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Cosmology & Galaxies NAME:

Homework 24: Cosmic Present Star-Forming Galaxies (SFGs)

024 qmult 00180 1 1 3 easy memory: Milk Way stellar mass and virial mass
1. In solar mass units, the Milky Way stellar mass (i.e., the mass in stars M∗) is ∼ M⊙ and

its virial mass (Mvir: i.e., fiducial total mass which is mostly dark matter) is ∼ M⊙. At
least these values were standard circa 2023. However, a downward revision may have become accepted
just about that year.

a) 1012; 1010 b) 5 × 1010; 5 × 1010 c) 5 × 1010; 1012 d) 109; 5 × 1010

e) 109; 5 × 108

SUGGESTED ANSWER: (c) See Ci-55. See Ou et al. (2023, arXiv:2303.12838) for a downward
revision of the virial mass to ∼ 2 × 1011 M⊙

Wrong answers:
a) As Lurch would say AAAarrgh.

Redaction: Jeffery, 2008jan01

024 qmult 00230 1 4 2 easy deducto-memory: exponential profile for face-on spiral galaxies
2. “Let’s play Jeopardy! For $100, the answer is:

Iλ = Iλ,0e
−(R/Rd) ,

where Iλ is the surface brightness, Iλ,0 is the central surface brightness, R is the radius coordinate, and
Rd disk scale length (and not the effective or half-light radius).”

What is the standard surface brightness profile, Alex?

a) edge-on spiral disc b) face-on spiral disc c) elliptical d) dwarf irregular
e) general Sérsic

SUGGESTED ANSWER: (b)

Wrong answers:
a) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

024 qmult 00600 1 1 4 easy memory: two main classes of galaxy bulges
3. There are two main classes of galaxy bulges:

a) classical bulges and non-classical bulges b) big bulges and disc-like bulges
c) little bulges and disc-like bulges d) classical bulges and disc-like bulges
e) little bulges and big bulges

SUGGESTED ANSWER: (d)

Wrong answers:
a) Seems reasonable.

Redaction: Jeffery, 2008jan01

024 qmult 00620 1 4 2 easy deducto-memory: Schmidt-Kennicutt law
4. “Let’s play Jeopardy! For $100, the answer is:

ΣSFR = B

(

Σgas

1 M⊙/pc2

)α

M⊙/yr/kpc2 ,

where SFR means star formation rate, ΣSFR is surface star formation rate in units of M⊙/yr/kpc2,
Σgas is gas surface density in units M⊙/pc2 (the denominator below Σgas makes the overall factor
dimensionless), B ≈ 10−4 is an empirical constant, and α = 1.40(15) is another empirical constant with
some theoretical understanding.
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What is the , Alex?

a) Press-Kennicutt law b) Schmidt-Kennicutt law c) Press-Schechter law
d) Martin-Schmidt law e) Martin-Schmidt-Kennicutt law

SUGGESTED ANSWER: (b) See Ci-83.

Wrong answers:
c) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

024 qfull 00100 1 3 0 easy math: inclined circle analyzed: On exams, do all parts with minimal words.
5. An inclined circle (ideal disc galaxy is) is seen in projection as an ellipse.

NOTE: There are parts a,b. On exams, do all parts with minimal words.

a) The equation for a circle is written elaborately is

(x

a

)2

+
(y

a

)2

= 1 ,

where a is the radius. Find the explicit formula for y. The circle is rotated on its x-axis to inclination
angle i where inclination angle is measured from the direction to the observer to a normal to the
circle. What is the projected height of every y point (i.e., what is the inclined yi)? Prove the
inclined circle (i.e., projected circle) is an ellipse and find its semi-minor axis b.

b) The area of an ellipse is A = πab and the circularized radius an ellipse created by inclination is
defined by

Ri =
√

ab = a
√

cos(i) .

Prove that the differential area of an inclined circle is

dA = 2πRi dRi .

SUGGESTED ANSWER:

a) Behold:

y = ±a

√

1 −
(x

a

)2

By inspection of a diagram you will have to imagine, every inclined yi is given by yi = y cos(i).
If you multiple the circle formula for y by cos(i), you get

yi = ±a cos(i)

√

1 −
(x

a

)2

= ±b

√

1 −
(x

a

)2

,

where we have defined b = ai cos(i). The new formula identified by inspection as that of an
ellipse where yi is the y coordinate and b is the semi-minor axis. Thus, the inclined circle is an
ellipse with semi-minor axis b

b) Behold:

dA = π d(ab) = d
[

a2 cos(i)
]

= 2πa da cos(i) = 2πa
√

cos(i) da
√

cos(i) = 2πRi dRi QED.

Redaction: Jeffery, 2018jan01

028 qfull 00350 1 3 0 easy math: free-fall time and collapse to star time: On exams, only do parts a,b,c.
6. The free-fall time for a straight line fall of a particle of mass m starting from rest to a point source or

spherically symmetric source of mass M (always interior to the infalling particle) is

tff =
torbit

2
=

π
√

G(M + m)

(r

2

)3/2

,
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where torbit is the orbital period predicted by the Newtonian physics version of Kepler’s 3rd law and r
is the initial distance from the particle to the source center and is twice the relative semi-major axis of
an elliptical orbit of the particle to the source (Wikipedia: Free-fall time; Wikipedia: Kepler’s laws of
planetary motion Third law; Ci-246). The Kepler’s 3rd law orbital period is independent of eccentricity
e ≤ 1, and so half of it is the free-fall time.

NOTE: There are parts a,b,c,d,e,f. On exams, only do parts a,b,c.

a) What is the free-fall time for test particle (i.e., one of negligible mass)?

b) What is the free-fall time as a function of r for a spherical mass distribution with initially constant
density ρ and outer radius r ≤ R. The matter is initiall all at rest and there is zero pressure at
all times. Assume the (infinitely thin) shells of matter in the distribution at all the r values never
cross during free fall which is true and plausible, but seems tricky to prove. Describe the order of
arrival of the shells at the center?

HINT: Remember the shell theorem

~g = −GM(r)

r2
r̂

where the mass distribution is sperically symmetric and M(r) is the interior mass to radius r. Note
M(r) must increase monotonically since there is no negative mass, but it can be zero out some
radius r.

NOTE: For all subsequent parts, we assume a spherically symmetric mass distribution at all
times with initial outer radius R and there is zero pressure at all times.

c) Say that the interior mass M(r) to radius r obeys a power law M(r) = M0(r/r0)
α where α ≤ 3.

When does the mass all collapse to the center assuming that it magically all stops there on arrival
and the shells of matter at all the r values never cross during free fall which is true and plausible,
but seems tricky to prove.

d) For star formation, we want to relate density ρ to the particle density n which can be measured
more directly. The relating formula is

n = ρ

(

∑

i

Xi

Aimp

)

,

where Xi is the mass fraction of species i (which could be any atom or a molecule including those
that are distinct due to their isotopic nature), Ai is the atomic mass number (which could be a
molecular mass number), and mp = 1.67262192369(51)× 10−24 g is the proton mass. Note this
special case atomic mass number is in units of proton masses, not daltons (symbol u or Da and
AKA atomic mass units). The fact is most of the universe is made of hydrogen (which made of
protons) and not made of daltonium (which is made of daltons). Worrying about corrections due to
electron masses, binding energies, and isotopes abundances (which aside from hydrogen and helium
are rather uncertain) is below the level of accuracy of this problem. The mean atomic mass is
defined by

µ−1 =
∑

i

Xi

Ai

which gives

n =
ρ

µmp
or ρ = nµmp .

Fiducial cosmic values for Xi are: X = 0.73 for H, Y = 0.25 for He, and Z = 0.02 for metals. Two
fiducial mean atomic masses are given by

µH1,dominated =

(

X

1
+

Y

2
+

Z

30

)−1

and µH2,dominated =

(

X

2
+

Y

2
+

Z

30

)−1

,

where the atomic mass for Z is a rough fiducial average based on the fiducial atomic masses of
very abundant metals: i.e., AC,6 = 12, AO,8 = 16, ASi,14 = 28, and AFe,28 = 56. Compute
the µH1,dominated and µH2,dominated values to 3-digit precision which probably 1 more digit than is
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significant, but it is useful to know insignificant digits sometimes to check for consistency between
different calculations.

HINT: Write a small computer program to do the calculation.

f) The part (b) answer gives a fiducial lower limit for the formation time for a star. It is just a fiducial
lower limit since real initial clouds of molecular gas do not have uniform density, are not spherically
symmetric, and do not have zero pressure and zero initial kinetic energy. It is just a lower limit
since the pressure force and kinetic energy in the molecular cloud resist collapse during the collapse
process and delay collapse to a star sized object. However, it is useful to rewrite the part (b) answer
in terms fiducial values: particle density 103 cm−3, µH2,dominated from part (e), and Julian years
(i.e., 365.25 days). Do the rewrite.

HINT: Write a small computer program to do the calculation.

SUGGESTED ANSWER:

a) Behold:

tff =
π√
GM

(r

2

)3/2

.

b) Note a shell always has the same mass interior to it during free fall and that mass always acts
as a point mass at the center by the shell theorem. The exterior shells have no affect by the
shell theorem and since they never cross first mentioned shell. Thus, the free-fall time for all
shells is

tff(r) =
π

√

G(4π/3)ρr3

(r

2

)3/2

=

√

3π

32Gρ
.

Since tff is, in fact, independent of r, the shells all arrive simultaneously at the center.

c) In this case,

tff =
π

√

GM(r)

( r

2

)3/2

=
π

√

GM(r)

(r0

2

)3/2
(

r

r0

)3/2

=
π√

GM0

(r0

2

)3/2
(

r

r0

)(3−α)/2

,

where (3− α) ≥ 0. Assuming the shells never cross, the time when all test particles are at the
center is where r = R, its maximum value. Thus,

tff =
π√

GM0

(r0

2

)3/2
(

R

r0

)(3−α)/2

.

d) The two fiducial mean atomic masses are

µH1,dominated =

(

X

1
+

Y

2
+

Z

30

)−1

= 1.26 and µH2,dominated =

(

X

2
+

Y

2
+

Z

30

)−1

= 2.34 .

f) Behold:

tff(r) =

√

3π

32Gρ
= (1.07 × 106 Jyr)

(µH2,dominated

2.34

)−1/2 ( nH2

103 cm−3

)−1/2

.

Fortran-95 Code
print*

print*,’Fiducial mean atomic masses and fiducial free-fall time’

x=0.73_np

xm=1.0_np

xm2=2.0_np

y=0.25_np

ym=4.0_np

z=0.02_np

zm=30.0_np
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xmu=1.0_np/(x/xm+y/ym+z/zm)

xmu2=1.0_np/(x/xm2+y/ym+z/zm)

print*,’xmu,xmu2’

print*,xmu,xmu2

! 1.2607690691321706241 2.3355391202802646944

pi=acos(-1.0_np)

pi=3.14159265358979323846264338327950288419716939937510_np

!

!!23456789a123456789b123456789c123456789d123456789e123456789f123456789g12

! ! https://en.wikipedia.org/wiki/Pi#Approximate_value_and_digits 51

digits

gcon=6.67430e-11_np ! (15)

https://physics.nist.gov/cuu/Constants/Table/allascii.txt mks

xmp=1.67262192369e-27_np ! (51)

https://physics.nist.gov/cuu/Constants/Table/allascii.txt mks

xn=1.e+3_np*(1.e+6_np) ! from cm**(-3) to m**(-3)

den=xmu2*xmp*xn

xjy=365.25_np

daysec=86400.0_np

con=1.0_np/(xjy*daysec)

tfid=sqrt(3.0_np*pi/(32.0_np*gcon*den))*con

print*,’tfid’

print*,tfid ! 1065028.6238804413767

Redaction: Jeffery, 2018jan01

028 qfull 00360 1 3 0 easy math: Free-fall time and shells crossing: On exams, do all parts.

7. Consider free-falling spherical shells of matter that only interact gravitationally.

NOTE: There are parts a,b,c. On exams, do all parts, but answer with minimal words.

a) First we consider a single infinitely thin spherical shell of radius rs and mass m. What is the
gravitational field ~g at r < rs? What is the gravitational field ~g at r > rs? Justify your answers.

b) What of the gravitational field ~g at rs? In one sense, the field is indeterminate since there is a
discontinuity in the field r and which value you get depends on the direction you take the limit in.
However, a limiting value often depends on the limiting process and some limiting processes are
physically realistic and others are not. A physically realistic limit gravitational field at r does exist.
The trick is consider tiny cylinder Gaussian surface (see Wikipedia: Gaussian surface) placed on
the shell of radius r that extends inward and outward from r and whose top and bottom are parallel
to the shell surface. In the small limit, the cylindar straddles an infinite infinitely thin plane of
surface mass density σ = m/(4πr2

s ). Determine the gravitational field on the top and bottom of the
cylinder just due to the enclosed mass. Then find the gravitational field due the rest of the shell on
enclosed mass in the cylinder for all r including r = rs. That gravitational field is the gravitational
field that can accelerate the enclosed mass treating it as test particle.

c) Do infalling spherical shells ever cross for any possible mass distribution? Prove your answer.
HINT: Recall, the free-fall time for a straight line fall of a particle of mass m starting from rest to
a point source or spherically symmetric source of mass M (always interior to the infalling particle)
is

tff =
torbit

2
=

π
√

G(M + m)

(r

2

)3/2

,

where torbit is the orbital period predicted by the Newtonian physics version of Kepler’s 3rd law and
r is the initial distance from the particle to the source center and is twice the relative semi-major axis
of an elliptical orbit of the particle to the source (Wikipedia: Free-fall time; Wikipedia: Kepler’s
laws of planetary motion Third law; Ci-246). The Kepler’s 3rd law orbital period is independent of
eccentricity e ≤ 1, and so half of it is the free-fall time.

SUGGESTED ANSWER:
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a) By the shell theorem,

~g =







0 for r < rs;

−Gm

r2
r̂ for r > rs.

b) If the cylinder is sufficiently small, it encloses a bit of an infinitely thin plane of mass. Let
the enclosed mass be ∆m = σA, where A is the area of the top and bottom of the cylinder
Symmetry dictates that the field is parallel to the sides of the cylinder, and so the sides
contribute nothing to the Gauss’ law integral over the cylinder. Initially, we assume that the
top and bottom are at equal distance from the plane, so symmetry guarantees the magnitude of
~g is the same on top and bottom, but this assumption turns out to be unnecessary. Symmetry
dictates that the differential area vectors d ~A of the top and bottom point opposite to the
gravitational field on both sides of the plane. We now find

1)

∮

~g · d ~A = −4πG∆m 2) − g∆A − g∆A = −4πGσ∆A 3) 2g = 4πGσ

4) 2g = 4π
Gm

4πr2
s

5) 2g =
Gm

r2
s

6) ~gcyl =
1

2

Gm

r2
s

(±r̂) ,

where the upper case is for bottom and the lower case for the top and since the result does not
depend distance from the plane the top and bottom could be at any distance from the plane
as long the approximating the enclosed bit of shell as part of infinite infinitely thin plane is
valid. The total field is given by part (a) for r 6= rs. Thus, the gravitational field due to the
rest of the shell (the shell not counting except the enclosed mass) is

~gshell rest = ~g − ~gcyl =















































−
(

1

2

)

Gm

r2
r̂ for small δr = r − rs < 0;

−
(

1

2

)

Gm

r2
r̂ for small δr = r − rs > 0;

−
(

1

2

)

Gm

r2
r̂ for r = rs

which is the physically realistic limit.

Remarkably, the effective gravitational field on any differential bit of an infinitely thin shell is
the average of the gravitational field of the whole shell for < rs and r > rs.

Let us go beyond the required answer. The above result is convincing, yours truly believes,
for isolated infinitely thin shells. But one can ask what of the limit of infinitely thin shells that
make up a continuum: i.e., finite thickness shells stuck together. Say a finite thickness shell
has mean radius rs, thickness ∆r, and mass m. As boundaries between finite thickness shells
are made closer together, the physically realistic limit is that shells have constant density. So
to 1st order in small ∆r, one has

m = 4πρr2
s ∆r and constant density ρ =

m

4πr2
s ∆r

.

The inward force on a differential solid angle dΩ of the finite thickness shell due to itself to 1st
order in ∆r is

dF =

∫ r+∆r/2

r−∆r/2

G(4π/3)[ρr3 − (rs − ∆r/2)3]

r2
ρr2 dr dΩ =

∫ ∆r

0

G(4πρr2
s x)

r2
s

ρr2
s dx dΩ

= G(4π)ρ2r2
s

∆r2

2
dΩ =

1

2

Gm2

r2
s

dΩ

4π
,

where we have used the shell theorem. Thus the 1st order force on the whole finite thickness
shell is

F =
1

2

Gm2

r2
s

.
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In the last result holds in the limit that ∆r → 0, and thus the infinitely thin shell in this
derivation does self-gravitate in same physically realistic limit way that we would have expected
from the first result above.

c) The answer is yes. Consider the two free-fall times for two infinitely thin spherical shells 1
and 2 where shell 1 is smaller than shell 2:

t1 =
π

√

G(m1/2)

(r1

2

)3/2

and t2 =
π

√

G[m1 + (m2/2)]

(r2

2

)3/2

,

where the 1/2 factors are the self-gravitations corrections for shells which we can take as being
made of test particles and which we found in part (b). If t1 > t2, the shells must cross. Now
t1 > t2 implies

√

[m1 + (m2/2)]

m1/2

(

r1

r2

)3/2

> 1 .

Clearly, the inequality holds if m2 is made large enough. Thus, there are mass distributions
where infalling shells must cross. But what happens then they cross requires further analysis.

Redaction: Jeffery, 2018jan01

024 qfull 01030 1 3 0 easy math: galaxy potential energy and escape velocity: On exams, only do parts a,b,c,d.
8. In this question, we consider escape velocities from galaxies. The path is long if one does not gloss over

tricky points like Ci-86–87.
NOTE: There are parts a,b,c,d,e,f. On exams, only do parts a,b,c,d and answer with minimal

words.

a) From introductory physics, the change mechanical energy of particle is

∆E = ∆KE + ∆PE = Wnoncon ,

where KE is kinetic energy, PE is potential energy, and Wnoncon work done by nonconservative
forces. If there are no nonconservative forces, mechanical energy is conserved and

1) ∆E = 0 2) ∆KE = −∆PE 3) E = KE + PE is constant.

The escape velocity from some point (with no nonconservative forces) can be found from some point
noting that KE = 0 at infinity where the gravitational potential Φ (which is potential energy PE
per unit mass) is defined to be zero. Find the general formula for escape velocity vesc given that
kinetic energy is initially KE and gravitational potential is initially Φ.

b) Assume a spherically symmetric mass distribution for a galaxy which seems to be often
approximately true since dark matter halos are often quite spherically symmetric it seems though
not always. Let the density profile be a power law

ρ = ρs

(

r

rs

)−α

= ρsx
−α ,

where ρs is a scale density, rs is a scale radius, x = r/rs is a dimensionless radius, and α is the
power. Determine the formula for interior mass M(r) (i.e., mass interior to radius r) in terms of a
scale Ms and x assuming α < 3.

c) Why can’t a galaxy have pure power law density profile from r = 0 to r = ∞, in fact? HINT:
Consider the divergence behavior of the interior mass formula.

d) There is a tricky point in considering potential change. When integrating up the potential energy
of a gravitating sphere, we use

PE(r) =

∫ r

0

[−GM(r)

r

]

4πr2ρ dr ,

where M(r) is the interior mass and Φ = −GM(r)/r is the gravitational potential r. This is the
right thing to do, but −GM(r)/r is not the potential at r in the fully assembled gravitating sphere.
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Why not? Show what the potential at r is (relative to infinity which is zero) for a gravitating sphere
of total radius R. HINT: Getting the signs right for potential is tricky. You have to do the sign
on every step right—or chance of being right is only 50 %.

e) Making use of the part (b) and the part (d) answers find the potential from x ≤ X for α < 3. Show
explicitly the cases for 1) α 6= 2, 2) α ∈ (2, 3) and x << X , 3) α < 2 and nd x << X , and 4) α = 2.

f) From the part (e) answer from the escape velocity formula for the case of α ∈ (2, 3) and x << X in
terms of the circular velocity for scaled radius x = 1. What is the escape velocity if circular velocity
is 200 km/s and α = 9/8? Why are galactic outflows hard to understand if α gets very close to 2?
Having α close to 2 is what is implied by the flat velocity curve ranges of observed disc galaxies.

SUGGESTED ANSWER:

a) Given ∆E = 0, ∆KE = −KE, and ∆Φ = −Φ, we find

1) 0 = ∆KE+m∆Φ = −KE−mΦ 2) KE =
1

2
mv2

esc = −mΦ 3) vesc =
√

2(−Φ) =
√

2|Φ| .

b) Behold:

M(r) =

∫ r

0

4πr′2ρ dr′ = 4πr3
s ρs

∫ x

0

x′2−α dx′ = 4πr3
s ρs

(

x3−α

3 − α

)

= Msx
3−α

where we have assumed that α < 3.

c) If α < 3, the integral diverges for x → ∞. If α = 3, the integral is a logarithm and diverges
for both x → 0 and x → ∞. If α > 3, the integral diverges for x → 0. The upshot is that no
real galaxy can have a pure power law density profile.

d) The integral is a process of adding mass to the growing sphere of radius r and mass M(r) with
nothing above r. The gravitational potential Φ = −GM(r)/r is exactly right for the surface
of the growing sphere relative to infinity. You bring differential mass 4πr2ρ dr from infinity
and add it the growing sphere with the correct contribution to potential energy. But after you
have added a finite amount of mass above r to radius R, the potential at r is given by

Φ = −
∫ r

∞

~F · d~r′ =

∫ ∞

r

~F · d~r′ = −
∫ ∞

r

GM(r′)

r′2
dr′

= −
∫ R

r

GM(r′)

r′2
dr′ −

∫ ∞

R

GM(R)

r′2
dr′ = −

∫ R

r

GM(r′)

r′2
dr′ − GM(R)

(

−1

r

) ∣

∣

∣

∣

∞

R

= −
∫ R

r

GM(r′)

r′2
dr′ − GM(R)

R
.

Note that signs are infernally tricky with gravitational potential. You have do every step
exactly right or you will make random sign errors and only be right 50 % of the time.

e) Recalling that we are requiring α < 3, we find

Φ = −
∫ R

r

GM(r′)

r′2
dr′ − GM(R)

R

Φ = −GMs

rs

∫ X

x

x′1−α dx′ − GMs

R
X3−α

Φ =































































−GMs

rs

(

X2−α − x2−α

2 − α

)

− GMs

R
X3−α for α 6= 2;

−GMs

rs

[

−
(

x2−α

2 − α

)]

= −GMs

rs

(

x2−α

α − 2

)

for α ∈ (2, 3) and x << X ;

−GMs

rs

(

X2−α

2 − α

)

− GMs

R
X3−α for α < 2 and x << X ;

−GMs

rs
ln

(

X

x

)

− GMs

R
X3−α for α = 2
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We see that for α ∈ (2, 3) and x << X , the result is independent of X . This is an easy result
to guess, but takes some care to prove.

f) For α ∈ (2, 3) and x << X , we find the escape velocity formula to be

vesc =



































√

2GMs

rs

(

x2−α

α − 2

)

= vcir

√

2x2−α

α − 2
in general;

(200 km/s) ×
√

2

α − 2
for x = 1 and vcir = 200 km/s;

800 km/s for x = 1, vcir = 200 km/s, and α = 9/8.

Since disc galaxies often have large density profile ranges where α ≈ 2, it is clear the escape
velocities can be very high. For example the escape speed from the center of the Milky Way
is ∼ 800 km/s (Ci-87). Such high escape velocities makes understanding galactic outflows
challenging since stellar winds and supernovae do not typically reach such velocities for the
bulk of their material.

Redaction: Jeffery, 2018jan01

024 qfull 01050 1 3 0 easy math: metallicity saturation in galaxies: On exams, do only parts a,b,d,e.
9. The metallicity of galaxies does not generally increase with cosmic time, but reaches an (approximate)

plateau due to gas inflow from the intergalactic/circumgalactic medium (which if intergalactic is of nearly
primordial gas: primordial cosmic gas fiducial mass fractions X = 0.75 H, Y = 0.25 He, Z = 0.001
metallicity which is overwhelmingly deuterium counted as a metal: Wikipedia: Big Bang: Abundance of
primordial elements) and the outflow of metal enriched gas from stellar evolution (i.e., stellar winds and
supernovae) back to the intergalactic/circumgalactic medium or into compact astro-bodies (compact
remnants, long-lived small mass stars, brown dwarts, planets, and smaller astro-bodies). The plateau
phase will probably not last forever since cosmological constant acceleration isolates all bound systems
not participating in the mean expansion of the universe from fresh primordial gas. So a slow metallicity
increase should occur despite gas inflow/outflows as the overall isolated bound system gas gradually
enriches. However, this enrichment seems very slow since cosmic time ∼ 5 Gyr after the Big Bang
(Weinberg 2016, arXiv:1604.07434) and will gradually turn off with the end of the stelliferous era
(theoretically cosmic time ∼ 0.15–105 Gyr: Wikipedia: Graphical timeline of the Stelliferous Era;
Wikipedia: Future of an expanding universe: The Stelliferous Era). In this question, will do a simple
modeling of the plateauing of galaxy metallicity.

NOTE: There are parts a,b,c,d,e,f. On exams, do only parts a,b,d,e and answer using minimal
words.

a) Write a (1st order ordinary autonomous) differential equation for galaxy gas density ρ (assumed to
be uniform) in terms of a constant inflow rate of gas F = (dρ/dt)inflow (not necessarily primordial
gas) and an outflow rate −κρ = −ρ/τ , where κ is the rate constant and τ = 1/κ is the time
constant. The outflow rate includes both outflow of gas back to the intergalactic/circumgalactic
medium and into compact objects.

b) Using an integrating factor solve the differential equation of part (a) with ρ0 as the initial density
at time zero (i.e., t = 0). Give the 1st-order-in-small-t solution and the asymptotic solution as
t → ∞ (which is also the constant solution of the differential equation). What name can be given
to the time constant τ?

c) Why do we get an asymptotic solution in part (b)?

d) Write a (1st order ordinary autonomous) differential equation for galaxy gas metal density Zρ
(assumed to be uniform) in terms of a constant inflow rate of metal-only gas ZinF = Zin(dρ/dt)inflow,
where Zin ∈ [0, 1]. Let the outflow rate be the same as in part (b): i.e., −κρ = −ρ/τ , where κ is
the rate constant and τ = 1/κ is the time constant. There is also a rate constant γ for the creation
metal-only gas in the galaxy from zero-metallicity gas with density (1 − Z)ρ.

e) The differential equation in part (c) can be solved for Z for general time t using the solution of
part (b), but it seems a bit tedious to get this solution. However, finding the asymptotic solution
Zasy as t → ∞ is easy. Find it. Check that Zasy is dimensionally correct and show that it satisfies
Zasy ∈ [0, 1] .
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f) We can make a crude estimate of current cosmic Zasy. First, let

κ =
(dρ/dt)outflow

ρ
=

3 M⊙/yr

ρ
,

where 3 M⊙/yr is roughly the rate of star formation for a galaxy like the Milky Way (Ci-
383) and we assume this is of order the overall gas loss rate due gas outflow back to the
intergalactic/circumgalactic medium and locking up of gas in compact astro-bodies. Second, let

γ =
[d(Zρ)/dt]metal creation

ρ
=

[5 SNe/(100 yr)] × (1 M⊙ metals/per SNe)

ρ
,

where 5 SNe/(100 yr) is roughly the rate of supernovae for a galaxy like the Milky Way (Wikipedia:
Supernova: Milky Way candidates) and we assume that this is of order the metal creation given
that each supernovae yields of order 1 M⊙ of metals. Let Zin = 0.001 the fiducial primordial cosmic
metallicity. Calculate Zasy with these values and discuss whether the result is reasonable or not.

SUGGESTED ANSWER:

a) Behold:
dρ

dt
= F − κρ .

b) Behold:

1)
dρ

dt
= F − κρ 2)

dρ

dt
+ κρ = F 3) eκt dρ

dt
+ eκtκρ = Feκt

4) eκtρ|t0 = Fτ(eκt − 1) 5) ρ = Fτ(1 − e−κt) + ρ0e
−κt .

Alternatively since F does not depend on ρ, we could solve as follows:

1)
dρ

dt
= F − κρ 2)

dρ

ρ − Fτ
= −dt

τ
3) ln |ρ′ − Fτ |

∣

∣

ρ

ρ0

= − t

τ

4) ln

∣

∣

∣

∣

ρ − Fτ

ρ0 − Fτ

∣

∣

∣

∣

= − t

τ
5) ρ − Fτ = (ρ0 − Fτ)e−t/τ

6) ρ = Fτ(1 − e−t/τ ) + ρ0e
−t/τ .

Thus, we have

ρ =







































Fτ(1 − e−κt) + ρ0e
−κt

= Fτ(1 − e−t/τ ) + ρ0e
−t/τ in general;

Ft + ρ0(1 − κt) = Ft + ρ0

(

1 − t

τ

)

for small t;

Fτ for t → ∞:
this is the asymptotic solution.

The time constant τ can be called the e-folding time.
c) So why do we get an asymptotic solution in part (b)? There is more than one answer. The

most immediately cogent answer is that that is what the mathematical solution gives us.
However, a more general answer is that the differential equation gives a singular constant
solution for dρ/dt = 0: i.e., constant solution ρ = F/κ = Fτ . Now a constant solution has
all orders of derivative equal to zero. Therefore, a non-constant solution that is infinitely
differentiable (which is all we can get from our differential equation) can never be equal to the
constant solution, except asymptotically at t = ±∞. Now the differential equation derivative
dρ/dt is positive/negative for ρ less/greater than the constant solution Fτ , and therefore ρ
must increase/decrease forever as time advances and since there is only one possible constant
asymptotic solution for it to approach, it must approach that one asymptotically: i.e., the
constant asymptotic solution Fτ .
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A perspective on the asymptotic solution (which is not part of the answer) is as follows.
The initial density just gives a transient solution (which unless it is large relative to the
asymptotic solution) will be relatively small in a few e-folding times. The ratio R of the
driven solution outflow to the inflow rate is

R =
κFτ(1 − e−t/τ )

F
=















1 − e−t/τ in general;

t

τ
for t/τ << 1;

1 for t → ∞.

When the driven inflow and outflow rates are equal (which is only asymptotically at t → ∞),
the density must be unchanging: i.e., must be a constant asymptotic solution.

d) Behold:
d(Zρ)

dt
= ZinF − κZρ + γ(1 − Z)ρ = ZinF − (κ + γ)Zρ + γρ .

e) The asymptotic solution is found by setting d(Zρ)/dt = 0. We get

Zasy =
ZinF + γρasy

(κ + γ)ρasy
=

ZinF + γFτ

(κ + γ)Fτ
=

Zin + γτ

(κ + γ)τ
=

Zin + γτ

1 + γτ
,

where we have used the fact that κτ = 1. Note the formula is dimensionally correct since
the terms in the numerator and denominator are all dimensionless and yield a dimensionless
Zasy as they should. Note a quantity being dimensionless does not mean not having a physical
nature. It just means the quantity is written in terms of natural units. Since Zin ∈ [0, 1], we
have Zasy ∈ [0, 1] by inspection.

Though not required by the question, we note

Zasy =















































Zin + γτ

1 + γτ
in general;

Zin for γτ = 0;

1 for γτ → ∞.

γτ

1 + γτ
for Zin = 0;

1 for Zin = 1;

Note if τ = 0, the gas inflowed is instantly outflowed and there is no way its metallicity can be
increased above Zin. On the other hand, if τ = ∞, the density goes to infinity asymptotically
and so does the metallicity.

e) First, with the given values

γτ =
γ

κ
=

[5 SNe/(100 yr)] × (1 M⊙ metals/per SNe)

3 M⊙/yr
≈ 0.017 .

Now

Zasy =
Zin + γτ

1 + γτ
≈ 0.001 + 0.017

1 + 0.017
≈ 0.017 .

The solar (surface) metallicity is fiducially 0.02 though one precise determination puts it at
0.0134 (Wikipedia: Metallicity: Mass fraction). The solar value is thought to be of order of
the cosmic present metallicity, and so our calculated value is of order correct. The fact that is
so close to 0.02 must be considered an accident since our input values have an estimated error
of a factor of 2 at least.

Redaction: Jeffery, 2018jan01


