Cosmology & Galaxies NAME:
Homework 25: Early Type Galaxies (ETGs)

025 gqmult 00130 1 1 3 easy memory: virial mass range for ellipticals

1.

The range of virial mass (which is the fiducial total mass of galaxies determined in a tricky way) for
elliptical galaxes (e.g., dwarf ellipticals (dEs), ellipticals (Es), and bright cluster ellipticals (BCEs)) is

a) ~ 10°-105 M. b) ~ 105107 M. c) ~ 108-10** Mg, or more. d) ~ 105-10% M.
e) ~ 10°-10%° M.

SUGGESTED ANSWER: (c)

Wrong answers:
e) A bit extreme.

Redaction: Jeffery, 2008jan01

025 qmult 00230 1 1 2 easy memory: galaxy ellipticity for ellipticals

2.

More so than for disk galaxies, the shape and orientation of isophotes is dependent on projected radius
R (which could be the circularized radius) and position angle ¢ (measured counterclockwise from north
on the sky) and therefore there is an ellipticity profile e(R, ¢) (Ci-126-127). However, since a fiducial
or characteristic ellipticity is useful is the galaxy ellipticity (Ci—127) defined by:

a) €(Rq). b) e(Re). c) e(Rg). d) e(Ry). e) €(Ry).
SUGGESTED ANSWER: (b)

Wrong answers:
a) Ry is the disc scale length or e-folding radius for face-on spiral galaxy surface brightness (Ci-
55-56).
a) R¢? I've no idea.

Redaction: Jeffery, 2008jan01

025 qmult 00330 1 1 5 easy memory: ETG Sersic indices

3.

When a Sérsic profile is fitted to the CENTRAL surface brightness of ETGs, the Sérsic index range is
~ 2 to ~ 10. However, when a single Sérsic profile is fitted to a galaxy the dividing line between later
type galaxy Sérsic indices and ETG Sérsic indices is taken to be:

a)l.  b)1.25. c¢)13.  d)15  e) 25
SUGGESTED ANSWER: (e¢) What Ci-32 says seems inconsistent until you read it carefully.

Wrong answers:
a) As Lurch would say AAAArrgh. Redaction: Jeffery, 2008jan01

025 qmult 00430 1 1 1 easy memory: Hubble sequence E number

4.

The Hubble sequence E number (E in range [0, 7]) is nowadays determined by

E_10><e_10><<1—é) ,
a

where € is the:
a) ellipticity. b) eccentricity. c) effectiveness. d) e-folding. e) error.
SUGGESTED ANSWER: (a)

Wrong answers:
b) Tempting, but eccentricity e = y/1 — (b/a)? (Wikipedia: Ellipse).

Redaction: Jeffery, 2008jan01

025 qmult 00510 1 4 5 easy deducto-memory: LOSVD defined



5.

“Let’s play Jeopardy! For $100, the answer is: It is the distribution of velocity measured by the Doppler
shift of some line along a line of sight (LOS) through an ETG using integral field spectroscopy (whereby
a spectrum is obtained at each spatial pixel in the field of view).”

What is a LOS , Alex?

a) Doppler distribution b) velocity disperson ¢) Doppler dispersion
d) integral dispersion e) velocity distribution

SUGGESTED ANSWER: (e)

Wrong answers:
a) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

025 qmult 00630 1 1 3 easy memory: fast and slow rotators dividing line

6.

The simple, easy measure of ordered to random motions in ETGs is the V/o ratio the symbol V/o
seems also to be the name (Ci-132) Now V and o have various definitions, but V often the maximum
line-of-slight (los) velocity vmax and o is the central velocity dispersion defined by the surface brightness
weighted los velcoity dispersion formula

fRap O']OS(R)I(R) d2R
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where R,;, stands for some aperature radius that is used for the determination (Ci-133). For low-redshift
galaxies, R is in usually in the range 0.1R, to R.. When R, is used, one denotes oy by g.. For some
darn good reason, the dividing line between fast rotators (above) and slow rotators (below) on a V/o
versus €, plot is:

)~ (1) b ~A/5)Va o ~1B)a A~/ o e
SUGGESTED ANSWER: (c)

Wrong answers:
a) Why 1/5? But then why 1/37

Redaction: Jeffery, 2008jan01

025 gfull 01000 1 3 0 easy math: proof of the virial theorem: On exams, do all parts.

7.

The virial theorem is one most basic theorems of statistical mechanics taking the term statistical
mechanics to include stellar systems formalism (which is about point-mass systems interacting by
gravity) and other systems not ordinarily considered in conventional statistical mechanics. Here we
consider only the classical virial theorem and not the quantum mechanical version. The general (non-
quantum mechanical) virial theorem for a system of interacting particles isolated from all other forces.

<K>:—% <ZFF> ,

where the average is over time and the average is constant in time (i.e., the system is stationary), K
is kinetic energy, the sum is over all particles in the system, 13Z is the net force on particle i, and 7;
position vector to particle ¢ from a defined origin. The right-hand side of the equation is the virial itself
(Wikipedia: Virial theorem).

When all the forces in the system are interparticle forces derivable from potentials that depend
only powers ¢ of interparticle of distances, the virial theorem specializes to

(K)= 5 30U
4

where sum is over all the potential energies.
NOTE: There are parts a,b,c,d. All the parts can be done independently. So do not stop if you
cannot do any part. On exams, do all parts.



a)

Prove the general virial theorem starting from the scalar moment of inertia
I=> m -7 .
i

HINT: Take the first and second time derivatives of I and making use of the definitions of
momentum and kinetic energy and Newton’s 2nd law as needed.

Prove the special case virial theorem specified in the preamble: i.e., the important special case
of the virial theorem where all the forces are derivable from potentials depending on power-law
interparticle forces: i.e., the force of particle j on particle i is given by

l § : Y4 § : 0—1 4
Fji = — VUgyjiTji = — éUgyjiTji Tji -
L J4

HINT: Just start from ZZF; - 7; and march forward. You will need to do some trickery with
indices.

Why must a stationary system have negative energy? What does this imply about a system to
which the virial theorem applies: i.e., to a virialized system? What does the last implication imply
about the kinds of potential energies of the special case virial theorem and what does it imply if
there is only one kind of potential energy?

Specialize the special case virial theorem to the case where only the inverse-square force and linear
force are present. This case actually the case for the large-scale structure of the universe where
there is only the gravitation force and the cosmological constant force. Of course, this version of
the virial theorem cannot apply to the universe as whole since one needs general relativistic physics
for that.

SUGGESTED ANSWER:

a) To prove the virial theorem, we first specify the scalar moment of inertia and take its first and

second time derivatives and we make use of the definitions of momentum and kinetic energy
and Newton’s 2nd law as needed:

I=> mf -7
i
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where the sum is over all particles of a system and K is the total kinetic energy. If the system
is, in fact, stationary (i.e., in equilibrium) at the macroscopic level on average in time, then
(I is constant and all time-averaged derivatives of I are zero. Thus follows the general virial

theorem:
1 -
<K>:_§<§ Fi'n'> .

b) We find
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where the 1/2 was introduced to avoid double counting on the indexes ij and disappeared
when we counted over all particles. Now the virial becomes

(K)= 330w
4

To be stationary particles cannot travel to infinity. Thus, the total energy energy must be
negative and therefore the total energy of a virialized system must be negative. This means
that at least one of the kinds of potential energy in a system must be negative and if there is
only one kind of potential energy its power ¢ < 0 in order for the kinetic energy to be positive
as physically required.

The inverse-square law force and the linear force have, respectively, f = —1 and ¢ = 2, and so
the virial theorem becomes

(K) = —% (U-1) + (Us) .

Redaction: Jeffery, 2018jan01

025 gfull 01230 1 3 0 easy math: mass determination using the virial theorem: On exams do all parts.
8. The crudest way of determining a galaxy mass is by a simple use of the virial theorem.

a)

NOTE: There are parts a,b,c,d. On exams, do all parts.

What is called the virial velocity dispersion oy, is defined by

1
K= 3 virggir )
where K is the total kinetic energy and My, is the mass out to some cutoff radius reuto. If you
actually knew everything about self-gravitating system that was virialized within the shell defined
by the cutoff radius rcytofr, then you would know K and My;,. What is the formula for oy, in this
case?

What is called the gravitational radius 7 (which is not the the cutoff radius reutosr) is defined by

2
U= _GMvir ,
Tg

where U is total gravitational potential energy out to the cutoff radius. The gravitational radius
is just a characteristic radius since it is not the radius of anything in general. If you actually knew
everything about self-gravitating system that was virialized within the shell defined by the cutoff
radius 7cutorf, then you would know U and My;,. What is the formula for 7, in this case?

Since for actual galaxies, we do not know a priori My, K, or U, we do not know oy and 7
exactly and they are actually what we want to estimate M,;,. However, we can guess that oy, and
rg will be of order, respectively, the central velocity dispersion oy (however specified exactly) and
the effective radius R, but maybe only to within a factor of 10 for each one. So we parameterize
of =aoy,  and  Re=bry,
where a and b are fudge factors. Use the virial theorem for gravity to solve for M, eliminating
ovir and 1z via the fudge factors and then eliminate the fudge factors via the virial coeflicient
kvir = 1/(@())

In fact, kyir can only be known accurately from detailed modeling. However, the fiducial value
is 5, but deviations from this can be large. Write the virial mass formula in terms of fiducial



values kyir = 5, Re = 1kps, 09 = 200km/s, and solar masses Mg = 1.98847 X 103°kg. Note the
graviatational constant G = 6.67430 x 10~ MKS. In fact, the fiducial formula with k.. actually
set to 5 is called the dynamical mass Mgyy (Ci-147). When resolved kinematic information is not
available for a galaxy, the virial mass from the formulae (with kyi, set to 5 or some other good
value) given in the answer to this question may be the best estimate of total mass one can get from
observations of stellar light.

SUGGESTED ANSWER:

a) Behold:
2K
Ovir = .
Mvir
b) Behold:
GM\?ir
7’ - —_——
& U
¢) Behold:
1 1 1 GM? kyir Reod
1 K=—-—-U 2 = My 2 _ vir 3 My, = vird{le Oy '
) U 2 gMalod/a) = 5t ) P
d) Behold:

ko R 0o 2
My = (4.6589 x 10%° M) ( glr) (1k;c> (200km/s) '

Fortran-95 Code

print*

gravcon=6.67430e-11_np !
http://en.wikipedia.org/wiki/Gravitational_constant

xmsun=1.9847e+30_np ! https://en.wikipedia.org/wiki/Solar_mass

xkpc=3.0856775814913673e+16_np*1.e+3_np !
https://en.wikipedia.org/wiki/Parsec

v=200.0_np*1.e+3_np

xkvir=5.0_np

con=xkvir*xkpc*v**2/(gravcon*xxmsun)

print*,’con’

write(*,’(1p,e20.7)’),con ! 4.6588631E+10 = 4.6589e10

Redaction: Jeffery, 2018jan01

027 qgfull 01020 1 3 0 easy math: standard dark matter halo profiles: On exams, omit part d.

9. There several standard dark matter parameterized density profiles (i.e., profiles of density as a function
of radius from the center of dark matter halos) that can be fitted to observed galaxy rotation curves
with varying goodness. Here we study the behavior of some of them.

NOTE: There are parts a,b,c,d. On exams, omit part d.

a) The NFW profile (i.e., Navarro-Frenck-White profile, 1996) is

_ 4ps
P = Gy 4 /)

where the parameters are rs the scale radius and ps the density at the scale radius (e.g., Lin & Li
2019, p. 4). The NFW profile was suggeted by N-body simulations with dark matter particles, and
so is a true theoretical dark matter halo density profile. It is a cusp profile in that p(r — 0) diverges.
Show the limiting behaviors of p(r) for r/rs << 1, r/rs =1, and r/rs >> 1. Find the outer shell
mass M (r) from radius router >> 75 to general r. Discuss the converge/divergence properties of
M(r).

b) The Burkert profile (1995) is

() = e
P = )l + (r/ro)7]



where the parameters are 74 the scale radius and ps the density at the scale radius (e.g., Lin & Li
2019, p. 4). The Burkert profile is a phenomenological profile chosen to fit galaxy rotation curves.
If dark matter exists, ps is true density parameter. If dark matter does not exist and MOND is
true, then pg is parameter with dimensions of density, but whose meaning is vague. The Burkert
profile is a core profile in that p(r — 0) does not diverge. Show the limiting behaviors of p(r)
for r/rs =0, r/rs << 1, r/rs = 1, and r/rs >> 1. Find the outer shell mass M (r) from radius
Touter >>> T's to general r. Discuss the converge/divergence properties of M(r).

¢) The Einasto profile (in the version of Wang 2020 September, Nature, p. 40) is

- ronl- () )

where the parameters are r_5 the scale radius where the logarithmic slope is —2, p_o the density at
the scale radius, and a = 0.16 = 1/6. The Einasto profile (in this version) is a fit to a huge number
of high accuracy N-body simulation that span 20 orders of magnitude in dark matter halo mass.
Almost everywhere the fit is accurate to within a few percent. The NFW profile is accurate to
within 10 % almost everywhere, but has distinct shape relative to the Einasto profile. The Einasto
profile is a core profile in that p(r — 0) does not diverge. Show the limiting behaviors of p(r) for
r/r_o=0,r/r_o<<1,r/r_og=1,and r/r_g >> 1.

d) For the Einasto profile of part (c), find the interior M (r) from radius r = 0 to general r in terms
of the incomplete factorial function

/

Yy
2(y' ) = / e Yyt dy
0

(e.g., Ar-543). making the approximation o = 1/6. You will find it convenient to make two
transformations of the variable of integration. Determine the total mass M (r = co) for general r_o
and p_o by evaluating the factorial function (i.e., z(y’ = 00)!) making the approximation o = 1/6.

SUGGESTED ANSWER:

a) Behold:
4ps B 4ps . |
(r/r) (L r/re)? (/e + 20r/r)2 + (rfre)? B
4ps
p(r) = (r/rs) for r/ry << 1.
Ds for r/rs = 1.
(Tjﬁs)g for r/rs >> 1.

Note that there is inverse linear divergence as r/rs — 0 which agrees with the description of
the NFW profile as a cusp profile. For the outer shell mass, we find

M) = /T/ ié&wrz dr = 47r3(4ps) In "
outer (T/Ts)g ° ° Touter '

The outer shell mass diverges logarithmically with r. To keep the total mass of the halo finite,
a cutoff radius must be defined. However, logarithmic divergence is rather gentle, and so it
is likely that the total halo mass is not very dependent on a reasonably chosen cutoff radius.
The cutoff radius could be the zero-force radius imposed by the cosmological constant force
per unit mass:
El = lArf
m 3

3

where A = 9.9366 x 10736 s72 (Wikipedia: Cosmological constant: Equation with value based
on Planck 2018, arXiv 1807.06207).



b) Behold:
405 in general
in general.
T+ /) + (/7)) ¢
4ps for r/rs = 0.
4ps r
= ———=4p, |1 — — f S 1.
p(r) ATr/r) p ( Ts) or r/rs <<
Ps for r/ry = 1.
4ps ¢
(/ra)? or r/rs >> 1.

Note that there is no divergence as r/rs — 0 which agrees with the description of the Burkert
profile as a core profile. The rest of part (b) is answered as in part (a).

¢) Behold:
2 r \“ .
p—2 €Xp {— <—> {(—) — 1] } in general.
(0% r—o

p—2exp (2) for r/r_ = 0.
a
p(r) = P exp (g) [1 _ <2) (L) ] for r/r_o << 1.
o « r—2
P2 for r/r_o = 1.

o[ (2)(2)] e

Note that there is no divergence as » — 0 which agrees with the description of the Burkert

profile as a core profile.
/ 2 " r “ 2
M(r'")y=p_sexp | — exp |[— | — 4mr® dr
« 0 T_9

d) Behold:
/ T/ 3 2 o a 2
M xr = —— = 47T’]°72p_2 exp | — exp (—.’L‘ ):L' d.T
T2 @/ Jo

/

M /o NnNo __ r’ “ =4 3 82/a Y -y 3/0471d
y = (2")* = = =Amrapa == ey y

The total mass with the approximation aw = 1/6 is

2/a 00
M@ =o00) = M(y = ) = 4777’?:2;),26 / e Yyl dy
@ Jo

= 4 5p_o (6€'?) / e Yyl dy = 4mr® 5p_y (6€?) (17!)
0

= 4mr® ,p_o (6e'?) x (3.55687428096000 x 10') .

Redaction: Jeffery, 2018jan01

027 gfull 01030 1 3 0 easy math: the NFW profile explored: On exams, do only parts b,c.

10. The Navarro-Frenck-White (NFW) profile for the density profile of a quasi-equilibrium spherically
symmetric dark matter halo derived from N-body simulations with scale radius rg, scale density, ps,
and © = r/ry is

4ps 4ps

0+22 1221 in general;
4ps

P for r << 1;

p(r) =4 =

Ds for x = 1;
4ps

/; for x >> 1.
x




(Wikipedia: Navarro-Frenk-White profile). The logarithmic slope is

dln(p) dln(p) =xdp x 1+ 4z + 322
dIn(r) - dIn(z) - pdx - _;( ps) {(z—l—lrz +x3)2]
1+ 4z + 322
e

-2 for x = 1.

in general;

The scale radius s and scale density, ps were chosen to yield logarithmic slope —2 when x = 1 and
density is ps.

The logarithmic slope —2 gives a flat (circular) velocity profile everywhere if it applies everywhere

and gives an asymptotically flat velocity profile as radius » — oo if it applies in the outer region of a
mass distribution. However, the NFW profile actually only has logarithmic slope —2 at one point and
does not yield an exactly flat density profile anywhere as we shall see.

Note an approximately flat velocity profile over some extended range of radius is characteristic of

galaxy rotation curves for disk galaxies. However, the approximate flatness is a combination of dark
matter and baryonic matter in actual galaxies and not of dark matter alone.

)

NOTE: There are parts a,b,c,d,e,f,g. On exams, do only parts b,c.

In fact, there is a semi-analytic argument for the NF'W profile. Given that a dark matter halo
density profile is approximately o 1/72 in its most characteristic region (which we center on z = 1),
one might be tempted to Taylor expand around the point where the logarithmic slope is exactly —2:
i.e., where z = 1. Argue that it is better to expand the specific volume V,, (i.e., 1/p) around z = 17
Do the expansion for Vi, to 3rd order, collect like terms, and take the inverse using general symbols
for the coefficients: i.e., pg, p1 = ¢, p2 = b, and p3 = a, where ¢, b, and a are chosen to conform to
the conventions of tables of integrals. Why set the zeroth coefficent to zero? Why choose the 1st,
2nd, and 3rd order coefficients to be, respectively 1, 2, and 1 (given overall coefficient is set to be
ps times the sum of the coefficients in order to yield ps) other than the fact that that choice turns
out to be good fitting parameters? HINT: To answer the last question, look at a table of integrals
for the integrals needed to integrate density to get mass interior to radius x?

Determine the formula for M (z) as a function of rs and ps. You will have to use the table integrals:
rdz 1 b dz
v — 21 P
/a;v2+b:v+c 2a n(az” +be +c) 2a/ax2+bx+c’
dz 2
=— for b? — 4ac = 0.
/axQ—i—bx—i—c 2ax + b or e

Rewrite the formula using the coefficient My = M (x = 1) parameterized by rsv? where vy is the
circular velocity Do not forget to normalize the function of « (i.e., the dimensionless mass function
f(z)) that is required in the rewritten formula) to 1 at = 1 using a normalization constant A. In
fact, a vast set of N-body simulations purely for dark matter particles shows that the NF'W profile
can be expected to hold usually to within 10 % for « € [0, 30], but with some systematic deviations
(Jie Wang et al. 2020, Nature, Sep02). For > 30, large deviations from the NFW profile can be
expected.

Compute f(z) for « values 0, 0.1, 0.3, 1, 3, 10, and 30. What is f(z) for 2 — oo and what does
this mean? HINT: Write a small computer program for the calculation.

Write the dimensionless circular velocity formula g(z) normalized to 1 at z = 1.

Compute a list of g(x) values from z = 0 to = 30. Describe the behavior. HINT: Extend your
write small computer program to do the calculation.

The machine precision maximum characteristics of g(z) can be determined by numerical methods.
Setting the derivative of g(x) to zero gives you a non-anaytically solvable equation for the
maximizing z. An iteration formula that always converges can be obtained by isolating x on the left-
hand side on on the right-hand side having a function where the expression under the square-root
sign is never negative for > 0. Convergence to machine precision however is slow. Convergence
to machine precision is faster using the Newton-Raphson method (Wikipedia: Newton’s method).



If you feel ambitious, use one or other some combination of both approaches to solve for xy.x and
9(Zmax). HINT: Extend your write small computer program to do the calculation.

SUGGESTED ANSWER:

a) Since the dark matter halo density profile goes approximately oc 1/72 at the point we designate
x = 1, the specific volume goes as o< 72 at x = 1. Since a Taylor series contains positive powers
of the variable and not inverse powers, it seems likely a priori that a Taylor expansion for
specific volume will capture more of the density behavior than that for density itself: i.e., the
Taylor expansion for specific volume will likely have a larger region of convergence. The inverse
of the specific volume expansion with like terms collected is

1
" po+er+bx?+axd

p(z)

N-body simulations show that p(x << 1) & 1/z, and so the Oth coeflicient must be set to zero.
It is possible that the specific volume expansion has a large enough region of convergence this
may be the correct expansion coefficient, but on the other hand it could just be interpolation
formula correction to the specific volume expansion or maybe some combination of the two.
You can’t know unless you actually have the exact Vip(x)—which we don’t. Thus, we get

(c+b+a)ps
pla) = ————"— .
cx + bx? + ax

Choosing the 1st, 2nd, and 3rd order coefficients to be, respectively 1, 2, and 1 gives an integral
for the mass that contains only one logarithm function and no arctangent function. It is a much
simpler integral than any other case, and so to be preferred all other things be roughly equal.
Of course, 1, 2, and 1 would be rejected if they did not make the NF'W profile give a good fit
the N-body simulations no matter how simple they made integrals.

b) Behold:

x

1
= 47 (4ps) {5 In(z? + 2z +1) — i
0

z+1

1 2
M(x) = 471'7"3(4[)5) |:% hl(al'/z + bx/ + C) — m}

= 477 (4py) [ln(w—i—l)— i } .

x+1
c¢) Behold:
B oz 2 o
M(z) = MA {ln(x—i—l) I_'_J TSUSA[ln(:C—i—l) :zr—l—l] )
where the normalization constant is
1 1

A= = 5.177398899... .

In(2) —1/2  0.19314718. ..

d) Behold:
X .

Alln(z+1)— il general;
0 for x = 0;
0.02786. .. for x = 0.1;

F(*) =19 0.163580 ... for z = 0.3;
1 for x = 1.0;
3.2943 . .. for x = 3.0;
7.70813... for x = 10.0;
12.7687. .. for x = 30.0.

The mass diverges to infinity as x — oo for the NFW profile. Clearly, the whole density profile
of a dark matter halo cannot be described just by the NWF profile.



e) Since v, = /GM (r)/r x g(x), we must have

A In(z +1) _ in general;
x (x+1)

—( !
IR R VAT P .
A E <£+1>( 1) :c] for |z| < 1;

=1
1 for x = 1;
1.058035709947341977 . .. the maximum value
at o = 2.16258 ... ;
1.0017... at x = 4.8, approximately
f(z) the last point above 1;
9(z) = = ) 0.6524... at z = 30 of order

the outermost point
of NFW profile

accuracy;

\/A {ln(xx—i- ) (Iim]

_ W {m[x(l: V)] _ . i/f/@}
()
- \/ [ﬁ} - \/ [1“] for z — oo.

f) From my computer list of g(z) values and from the equation in the part (e) answer, the
dimensionless circular velocity profile initially rises initially linearly from 0, reaches 1 at x =1,
reaches a maximum of 1.058035709947341977 ... at x = 2.162581587064609834 . . . (with values
at 18-digit machine precision), falls slowly to ~ 1 at « ~ 5, and then declines asymptotically as
VIn(x)/x as x — co. As expected the NFW profile never gives an exactly flat circular velocity
profile, but it gives a very flattish one for = € [1,5] and for = > 5 still varies very slowly.

A
A

g) The derivative of g(z)? is

dg(z)* In(z +1) 1 1 B A
x =4- x? :v(x+1)+(:v+1)2 _x2(x—|—1)2[

which is set to zero to get an equation for the stationary point which is obviously a maximum
by parts (e) and (f). The equation for the stationary point is

0= (x+1%In(z+1)+a(x+1)+2®.

Initially, it is not clear that an always-converging iteration equation can be obtained from the
stationary point equation. However, after some fumbling, we find that the stationary point
equation rearranges to an iteration equation

" 222 +x
x=— =
In(z +1)°

where the 2 on the left/right-hand side is the output/input and which converges we find
experimentally for x € [0.01,30], and so probably converges for all > 0, but we are too
weary to try to prove this. However, the iteration equation only very slowly grinds to 18-digit

10

—(z+1)’In(z+ 1)+ z(z + 1) + 2]



machine precision maximum value characteristics. The iteration can be vastly accelerated by
using a Newton-Rapson method for finding a zero of generic function f(x): i.e.,

f(xi-1)
f(@iz1)’

where f'(z) is its derivative of f(z). (Wikipedia: Newton’s Method). Our functions f(z) and
f'(z) are, respectively,

Li = Ti—1 —

fx)=—=(x+1)*In(zx+1) +z(x+1)+2° and  f'(z)=-2(x+1)+3z.

The Newton-Raphson method does have a limited convergence region in general. For our
case, we experimentally find convergence for x > 1.4 to probably z — oo, but we have not
proven the upper limit. Experimentally, it seems nearly optimum convergence is obtained
by using the iteration equation for iteration z values x < 1.55 and the Newton-Raphson
method for iteration x values for x > 1.55. For an iteration starting from initial x = 0.01
with x = 1.55 as the dividing line between the iteration equation and the Newton-Raphson
method, the iteration converges in 43 iterations to the 18-digit machine precision characteristics
Tmax = 2.162581587064609834 . .. and ¢g(@max) = 1.058035709947341977 ...

For finding roots (i.e., zeros) in general, you should consult Pr-340-386 (i.e., Numerical
Recipes). However, Numerical Recipes does not even discuss the iteration equation method. I
guess Numerical Recipes considers it beneath contempt.

Fortran-95 Code: See
/homes/jeffery/jef/aalib/dark_matter_halo.f

Redaction: Jeffery, 2018jan01



