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Cosmology NAME:

Homework 17 All: Bayesian Analysis

1. The Bayesian analysis iteration formula for iteration ℓ is

P (Ti|Kℓ) =
P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)

∑

j P (Dℓ|TjKℓ−1)P (Tj|Kℓ−1)
,

where {Ti} is an exhaustive set of possible theories about some aspect of reality,
Kℓ is background knowledge after iteration ℓ, Dℓ is data acquired in iteration ℓ,
P (Ti|Kℓ) is the posterior probabiltity of theory Ti to your knowledge for iteration
ℓ, P (Dℓ|TiKℓ−1) is the probability of Dℓ given theory Ti and background knowledge
Kℓ−1, and P (Ti|Kℓ−1) is the prior probabiltity of theory Ti to your knowledge for
iteration ℓ. That the iteration formula exists in principle is vital since it proves that
the ideal Bayesian analysis leads to true theories. That the ideal Bayesian analysis
can be approached in practice is also vital since that means it is a useful path to true
theories. In toy cases, one can actually do ideal Bayesian analysis. But in toy cases,
you know the true theory is included in the set of the set of possible theories which is
exhaustive by definition.

However, in practice, you usually only do iteraion 1 formally. Initial background
knowledge K0 implicitly contains vague Bayesian analysis iterations going back to
vaguely negative infinity. Also, you usually do not have and are not interested in
having an exhaustive set of theories {Ti}. You usually just have interest in a set of
interesting theories {Ti}: i.e., a set of theories that seem likely a priori. You usually
just assign the theories equal priors following the principle of indifference, unless you
has some other guidance. Evaluating the denominator of the iteration formula is
useless in this practical Bayesian analysis, and so is seldom done explicitly. What you
do do is evaluate the Bayesian odds ratio for any two of theories to compare them.
The Bayesian odds ratio for theories Ti and Tj is

P (Ti|Kℓ)

P (Tj|Kℓ)
=

P (Dℓ|TiKℓ−1)

P (Dℓ|TjKℓ−1)

P (Ti|Kℓ−1)

P (Tj |Kℓ−1)
= kB

P (Ti|Kℓ−1)

P (Tj|Kℓ−1)
,

where

kB =
P (Dℓ|TiKℓ−1)

P (Dℓ|TjKℓ−1)

is the Bayesian k factor or Bayesian evidence. If you have made used the principle
of indifference, all you have is the Bayesian evidence to compare the theories by.
But most theories have free parameters. How are they accounted for? You expand
P (Dℓ|TiKℓ−1) in the terms of the free parameters: i.e.,

P (Dℓ|TiKℓ−1) =

∫

P (Dℓ|Ti(θ)Kℓ−1)ρ(θ) dθ ,

where θ stands symbollically for all free parameters, ρ(θ) is the probability density
for all free parameters, the integration is over all free parameter space, and
P (Dℓ|Ti(θ)Kℓ−1) is, in fact, the likelihood or likelihood function. The hard part
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of Bayesian analysis is usually choosing ρ(θ) which is really the hard prior to evaluate.
Usually, you just assign a flat prior ρ(θ): i.e.,

ρ(θ) =







1

∆θrange

for θ in the range ∆θrange;

0 for θ not in the range ∆θrange.

The hard part is thus reduced to determining ∆θrange. Independent Bayesian analyses
can find very different Bayesian evidences depending on how the researchers choose
∆θrange. This is why Bayesian evidence is usually not considered decisive if kB is of
order a few or even of order 10. If kB is order 100 or 1000, then that may be decisive
depending on who is judging.

Note maximizing the likelihood gives you the best set of free parameters assuming
a theory is true. Using a theory with maximum likelihood parameters biases in favor
of the theory in Bayesian analysis since the theory is not assumed to be true or
usually even more likely than other interesting theories. In fact, eliminating the free
parameters by the integration above implements Occam’s razor: “Numquam ponenda

est pluralitas sine necessitate” (“Plurality must never be posited without necessity”).
You eliminate unnecessary and misleading hypotheses about the free parameters. This
elimination process is called:

a) Occamization. b) dithering. c) marginalization. d) buffering.
e) obscuration.

2. You are in Las Vegas, right? So you know dice (singular die). Let’s see if we can
predict the odds for a throw of two dice.

a) Let’s start being general, but not too general. You have two identical dice. They
each have I faces with dot count running i = 1, 2, . . . , I. The probability of any
face (i.e., any face landing facing up) is Pi. What is the probability for a dice
throw yielding faces i and i? What is the probability for a throw yielding first
face i and then face j where i 6= j. What is the probability for a dice throw
yielding faces i and j where i 6= j and you do not distinguish the order or, in
other words, you sum over the probabilities for the different orders.

b) Let the sum of the face dots yielded by a throw be k = i + j. What is the run of
possible k values (i.e., the ordered sequence of possible k values) and how many
values are there? Is there always a middle value? Why? What is the middle
value and how many values are above and below it?

c) Now what we really want to know is what is the probability Pk of the summation
of face dots being k = i + j: i.e., the probability distribution for a throw of
two dice which is our random variable. Determine the two summation formulae
needed and the number of terms in each summation. Hint The two formulae
can be adjusted to look the same, except for their limits. The real hard part
is determining limits. Draw an outcome square for the throw results with row
index i and column index j. The squares to include in the summation are on the
diagonals with i + j = k with k constant.

d) Specialize the Pk formulae to the case of equal face probability: i.e., all Pi = 1/I.
Conflate the two formulae into one with transformation k = k′+(I+1), and show
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that Pk′ is an even function of k′, find the limits on k′, and find the maximum
P ′

k value.

e) Specialize the Pk and Pk′ formulae to the case of ordinary dice with I = 6 and
Pi = 1/6. Tabulate the probability distributions Pk and Pk′ for the random
variables k and k′.

3. The multinomial theorem (from which the multinomial probability distribution is
derived) is generated by the generating function (using that expression loosely)

FN = FN
1 =

(

I
∑

i=1

Pi

)N

=
∑

i,j,...

PiPj . . . ,

where N is the number of factors in a sequence of factors, F1 is the multinomial
theorem for sequences of length 1, I is the number of variables and the order of the
multinomial theorem (e.g., I = 2 for the binomial theorem), Pi is factor i (which
for the multinomial probability distribution becomes probability of event i), the
sequence of factors PiPj . . . are the terms in the multinomial expansion resulting from
a straightforward branching multiplication before collecting terms into multinomial
terms,

∑

i,j,... is the sum over the sequences (i.e., uncollected terms), and the total

number of sequences is IN . Note that all possible sequences of factors Pi must occur
uniquely in the

∑

i,j,... since the branching pattern of all possibilities is exhaustive
and there can be no duplications since obviously the first factor in each sequence is
different.

a) There are, as aforesaid, IN sequences of factors. But what is the count of
sequences for each combination: i.e., for each set of sequences have the same sets
of factors Pi without distinguishing order. Such a count of sequences is called
a multinomial coefficient. Note that sequences differing by undistinguishable
factors are the same sequence in the branching multiplication that creates the
whole set of sequences.

Let the multinomial coefficient for each combination be C(N, {ni}), where
{ni} stands for the set of factors Pi in the sequences. To be explicit, every
distinct combination has a unique set {ni} otherwise it would not be a distinct

combination. Note
∑I

i=1 = N , of course. Derive the formula for C(N, {ni}) in
terms of N and {ni}. Hint: You will need factorials. Also, note the odd fact that
you have consider permutations of the same factor Pi in a sequence even though
these permutations just give the same sequence as it would occur in actually
creating the sequences by the branching multiplication.

b) The individual distinct sequences are usually not of interest. What one usually
wants is collect all the sequences corresponding to each unique combination since
they all have the same numerical value, and so in the probability distribution
all have the same probability. The collections are the multinomial terms for
the multinomial theorem. Using the result of part (a), derive the formula for a
multinomial term

P̃ (N, {ni}) ,

and the formula for multinomial theorem itself in terms of multinomial terms.
Just use

∑

{ni}
for the summation of the multinomial terms since there is no

simple way in general to explicitly order them in a summation.



4

c) If the factors Pi are identified as probabilities of events i, then we require

I
∑

i=1

Pi = 1 .

What is value of FN in this case and what does this value mean? What is the
probability of obtaining the combination of events {ni}?

d) The multinomial term P̃ (N, {ni}) is the multinomial probability distribution
itself. We can easily obtain some ancillary formulae about the multinomial
probability distribution. For example, the mean number of events j for the
multinomial probability distribution is

µj = 〈nj〉 =
∑

{ni}

njP̃ (N, {ni, Pi}) ,

where j is just a representative index. Derive the explicit formula for µj for the
multinomial probability distribution. Hint: The trick is treat the Pi as variables
in the multinomial theorem in both the forms

FN =
∑

{ni}

P̃ (N, {ni, Pi})

and

FN = FN
1 =

(

I
∑

i=1

Pi

)N

.

You then apply operator Pj(∂/∂Pj) to both of forms and afterward impose the
constraint that the constraint F1 =

∑

i Pi = 1.

e) The variance/covariance of a multinomial probability distribution is given by

σ2
jk = 〈(nj − µj)(nk − µk)〉 = 〈njnk〉 − µjµk .

Derive the explicit formula for σ2
jk for the multinomial probability distribution.

Explain the striking feature of covariance case (i.e., the case when j 6= k). Hint:

The trick is used in part (d) still works mutatis mutandis.

e) Specialize the results of parts (a), (b), and (c) of the binomial theorem: i.e., the
case where I = 2. For best understanding, let n1 = k and n2 = N − k, where
k ∈ [0, N ] is a usual parameter for specify all the sets {ni}.

4. The Poisson (probability) distribution is

P =
µx

x!
e−µ ,

where µ is the mean of integer random variable x, σ =
√

µ, and there is no upper
limit on x.

The Poisson distribution is appropriate for analyzing two kinds counting
observations which not completely distinct. The first kind of counting observation is



5

where the events occur randomly in time (or some similar variable), but there is a mean
number of events per unit time µ and the time of each event is zero or approximately
that. In this case, the Poisson distribution is exact if the time of an event is zero. An
obvious example of this kind of observation is counting the radioactive decays from a
long-lived radioactive sample.

The second kind of counting observation is where the random variable x (the
count of events) obeys an extreme binomial distribution where p the probability of x
on an individual trial is very small (i.e., p << 1) and consequently µ << n, where n is
the number of trials. If you actually do know n and p, you could just use the binomial
distribution itself, but the Poisson distribution may be an adequate approximation.
Note for the binomial distribution µ = np and σ =

√

np(1 − p) ≈ √
np = sqrtµ.

In both cases, you may often just have one count x, and not know µ nor σ.
However, you can estimate µ ≈ x, and thus σ ≈ √

x and this is often done.

a) Derive a cute formal general formula for the moments

〈xℓ〉 = e−µ
∞
∑

x=0

xℓ µx

x!

of the Poisson distribution, where ℓ runs 0, 1, 2, . . . . Use the formula to solve
moments for ℓ = 0, 1, 2 and for the formulae for µ and σ. Hint: Operating with
the operator [µ(∂/∂µ)]ℓ is the trick.

b) The derivation of the Poisson distribution for the first kind of counting observation
mention in the preamble is straightforward. Say τ is the average rate of random
events. The probability of observing no events in time t (starting from time t = 0)
obeys the differential equation

dP (x = 0, t) = −P (x = 0, t)
dt

τ
,

where P (x = 0, t) is the probability of having no events to t and dt/τ is the
differential probability of an event in dt. The solution for P (x = 0, t) is clearly

P (x = 0, t) = e−t/τ .

The differential formula for x events in t is

dP (x, t) = e−t/τ
x
∏

i=1

dti
τ

,

where we assume the events are instantaneous. Simple integration of all dti gives
the Poisson distribution plus accounting for overcounting with events pass each
other on the time line. Complete the proof of the Poisson distribution. Give the
explicit µ and σ formulae for this case.

c) Prove the Poisson distribution by taking the limit of the binomial distribution

P (x, n, p) =
n!

x!(n − x)!
px(1 − p)n−x
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where n → ∞, p → 0, np → µ (which is a finite nonzero value), and x is fixed.
Hint: You will need to expand (1 − p)n = (1 − µ/n)n in a binomial theorem
expression.

5. Bayes’ theorem in symmetric form is

P (AB) = P (A|B)P (B) = P (B|A)P (A) ,

where P is probability, A and B are events, P (A) is the probability of A, P (B) is
the probability of B, P (AB) is the probability of A and B, P (A|B) is the conditional
probability of A given B, and P (B|A) is the conditional probability of B given A. In
unsymmetric form,

P (A|B) =
P (B|A)P (A)

P (B)
or equivalently P (B|A) =

P (A|B)P (B)

P (A)
.

Note that in the notation we are using, AB is not the product of A and B, but the
union of A and B: i.e., AB is A and B.

a) Prove the expansion rule

P (AB) = P (A|B)P (B)

and Bayes’ theorem from frequentist definition of probability. Frequentist
definition states given population of events N , the probability of sampling events
with property A is P (A) = NA/N where NA is the number of events in the
population with property A.

Yours truly believes that probability only has meaning from the frequentist
definition. You can do a lot of probability formalim without the definition, but it
seems to have no meaning without the definition. Maybe yours truly is just
ignorant. However, the limitation to the frequentist definition isn’t really a
limitation in yours truly view since frequentist definition always applies even
if you can’t can’t calculate the probabilities with high accuracy from it. Thus,
Bayesian analysis can be applied generally.

b) Yours truly is not going to give a general description of Bayesian analysis
procedure here, but just a description of an ideal procedure that concerns itself
with the theories in order to find the true one. Say we have a system, the
exhaustive finite set of all theories of nonzero probability {Ti} that apply to the
system {Ti} and inital knowledge K0 about the system (which includes the set of
theories, of course). Given that the set of theories is exhaustive, their probabilities
to our knowledge (i.e., K0) is normalizable: i.e., we have

∑

i P (Ti|K0) = 1.
Now how is it possible to assign a probability to a theory Ti? Well if we know

the theory is true, P (Ti|K0) = 1 and if we know it is false, P (Ti|K0) = 0. What if
you don’t know whether Ti is true or false? Well there are procedures of assigning
numerical probabilities to theories based background knowledge. After all people
are always assessing theories as probable, very probable, improbable, or very
improbable based on their background knowledge. This assessment must be based
on some fuzzy frequentist analysis of the features that make up a theory. Now the
procedure of assigning (numerical) probabilities doesn’t have to be perfect—and
probably rarely is in practice—but the better it is, the faster in all probability the
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Bayesian analysis will converge to the true theory. One procedure is the principle
of indifference: just assign equal probabilies to the theories. By the principle of
indifference, if there are I theories, P (Ti|K0) = 1/I for all i.

In fact, the completely fuzzy assignments of probability only happens prior
to the first iteration of Bayesian analysis when our background knowledge is K0.
The zeroth probabilities P (Ti|K0) are our zeroth prior probabilities (AKA zeroth
priors). After completing Bayesian analysis iteration (ℓ − 1) we have posterior
probabilities (AKA posteriors) P (Ti|Kℓ−1) relative to the (ℓ−1)th iteration; they
are the priors for the iteration ℓ.

In iteration ℓ, we acquire new data Dℓ which gives us updated knowledge
Kℓ = DℓKℓ−1, where DℓKℓ−1 recall is a union, not a product. To get the
posteriors for the ℓth iteration, we apply Bayes’ theorem:

P (Ti|Kℓ) = P (Ti|DℓKℓ−1) =
P (Dℓ|TiKℓ−1)P (TiKℓ−1)

P (DℓKℓ−1)

=
P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)P (Kℓ−1)

P (Dℓ|Kℓ−1)P (Kℓ−1)
=

P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)

P (Dℓ|Kℓ−1)
.

Note that P (Kℓ−1) has canceled out, and so the result is valid no matter what
the value of P (Kℓ−1) though if we are doing the Bayesian analysis correctly it
should be 1.

Now if we actually have data Dℓ, then P (Dℓ) = 1. But P (Dℓ) is not what
is in the denominator of the result. We have P (Dℓ|Kℓ−1) which the probability
of getting data Dℓ given that we know Kℓ−1 which recall includes the knowledge
that the set {Ti} exists. We can, in fact, expand P (Dℓ|Kℓ−1) in the set {Ti}:

P (Dℓ|Kℓ−1) =
∑

j

P (Dℓ|TjKℓ−1)P (Tj |Kℓ−1) ,

where the summation is over all the set {Ti}. Now we have the Bayesian analysis
iteration formula

P (Ti|Kℓ) =
P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)

∑

j P (Dℓ|TjKℓ−1)P (Tj |Kℓ−1)
.

We note that P (Dℓ|Kℓ−1) is the weighted mean of the P (Dℓ|TjKℓ−1)’s where the
P (Tj|Kℓ−1)’s are the weights.

The last equation is in fact the probability update formula. Those theories
Ti whose ℓth posteriors are greater/lesser/equal relative to their (ℓ − 1)th priors
gain/lose/conserve credence.

We now assume that there is enough potential knowledge KL for a decisive
determination: i.e.,

P (Ti|KL) =

{

1 if Ti is true;
0 if Ti is false.

This means that the Bayesian analysis converges to truth as ℓ → L. Note
that convergence happens no matter how imperfect our method of assigning
probabilities is provided we keep iterating until we reach KL where only one
viable theory remains. However, the amount of KL actually varies depending on
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which data sets Dℓ we acquire and how accurate are our probability assignments
for P (Ti|K0) and P (Dℓ|TiKℓ−1). Obviously, if we make really good choices for
the data sets Dℓ and for probability assignments, convergence should be fast. If
we make really poor choices, we may be iterate to a very large KL and all the
probabilities calculated in the iteration may be wildly in accurate except that we
can calculate the P (Ti|KL)’s accurately and end the iteration. In this extreme
case, the Bayesian analysis wasn’t very useful, except as a tactic to keep going.
We just accumulated data until we had exhausted the possibilities and arrived at
truth.

There’s a relevant aphorism attributed to Ernest Rutherford (1871–1937): “If
you need statistics, you are doing the wrong experiment.” In fact, all aphorisms
are true and false (including this one). Howsoever, the point of Rutherford’s
aphorism is that you choose data acquisitions as decivively as possible to speed
the Bayesian analysis iteration (in a formal or informal sense) to completion.

The Bayesian analysis procedure described above is an ideal one which is
probably very seldom fully carried out. Much less ideal procedures are usually
used—and for darn good reasons. But it is important that the ideal procedure
exists: a procedure which guarantees the arrival at truth. We could not trust
Bayesian analysis if there were no ideal procedure to approach. If there were no
ideal procedure to approach, Bayesian analysis might fail in some cases no matter
how well we did it.

Does the foregoing seem OK to you? If not, why not?

c) From the Bayesian analysis iteration formula given in part (b) prove that the
P (Ti|Kℓ)’s are normalized even if the the P (Ti|Kℓ−1)’s are not. Why does this
normalization inevitably happen?

d) What does it mean if all P (Ti|Kℓ) are zero in Bayesian iteration step?

e) What does it mean if P (Ti|Kℓ) = 1, but your set of theories {Ti} was not actually
exhaustive.

f) What does it mean if P (Ti|Kℓ) = 1 and your set of theories {Ti} was actually
exhaustive.


