg, 500 N, and 9.8 m/s2 downward at ALL times.
e) None of these questions can be answered with the given information.

SUGGESTED ANSWER: (d)

Remember that weight near the Earth’s surface is mg where m is mass and g = 9.8 m/s2 is the
acceleration due to gravity constant. Now 500 N obviously describes the woman’s weight: thus her
mass is this value divide by about 10. Her weight is the gravitational force that Earth exerts on
her. Once she’s left the board the only force on her is gravity and she must accelerate downward
at 9.8 m/s2 no matter what direction she is moving in.

Wrong answers:

e) As Lurch would say: “Aaarh.”

Redaction: Jeffery, 2001jan01

005 qmult 01000 2 1 1 moderate memory: normal force
20. The normal force is:

a) a repulsive contact force exerted by a surface that points perpendicularly outward from that surface.
The force turns out to resist compression. In principle, the force can be calculated from the
compressional displacement of the surface from equilibrium, but in elementary problems one usually
calculates it from Newton’s 2nd or 3rd law assuming the surface to be completely rigid.

b) ~Fnet in ~Fnet = m~a.
c) the tension force in a rope.
d) the tension force in a rope that allows you to push on a rope.
e) an ordinary, run-of-the-mill force, a pedestrian force, a force without pretensions or airs, a downright

force, a regular-guy force, just a plain salt-of-the-earth force.

SUGGESTED ANSWER: (a)

I say moderate problem because normal force is not an ordinary day expression and even
physicists (like me) can go for long periods of time without remembering the term though we
remember the thing.

Wrong answers:

b) No Fnet is the net some of all forces on a body whatever they may be.
c) The tension force is the tension force and the normal force is the normal force. Of course,

at a deeper level both normal and tension forces are manifestations of the interatomic and
intermolecular electromagnetic force. They are both contact forces. Friction and pressure
forces are in the same boat.

d) Not the least of things that you first learn in physics is that you can’t push on rope.
e) Well it is sort of ubiquitous and all-around useful and unspectacular usually, but this is not

the best answer in context.
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Redaction: Jeffery, 2001jan01

005 qmult 01040 3 5 2 tough thinking: dynamics and kinematics on slope 1
21. An object of mass m is on a rigid, frictionless slope of angle θ from the horizontal. What is the

magnitude of normal force on the object? What is the component of the gravitational force in the
positive x direction which is down the slope? What is the expression for the position x of the object as
a function of time t when it starts from rest at t = 0 and x = 0?

a) mg cos θ; mg cos θ; x = (1/2)(g cos θ)t2. b) mg cos θ; mg sin θ; x = (1/2)(g sin θ)t2.
c) mg sin θ; mg sin θ; x = (1/2)(g sin θ)t2. d) mg sin θ; mg sin θ; x = (1/2)(g cos θ)t2.
e) mg sin θ; mg sin θ; x = (g cos θ)t.

SUGGESTED ANSWER: (b)

The normal force must be calculated from the gravitational force from Newton’s 2nd law. The
y-component of gravitational force is −mg cos θ from geometry taking the y-direction as outward
normal to the slope. Since there is no acceleration in the y-direction because of the rigidity of
the slope, the normal force must be mg cos θ outward normal to the slope. From geometry, the
x-component of the gravitational force is mg sin θ (which is down the slope since it is positive).
From the second kinematic equation

x =
1

2
at2 + v0t + x0 ,

one finds

x =

(

1

2

)

g(sin θ)t2

in the present case.

Wrong answers:

e) There has to be a t2 for constant acceleration.

Redaction: Jeffery, 2008jan01

005 qmult 01070 1 1 1 mod. thinking: reaction forces of a book
Extra keywords: physci

22. A book sits at rest on a table. The reaction force that follows from Newton’s 3rd law to the gravitational
force of the Earth on the book is the:

a) gravitational force of the book on the Earth.
b) normal (i.e., perpendicular upward) force of the table on the book.
c) table friction force on the book.
d) book friction force on the table.
e) book normal force on the table.

SUGGESTED ANSWER: (a)

This question actually raises an issue that can easily get all snarled up. In order to calculate
the acceleration of body, one finds all the forces on the body and does not concern oneself with the
forces the body itself exerts which are going to be the reaction forces to the forces applied on the
body from the body’s perspective.

Thus the table normal force acts on the book and Earth’s gravity acts on the book. The
respective reaction forces are the normal force of the book on the Earth and the book’s gravitational
force on the Earth. Note the normal force on the Earth is a contact force that acts directly on the
table and causes all kinds of internal table and ground pressure force adjustments.

The book’s gravitational force is the vector sum of the book’s graviational force on every bit
of the Earth. The overall response of the Earth to the book’s gravity is pretty minute because of
the Earth’s huge inertial mass. In fact, it is vastly below detection.

What must the nature of the reaction force be to a force? Though this is not explicit in the
short version of the 3rd law, the applied and reaction force must have the same fundamental nature.
The reaction force to a gravity force must be a gravity force and the reaction to an electromagnetic
force must be an electromagnetic force.
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The situation with the electromagnetic force is actually rather complex. For one thing, the
electromagnetic force comes in many different manifestations. For another thing, at the macroscopic
level, the force and reaction force can be different manifestations: e.g., the elastic force of a solid
can be the reaction force to air pressure force. For third thing, the sum of the electric and magnetic
force on a particle is inertial frame invariant, but the electric and magnetic forces are individually
not inertial frame invariant. For a fourth thing, the 3rd law is not obeyed in all cases by the
magnetic force manifestation of the electromagnetic force.

Fortunately, in simple macroscopic cases, the force and reaction forces can usually be identified
without difficulty.

What of the those two other forces: the strong nuclear and weak nuclear forces? They are
outside of the classical realm, and so intro physics we don’t need to worry about them. There
is probably some conservation law that stands in place of the 3rd law that applies to them and
identifies reaction forces—but yours truly is actually ignorant on this point.

Wrong answers:

b) The reaction force must be force the book exerts.

Redaction: Jeffery, 2001jan01

005 qmult 01080 2 5 1 moderate thinking: elevator acceleration of woman
Extra keywords: physci KB-61-31

23. A woman who has a mass of 50 kg is in an elevator that is accelerating downward at 2 m/s2. What is
the force the floor exerts on her? What is the force she exerts on the floor?

a) 390 N upward; 390 N downward. b) 390 N downward; 390 N upward.
c) 490 N downward; 490 N upward. d) 490 N upward; 490 N downward.
e) 100 N upward; 100 N downward.

SUGGESTED ANSWER: (a)

The proper way to formulate this problem is to apply Newton’s 2nd law to the woman:

Fg + Fnormal = −mg + Fnormal = ma ,

and now solve for Fnormal:

Fnormal = m(a + g) = 50 × (−2 + 9.8) = 390 N .

The normal force is the force the floor exerts on the woman: it is 390 N upward. By the 3rd law,
the woman exerts 390 N downward on the floor.

Wrong answers:

e) All things are wrong.

Redaction: Jeffery, 2001jan01

005 qmult 01100 1 1 1 easy memory: tension defined
24. Tension is the magnitude of the force in an object that resists:

a) extension. b) compression.
c) shearing (i.e., the deformation of the object without change in volume).
d) creaking (i.e., the deformation of the object with noise). e) concession.

SUGGESTED ANSWER: (a)

Wrong answers:

b) The pressure does this.
c) The stress force does this.
d) Nothing resists creaking.

Redaction: Jeffery, 2008jan01

005 qmult 01110 1 4 4 easy deducto-memory: ideal rope
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25. “Let’s play Jeopardy! For $100, the answer is: It has zero thickness and only resists extension along its
length. In fact, resists extension completely. Usually, but not always, it is assumed to have zero mass
and be unbreakable”

What is a/an , Alex?

a) ideal monkey b) ideal rigid rod c) ideal surface d) ideal rope e) real rope

SUGGESTED ANSWER: (d)

Wrong answers:

b) An ideal rigid rod is rigid and can’t bent unlike an ideal rope.

Redaction: Jeffery, 2008jan01

005 qmult 01120 1 1 2 easy memory: ideal rope results 1
26. The normal force magnitude per unit length exerted by the curved surface on an at any

general point s is

fnor =
T

r
,

where s is measured from the start of the , T is the tension at point s r is the radius of
curvature at s, and the normal force per unit length points radially outward from the center of curvature.
The center of curvature is the center of a circle that approximates the curve at s to first order. The
normal force per unit length exerted by the rope on the curved surface is equal in magnitude to fnor,
but points radially inward by the 3rd law.

a) ideal rigid rod b) ideal rope c) unreal rigid rod d) uaenrl riigd rod e) ideal door

SUGGESTED ANSWER: (b)

Wrong answers:

d) Asmlot any wrod can be rgceenzoid if you romanldy srcbmale the lteters, epcext for the frist
and lsat ltteres.

Redaction: Jeffery, 2008jan01

005 qmult 01130 1 1 2 easy memory: ideal rope with constant tension
27. A taut ideal, massless rope should have tension (i.e., constant magnitude of tension

force) between two endpoints provided no external forces parallel to the rope act on it BETWEEN

the endpoints: there will in general be external applied forces to hold it taut at the endpoints. The rope
does not have to be straight. It can be wrapped around constraints as long as their surfaces exert no
parallel forces on it.

a) wildly varying b) constant c) complexly varying d) zero e) 9.8 N/kg

SUGGESTED ANSWER: (b)

The tension along the ideal rope can only be changed by external parallel forces. By external
we mean not internal to the rope. By parallel we mean the forces act parallel to the rope. Forces
that act normal to the rope will change its shape, but not its tension.

What the tension is in this idealized case is is one of those obvious questions that textbooks
habitually evade. The analysis of the tension in an ideal rope is given in an appendix in Newtonian

Physics I, and yes my argument is correct. The case of this problem is a special case that follows
from a more general result.

But here perhaps we can give an argument that illustrates that the tension be constant if no
parallel forces act.

Wrap and ideal rope around a frictionless wheel once. The rope leaves the surface of the wheel
at one point ideal. One branch going straigh off one way and the other branch straight off the other
way. The rope is held taut by external applied forces equal in magnitude and opposite in direction,
and the whole system is static. By symmetry, there can be no variation in tension going around
the wheel. By symmetry, there can be no tension variation in the straight segments. Can there be
any variation in tension at the point where the rope leases the wheel? I think the answer can only
be no. The internal tension forces just at that point inside the rope must be equal and opposite
by the 3rd law and to prevent any acceleration. So the tension must be constant throughout the
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rope. This argument is for a special case, but there seems no reason why it constant tension in
the absence of external parallel forces should not be general. The mathematical analysis in the
appendix in Newtonian Physics I confirms the conclusions—correctly I think.

Wrong answers:

c) I don’t think so.
d) It’s true that the tension could be zero if the applied external forces are zero and the rope is

just taut by being put that way as an initial condition. But “zero” is not a right answer since
is not right for the general case given by the statement. The answer must be true for all cases
included in the statement.

Redaction: Jeffery, 2008jan01

005 qmult 01150 1 3 4 easy math: example tension fore of a rope
28. A MOTIONLESS mass of 10 kg is suspended from a rope. What is the tension force that the rope

exerts on the mass?

a) 100 N downward. b) 200 N downward. c) 200 N upward. d) 100 N upward.
e) 200 N horizontally.

SUGGESTED ANSWER: (d)

Well one has to remember about tension. And to be motionless gravity has to be balanced by
tension.

Wrong answers:

Redaction: Jeffery, 2001jan01

005 qmult 01170 1 1 2 easy memory: no motion implies net force zero
29. A MOTIONLESS mass of 10 kg is suspended from a rope. What is the NET force on the mass? It

is:

a) about 100 N downward. b) 0 N. c) about 200 N upward. d) about 100 N upward.
e) about 200 N horizontally.

SUGGESTED ANSWER: (b)

Motionless is means no acceleration, which means no net force.

Wrong answers:

Redaction: Jeffery, 2001jan01

005 qmult 01410 1 1 1 easy memory: elevator acceleration, non-inertial frame
30. An elevator just starts moving upward.

a) You feel slightly heavy for a moment.
b) You feel slightly light for a moment.
c) You feel slightly light and carefree for a moment.
d) You feel totally carefree and ethereal.
e) You come to understand that there are no forces in foxholes.

SUGGESTED ANSWER: (a)

This is actually a profound observation. When you are in an accelerated frame with acceleration
~aframe, it is exactly as if you were in a frame with a gravitational field with gravitational force per
unit mass or gravitational field −~aframe. We can see how this comes about. Recall (as if you could
ever forget)

~Fnet = m~a .

Now say you are in accelerating frame with acceleration ~aframe. We can now summandize any
acceleration ~a into two parts:

~a = ~arelative + ~aframe ,

where ~arelative is the acceleration relative to the frame. There is nothing mysterious about ~arelative:
it is just what you measure if you use the accelerated frame as your frame of reference.
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Now we can write
~Fnet − m~aframe = m~arelative .

For all motions relative to the frame it is exactly as if there were a new mass proportional force
given by −m~aframe. We call this effective force −m~aframe an inertial force.

Now you may wonder how a mysterious inertial force caused by being in an accelerated non-
inertial frame actually works. Does the frame reach out and push/pull on objects? Well no. Say
you are making measurements with respect to an accelerated frame, but you arn’t moving with the
frame: you are unaccelerated. Well you don’t feel a mysterious force, but relative to that frame you
are accelerated with acceleration −~aframe. This is exactly like being in free-fall in a gravitational
field. Gravity reaches out an pulls you atom by atom, and so if you don’t fight it, you just accelerate
atom by atom with gravity and feel no internal stress: i.e., you feel weightless. To fight gravity you
must use internal contact forces to support all the parts of your body: every little bit of mass ∆m,
requires a contact force of magnitude ∆mg opposite to gravity to support it against gravity and
keep you unaccelerated. In an accelerated frame to keep up with the frame, internal contact forces
in your body have to supply a force of magnitude ∆maframe in the direction of acceleration. This
is exactly the same as in resisting a gravitational force of magnitude ∆maframe pointing opposite
to the direction of acceleration. Thus the inertial force like gravity is a field force: it only gives rise
to internal stresses if you resist it.

One can in fact in accelerated frame define an effective gravitational field:

~Fg eff = m(gĝ − ~aframe) ,

where ĝ is the direction of the real gravitational field. With reference to the accelerated frame, it
is exactly as if gravity were ~Fg eff . Any experiment that you do, mechanical or electromagnetic,
cannot distinguish gravity from an inertial force. This observation was one of the things that led
Einstein to general relativity. He noted that in an upward accelerating elevator, a light beam should
bend down. If the inertial force and gravity were really indistinguishable, gravity must cause light
beams to bend too. And indeed gravity does this: e.g., light beams from distant stars that pass
near the Sun are noticeably deflected as was first shown during eclipse observations in 1919. In
Einstein’s general relativity (GR), gravity is like an inertial force: i.e., a force which disappears if
you view the system from the correct reference frame: in GR that frame is distorted space-time
caused by mass.

As an example of effective gravity consider a rocket launching vertically with acceleration
aframe. The effective gravity is

Fg eff = m(g + aframe) .

If the acceleration of the rocket equals g, then the effective g-force is 2g per unit mass. If the
acceleration is 9g, then the effective g-force is 10g per unit mass. If the acceleration is −g, then the
effective g-force is 0 per unit mass: i.e., you are in free-fall which is not a good thing on launch.

Wrong answers:

b) That’s when the elevator stops moving up.
c) Well maybe, but its not the normal reaction.
d) What are you on man?
e) This is the punchline for the joke I’m still trying to think of.

Redaction: Jeffery, 2001jan01

005 qfull 00950 2 3 0 moderate math: rocket pod descent on Callisto
Extra keywords: David Bowman and 2001: A Space Odyssey

31. As this is (or was within living memory) 2001, let’s say you are David Bowman and you’ve just arrived
at Jupiter. Before going off to investigate that monolith (and go beyond humankind), you decide on
a little excursion to Callisto, one of Jupiter’s 4 major moons. Assume you are so close to Callisto’s
surface throughout the maneuvers of this question the gravitational field gCal can be approximated as
a constant.

a) As your landing pod descends straight down to the Callisto surface and when your are relatively
close to touchdown, your rocket thrust is 3260 N and your descent velocity is CONSTANT. What
is the gravitational force on your pod? Take the upward direction as the positive direction.
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b) Say you reduce thrust to 2200 N and find that the pod has a downward acceleration of 0.39 m/s2.
What is the mass of your pod including yourself?

c) What’s the free-fall acceleration magnitude due to gravity near the Callisto surface (i.e., gCal, the
analog to g for gravity near Earth’s surface)? The free-fall acceleration acceleration magnitude is
also the gravitational field magnitude.

d) Say you have a mass of 70 kg. What’s your WEIGHT on Callisto and what is your Callisto weight
divided by your Earth weight (i.e., what is the weight RATIO)?

e) Now the hard part. After finishing your excursion on the icy surface, you launch and go into uniform
circular motion, low-Callisto orbit. The gravitational acceleration is approximately the same as the
surface gravitational acceleration and the radius of the orbit is approximately just Callisto’s radius
of 2400 km. Calculate the orbital speed. Then find the orbital period (i.e., the time to orbit once)

in seconds and in hours. HINT: Remember centripetal acceleration and ~Fnet = m~a.

SUGGESTED ANSWER:

a) Well ~F = ma is always true and its always true component by component. If there is no
acceleration, then the force of gravity must cancel the rocket thrust. Thus the gravitational
force is

Fg = −mg = −Fth,a = −3260 N

and the direction is downward to the center of Callisto, of course.

b) Well ~F = ma is always . . . , and so

ma = Fth,b − mg

and

m =
Fth,b − mg

a
=

Fth,b − Fth,a

a
=

−1060

−0.39
= 2720 kg .

c) Using parts (a) and (b),

gCal =
|Fg|
m

=
Fth,a

m
= 1.2 m/s2 .

The actual equatorial value is 1.235 m/s2 (Wikipedia: Callisto (moon)).

d) Using part (c),
WBow,Cal = mBowgCal = 84 N .

The weight ratio is given by

WBow,Cal

WBow,Earth
=

mBowgCal

mBowg
=

gCal

g
≈ 1.2

10
= 0.12 .

e) Well the magnitude of centripetal acceleration for uniform circular motion is

acen =
v2

r
.

The only force causing this acceleration is gravity. Thus

Fg = mgCal = macen = m
v2

r
.

The orbital speed is then
v =

√
gCalr = 1700 m/s

and the orbital period P is

P =
2πr

v
= 2π

√

r

gCal
= 8900 s = 2.5 h .
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Fortran Code
print*

fa=3260.

fb=2200.

aa=-0.39

xmpod=(fb-fa)/aa

gg=fa/xmpod

xmbowman=70.*gg

ratio=gg/9.8

print*,’xmpod,gg,xmbowman,ratio’

print*,xmpod,gg,xmbowman,ratio

* 2717.94873 1.19943392 83.9603729 0.122391216

rcal=2400.e+3

vv=sqrt(gg*rcal)

pp=2.*pi*sqrt(rcal/gg)

print*,’vv,pp,pp/3600.’

print*,vv,pp,pp/3600.

* 1696.65601 8887.8623 2.46885061

Redaction: Jeffery, 2001jan01

005 qfull 01010 1 3 0 easy math: frictionless incline
32. There is a 2 kg block on a frictionless incline that is at θ = 30◦ from the horizontal.

a) What is the normal force on the block? HINTS: Draw a free body diagram and remember the

class mantra: “ ~Fnet = m~a is always true and it’s true component by component”.

b) What is the net force down the slope?

c) What is the acceleration down the slope?

d) Starting from rest how far does the block slide in 10 s?

SUGGESTED ANSWER:

a) You will have to imagine the diagram. Remember we have no intrinsic formula for the normal
force in this course. There can be no such formula for ideal perfectly rigid wall actually. Thus,
we must always solve for the normal force from Newton’s 2nd or 3rd laws. In this, we are not
told a force applied to the incline, and so the 3rd law cannot be used to find the normal force
on the block. We must use the 2nd law to find the normal force needed to prevent the block
from accelerating perpendicularly to the slope and straight into the incline. Since we assume a
perfectly rigid incline (this is implicit in the question), there is no acceleration perpendicular to
the incline. We will take the positive y-axis outward perpendicularly to the slope. By geometry
this axis is θ to the vertical. Then from the 2nd law applied to the y-axis with ay = 0, we find

0 = FN − mg cos θ

or

FN = mg cos θ = 17.0 N .

Since the normal force is not negative, our assumption of zero acceleration is consistent and
everything is cool.

b) We take down the slope to be the positive x-direction. The only force component in this
direction is due to gravity. Thus from Newton’s 2nd law applied in the x-direction, we find

Fx = mg sin θ = 9.8 N .

c) Well

ax =
Fx

m
= 4.9 m/s2 .
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d) Behold:

x =
1

2
at2 = 245 m .

Fortran Code
print*

pi=acos(-1.)

raddeg=180./pi

gg=9.8

theta=30.

xmass=2.

fn=xmass*gg*cos(theta/raddeg)

fd=xmass*gg*sin(theta/raddeg)

aa=gg*sin(theta/raddeg)

dist=.5*aa*10.**2

print*,’fn,fd,aa,dist’

print*,fn,fd,aa,dist

* 16.9740982 9.80000019 4.9000001 245.

Redaction: Jeffery, 2001jan01

005 qfull 01020 1 5 0 easy thinking: incline plane ad infinitum
33. Physics students frequently flub analyzing forces and accelerations on an inclined plane. Let’s get it

straight.

a) A Cairn terrier named Bit has dog-rolled to a point on an inclined plane. The plane has an angle
from the horizontal of θ. Bit’s mass is m. What is the component of gravitational force on Bit
parallel to the inclined plane? What is the normal force on Bit? HINT: Draw a diagram.

b) Fun-loving pig Waldo Pepper (mass m) is sliding down a frictionless incline (with angle θ form
the horizontal). What is his acceleration? What is the normal force on Waldo? HINT: Draw a
diagram.

c) Underdog has just alighted on an inclined plane from which the Wonder Woofer surveys the world
with a flint-hard gaze. The inclined plane has an angle of θ from the horizontal. What is the
gravitational force component parallel to the inclined plane on the Caring Canine (mass m)? What
is the normal force on the Magnificent Mutt? HINT: Draw a diagram.

d) A 1992 GM Geo Metro (mass m) is sliding down a frictionless incline (with angle θ form the
horizontal) which is sort of like a hill in Moscow, Idaho in January. What is Baby’s acceleration?
What is the normal force on Baby? HINT: Draw a diagram.

SUGGESTED ANSWER:

a) You’ll have to imagine the diagram. The component of the gravitational force parallel to the
plane is mg sin θ down the plane. The normal force is mg cos θ normal to the incline plane.

A Cairn terrier is a Toto dog. Ah, they’re cute little doggies.

b) Waldo’s acceleration is a = g sin θ down the incline. The normal force is mg cos θ normal to
the incline plane.

c) The component of the gravitational force parallel to the plane is mg sin θ down the plane. The
normal force is mg cos θ normal to the incline plane.

d) Baby’s acceleration is a = g sin θ down the incline. The normal force is mg cos θ normal to the
incline plane.

Redaction: Jeffery, 2008jan01

005 qfull 01130 2 5 0 moderate thinking: block and 3rd law
34. You have block just sitting on horizontal flat ground. HINT: This is a problem for rumination—or

perhaps ruminants.

a) Draw a free body diagram for the block. Indicate all the forces acting on the block. What is the
cause of these forces and are they contact or field forces?
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b) Now by the 3rd law, what forces does the block exert and on what and where exactly does it exert
them?

SUGGESTED ANSWER:

a) The forces on the block are the normal force upward and gravity downward. The normal force
is a contact force exerted by the immediate ground surface on the block. Gravity is a field
force and it is the vector sum of all the gravitational forces exerted by every bit of the Earth
on the block.

b) The block exerts a normal force on the ground surface downward equal and opposite to the
normal force the ground surface exerts upward. This force is a contact force. The block exerts
a gravitational force on every bit of the Earth: the vector sum of these forces is equal and
opposite to the force that gravity exerts on the block. Now the Earth doesn’t notice this
gravitational force much. It’s mass is so big that a force of this size would give only a minute
acceleration if acting alone. In fact, there are many other much larger perturbing forces. If
the block disappeared, the Earth wouldn’t blink.

Redaction: Jeffery, 2001jan01

005 qfull 01110 2 3 0 moderate math: fuzzy dice at angle
35. You are in a car accelerating at a constant 10 m/s2 in a constant direction. The car is on level ground.

A pair of fuzzy dice is hanging by a cord from the mirror at an angle θ from the vertical. The dice
cord is a (massless) ideal rope. Assuming the dice are a point mass, what is this angle? HINT: Draw

a free body diagram for the dice. Remember the class mantra: “~Fnet = m~a is always true and it’s true
component by component”.

SUGGESTED ANSWER:

I omit the diagram.
Note the fuzzy dice, like the car, must be accelerating in the x-direction and at the car’s rate

of acceleration. They are constrained to do so.
Since the cord is massless ideal rope only two forces act on it. The dice tension force at one

end and the mirror holder tension force at the other end. Gravity can’t act on the cord since it
is massless. Because the only forces on the cord are at the endpoints the cord must be follow a
straight line and tension force it exerts on the dice must be aligned with the cord. The tension
must be a constant in the cord since no parallel forces act on it except at the endpoints.

We have the two following equations for the dice from ~F = m~a using a horizontal-vertical set
of coordinate axes:

max = T sin θ and 0 = T cos θ − mg ,

where m is the dice mass, T is the cord tension, and θ is the angle from the vertical.
Although solving a problem symbolically is best, I usually set to zero immediately quantities

that are zero: this saves me from tedious generality.
In this case, we don’t know m, T , or θ. So we have 3 unknowns in only 2 equations, and so

in general can’t solve for all the unknowns. But that is in general. Sometimes in particular cases
partial solutions can be extracted. In this case, we can divide

max = T sin θ by mg = T cos θ

to get
ax

g
= tan θ ,

and thus

θ = tan−1

(

ax

g

)

≈ tan−1

(

10

10

)

= 45◦ .

Remarkably, the angle doesn’t depend on the mass. Fuzzy dice or an elephant, it’s all the
same. The cord tension does depend on the mass, of course. In fact, measuring the angle of a
hanging object is a way of measuring acceleration:

ax = g tan θ .
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We have no way to solve for m and T with the information given.

We can solve the problem in a slightly different way. The tension force added vectorially to the
gravitational force must give the net force which is the cause of the acceleration. From the diagram
of these forces, it is clear that

tan θ =
max

mg
=

ax
,

and thus again one has

θ = tan−1

(

ax

g

)

again. Since the rope must point in the direction of the tension force, this is the angle that the
rope hangs at.

Some students wonder if you can just take the ratio of the “accelerations” meaning a and g
to get θ. Well you get the right answer, but g is not an acceleration in this problem: there is no
acceleration in the vertical direction. The g just enters as parameter in the gravitational force law.
You get the right answer because mass cancels out in this particular problem. As long as that is
understood, the solution is valid.

Redaction: Jeffery, 2001jan01

005 qfull 01140 2 3 0 moderate math: double incline with two blocks

36. You have a frictionless triangular block which gives you two inclines: i.e., double incline. Incline 1 is
at θ1 to the horizontal and incline 2 at θ2. You have an ideal massless pulley (or altneratively and
equivalently, a friction-free bend) at the apex and a taut ideal rope connecting two blocks, one on each
slope. The rope is parallel to each incline. The incline 1 block has mass m1 and the incline 2, mass m2.
The masses of the blocks and the incline angles are the formal knowns of the problem.

a) Write down Newton’s 2nd law for each block for the direction along the inclines. Take up as positive
for incline 1 and down as positive for incline 2. HINT: Draw two free body diagrams on a diagram
of the double incline.

b) Derive the formula for acceleration of the two blocks along their respective inclines and the formula
for the tension in the rope?

c) Specialize the formulae from the part (b) answer for the case of θ1 = θ2 = π/2. This case is
Atwood’s machine.

d) Specialize the formulae from the part (b) answer for the case of θ1 = 0 and θ2 = π/2.

e) Specialize the formulae from the part (b) answer for the case of θ2 = π/2.

SUGGESTED ANSWER:

a) You will have to imagine the diagrams. One obtains the equations of motion

m1a1 = −m1g sin θ1 + T1 ,

m2a2 = m2g sin θ2 − T2 ,

where the a’s the accelerations and the T ’s the tension forces. Because the rope and pulley are
both ideal, it is clear that there is a common acceleration a = a1 = a2 and a common tension
T = T1 = T2.

b) Just adding the equations of motion and rearranging gives

a = g

(

m2 sin θ2 − m1 sin θ1

m2 + m1

)

.

Dividing each equation by the respective block mass and subtracting and rearranging gives

T = g

(

sin θ1 + sin θ2

1/m1 + 1/m2

)

= g

(

m1m2

m1 + m2

)

(sin θ1 + sin θ2) .
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c) Behold:

a = g

(

m2 − m1

m2 + m1

)

T = g

(

2m1m2

m1 + m2

)

.

d) Behold:

a = g

(

m2

m2 + m1

)

T = g

(

m1m2

m1 + m2

)

.

e) Behold:

a = g

(

m2 − m1 sin θ1

m2 + m1

)

,

T = g

(

m1m2

m1 + m2

)

(sin θ1 + 1) .

Redaction: Jeffery, 2001jan01

005 qfull 01150 3 3 0 tough math: monkey on a pulley
37. An ideal rope (i.e., massless, but it has friction so a monkey can grip it) hangs over ideal tree bough

(i.e., frictionless). The rope segments on both sides hang vertically. An ideal monkey of mass 5 kg (let’s
call her object 1) climbs up one side of the rope. A block of 10 kg (let’s call it object 2) sits on the
ground at least initially and is tied to the end of the opposite side of the rope.

How the monkey is supported and can be accelerated is a somewhat difficult to understand—but
they are everyday effects. She exerts a friction force on a rope segment that is equal and opposite to the
friction force of the rope segment on her needed to support her against gravity and accelerate her. The
rope segment isn’t moving at all, and so the monkey’s force on the segment and the tension force on
the rope segment must be equal and opposite. So the tension force of the rope on the rope segment is
equal to the friction force on the monkey. But that is all a bit complex. Let’s just take the monkey and
segment of rope she is holding as all part of one monkey system. So tension and gravity are the external
forces acting on the monkey system. You may wonder how the tension force can help accelerate the
monkey system if the rope segment doesn’t move when the monkey accelerates upward or downward.
Well it’s the center of mass of monkey system that is accelerated. We will get to the center-of-mass
concept sometime if not already. For the moment, just regard the monkey system as a particle to be
accelerated by tension and gravity. For simplicity, we will just say monkey rather than monkey system.

a) Draw free body diagrams for both monkey and block. Remember the only forces that appear are
those that act ON the object and they are drawn with their tails at the origin of the diagram.

b) Write down Newton’s 2nd law for the monkey (object 1) and the block ( object 1). Use symbols
ONLY. Masses and g are formally knowns. What the unkowns? Can they be solved for without
more information.

c) What is the relationship known before any calculation between the block’s acceleration and the
normal force on the block? If a solution for the normal force yields a negative number (i.e., the
normal force is required by the given values to be attractive), what does this mean?

d) If the monkey accelerates as she climbs, what must be her acceleration in order that the normal
force on block goes to zero, but the block stays motionless? NOTE: The zero normal force and
motionless block are conditions we are imposing.

e) Say that the monkey then starts accelerating downward at 3 m/s2. The block is initially at rest on
the ground. What is the tension in the rope? What is the normal force on the block? Does the
block stay at rest on the ground?
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f) Say that the monkey then starts accelerating upward at at 12 m/s2—she’s really rocketing. The
block is initially at rest on the ground. What is the tension in the rope? What is the normal force
on the block? Does the block stay at rest on the ground?

SUGGESTED ANSWER:

a) I leave the free body diagrams to your imagination. The monkey is acted on by only two
forces—gravity and tension; the block is acted on by three in general—gravity, tension, and
normal force.

b) Behold:

m1a1 = T − m1g ,

m2a2 = FN + T − m2g ,

where FN is the normal force and T is the tension. The tension is the same on both sides of
the rope since the frictionless bough exerts no parallel force on the rope as it goes over the
bough.

The unknowns are a1, a2 FN, and T . Since we only have two equations, we can solve only
for 2 unknowns in general. So no, we cannot solve for the unknowns without more information.

c) If the block’s acceleration is non-zero then the block must be in motion and not sitting on the
ground (except for an instant if it just starts accelerating upward). If the block is in motion,
the normal force must be zero since the normal force is a contact force and can only exist (for
any more than an instant which is not a realistic case), for the block sitting at rest on the
ground. If the acceleration is zero, the block can be motionless on the ground or in the air or
have a constant velocity in the air.

If the solution for the normal force is negative, then some inconsistent assumption has
been made since a real normal force can never become attractive. For example, an example of
zero acceleration may be wrong—it is not necessarily wrong.

d) Well our equations of motion special to

m1a1 = T − m1g ,

0 = T − m2g ,

where we have imposed the given conditions. Now solving for a1, we get

a1 =
T

m1
− g =

m2

m1
g − g =

(

m2

m1
− 1

)

g ≈ (2 − 1) × 10 = 10 m/s2

to about 2-digit accuracy.
Now your mind may slightly boggle—mine does—at how the hanging monkey can cause a

tension on the rope greater than the monkey’s weight and how the tension force can accelerate
the monkey without the rope moving. Well just consider a gravity-free case. For the monkey
to accelerate along the rope, the monkey exerts a force on the rope and the rope exerts an
equal and opposite force on the monkey: this force accelerates the monkey. The tension force
in the rope above the topmost monkey’s paw part must be equal and opposite to the force
the monkey exerts on the rope below its topmost paw—the monkey’s paw! Since the rope is
massless, the net force on the rope segment below the monkey’s paw must be zero no matter
what the acceleration of the rope. Actually, the rope isn’t accelerating at all in this case.

Our case is different from the gravity-free case in that there must be more tension force
to counter the monkey’s weight as well as the force to counter the force that accelerates the
monkey.

e) Let’s make the assumption that the block’s acceleration is zero. Now our equations of motion
specialize to

m1a1 = T − m1g ,

0 = FN + T − m2g .
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We have two unknowns FN and T . The solution is straightforward:

T = m1(a1 + g) ≈ 5 × (−3 + 10) = 35 N ,

FN = m2g − m1(a1 + g) ≈ 10 × 10 − 5 × (−3 + 10) = 65 N

to about 2-digit accuracy.
Since the normal force is positive (i.e., repulsive), our assumption of zero acceleration for

the block is consistent and our solution is correct. The block stays on the ground.

f) We can recycle the solution from the part (e) answer again with the assumption of zero
acceleration for the block:

T = m1(a1 + g) ≈ 5 × (12 + 10) = 110 N ,

FN = m2g − m1(a1 + g) ≈ 10 × 10 − 5 × (12 + 10) = −10 N

to about 2-digit accuracy.
Well our assumption of zero acceleration for the block is wrong since it gives an attractive

normal force which can’t happen really. So we make the alternative assumption that block is
off the ground and accelerating and the normal force is zero. Now our equations of motion
specialize to

m1a1 = T − m1g ,

m2a2 = T − m2g

and the solutions for the unknowns are

T = m1(a1 + g) ≈ 5 × (12 + 10) = 110 N ,

a2 =
m1

m2
(a1 + g) − g ≈ 11 − 10 = 1 N

to about 2-digit accuracy for T and 1-digit accuracy for a2.
So in this case, the block must accelerate upward and leave the ground after time zero.
Note that rope is now accelerating itself with the same acceleration as the block. But this

doesn’t affect the monkey’s acceleration in this problem since we gave that as a given. The
monkey’s acceleration relative to the rope is

a1,rel = a1 − (−a2) = 13 m/s2 .

Note the rope acceleration is upward on the block’s side of the bough, but downward on
the rope’s side and we have taken that into account in calculating the monkey’s relative
acceleration.

Redaction: Jeffery, 2001jan01

005 qfull 01160 3 5 0 tough thinking: massive rope and block system
38. You have a uniform-density rectangular block of mass mb on a frictionless, horizontal surface. You are

pulling it along with a uniform-density rope of mass mr. the total mass of the block-rope system is
m = mb + mr. Aside from its mass and weight the rope is ideal. The two ends of the rope are at the
same height which is well above the ground. The motion of the system is entirely 1-dimensional. This
is an entirely symbolical and thinking question until part (e).

a) Must the rope sag at least a little? Why or why not?

b) Assume any sag of the rope is negligible for the rest of this question and that the block-rope system
can be regarded as rigid and non-rotating. Given that there is force F in the positive x-direction
pulling on the rope and holding it taut and that no other external forces in the x-direction on the
block-rope system, what is the x-direction center-of-mass acceleration a of the block-rope system?
What is the acceleration of every bit of the block-rope system?

c) Say the positive x direction is to the right. Let mx be the total mass of the system to the left of point
x along the length of the block-rope system. What is the internal tension force at x accelerating
the mass mx as a function ONLY of F and the relevant masses?
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d) What are forces Fx at middle of the rope, the point of block-rope contact, and at the middle of the
block as functions ONLY of F and the relevant masses?

e) Given the masses mb = 5.0 kg and mr = 0.1 kg, and the acceleration of the system a = 2.0 m/s2,
what is F?

f) What is the block’s speed at 10 m from the starting point if it starts from rest?

SUGGESTED ANSWER:

a) Yes. The rope has mass and weight, and so there is a gravitational force on every bit of it
downward. A straight ideal rope can only exert a tension force parallel to the rope itself. Thus,
it cannot cancel its own weight, and so must be accelerating downward. In our case, the rope
must sag a little so that the tension forces on any bit of rope are not exactly parallel and thus
sum to have a component in the upward direction that cancels the weight of the bit.

b) Using Newton’s 2nd law we find the center-of-mass acceleration to be

a =
F

m
.

Since the block-rope system moves as a rigid, non-rotating body, this acceleration a is also the
acceleration of every bit of block-rope system.

c) Since every bit of the block-rope system is acceleratin a, so is the mass mx, and thus we have

Fx = mxa .

Therefore
Fx =

mx

m
F .

d) Making use of the part (c) answer, the forces Fx at middle of the rope, the point of block-rope
contact, and at the middle of the block are, respectively,

Fx =

[

mb + (1/2)mr

m

]

F , Fx =
(mb

m

)

F , Fx =

[

(1/2)mb

m

]

F .

e) Using Newton’s 2nd law, we find

F = (mb + mr)a = 10.2 N .

g) Using the appropriate kinematic equation (the timeless equation, in fact), we find

v =
√

v2
0 + 2a(x − x0) =

√
2.0 × 2.0 × 10. ≈ 6.3 m/s .

Redaction: Jeffery, 2001jan01

006 qfull 01210 2 3 0 moderate math: pig on slide: with and sans friction
Extra keywords: HRW-113-14p

39. A free-spirited pig (let’s call him Waldo Pepper) loves sliding down chutes (pronounced shoots).

a) Say there is a frictionless chute and Waldo accelerates down at 5.0 m/s2. What is the inclination
angle of the chute? HINT: Remember that free body diagram.

b) Now the evil magician of physics turns on kinetic friction and Waldo only accelerates down at
3.0 m/s2? What is the coefficient of kinetic friction? HINT: Update that free body diagram.

c) What’s Waldo’s mass? Explain your answer. HINT: The evil magician of physics is being spiteful.

SUGGESTED ANSWER:

Long ago in the 1970s, there was this Robert Redford film The Great Waldo Pepper in which
Redford played daredevil pilot Waldo Pepper. Our pig Waldo thinks of himself as a daredevil flier:
hence his name.
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a) Well in the incline direction ~F = m~a reduces to

ma = mg sin θ ,

and so

θ = sin−1

(

a

g

)

≈ 31◦ ,

to about 2-digit accuracy.

b) First we need the normal force. Remember that for a perfectly rigid surface, there is no intrinsic
formula for the normal force and we must find it by applying Newton’s 2nd or 3rd law. In this
case, we have to apply the 2nd law. We know that Waldo doesn’t accelerate in the normal
direction to the chute, and that leads to

FN = mg cos θ .

Applying the 2nd law to the direction down the incline gives

ma = mg sin θ − µkimg cos θ ,

and so solving for µki gives

µki =
g sin θ − a

g cos θ
= tan θ − a

g cos θ
≈ 0.24

to about 2-digit accuracy. Although the coefficient of kinetic friction can actually vary over a
large range (∼ 0.01–1.5: WP, p. 103), 0.3 is a typical value for many substances, and so our
result is typical.

c) Can’t tell: all the force formulae are mass proportional and mass cancels out of all solvable
2nd law expressions at our disposal. The solvable equations that one can deduce from F = ma
are all mass independant. A pig of any mass—say Waldo’s big brother Weirdo—would yield
the same inclination angle and kinetic friction coefficient as Waldo. I sort of think of Waldo as
a mature 150 kg: I’d stay away from chutes if I were him.

Fortran Code
print*

pi=acos(-1.)

raddeg=180./pi

a1=5.0

a2=3.0

gg=9.8

thetar=asin(a1/gg)

theta=thetar*raddeg

xmu=tan(thetar)-(a2/gg)/cos(thetar)

print*,’theta,xmu’

print*,theta,xmu

* 30.677423 0.237289493

Redaction: Jeffery, 2001jan01
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67428(67)× 10−11 Nm2/kg2 (2006, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V
ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy


