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Cosmology Name:

Homework 10: The Cosmic Microwave Background

002 qfull 00500 1 3 0 easy math: nu,lambda,hybrid representions
1. Specific intensity and related quantities (e.g., energy density per unit wavelength) are conventionally

given in three representations: photon energy representation IE , frequency represenation Iν , and
wavelength represenation Iλ. These represenations are related by differential expression

IE dE = Iν dν = Iλ (−dλ) ,

where the minus sign is occasionally omitted if one knows what one means—which is that a differential
increase in photon energy/frequency corresponds to a differential decrease in wavelength.

a) As well as the three conventional representations, there is a hybrid representation

EIE = νIν = λIλ

which has the same value whichever of E, ν, or λ is used as the independent variable. Prove
the hybrid representation equality. Hint: You will have use differentials of the logarithm of the
independent variables (e.g., d[ln(E)]) and make use of the de Broglie relations E = hν = hc/λ.

b) Suggest two or three reasons why people might want to use the hybrid represenation for graphing.

c) Planck’s law (AKA the blackbody specific intensity spectrum) in the frequency represenation is

Bν =
2hv3

c2

1

ex − 1
, where x =

hν

kT
=

hc

kTλ
.

Derive the energy representation BE , wavelength represenation Bλ, and the hybrid represenation
EBE = νBν = λBλ in E, ν and λ forms.

d) Derive the Rayleigh-Jeans law (small x, small E, small ν, large λ approximation) and the Wien
approximation (large x, large E, large ν, small λ approximation) for BE , Bν , and Bλ Hint: This
pretty easy albeit tedious.

SUGGESTED ANSWER:

a) First,

IE dE = Iν dν = Iλ (−dλ)

EIE d[ln(E)] = νIν d[ln(ν)] = λIλ {−d[ln(λ)]} .

Second,

E = hν = hc/λ

ln(E) = ln(hν) = ln(hc/λ)

d[ln(E)] = d[ln(ν)] = −d[ln(λ)] .

Dividing the first result by the second gives the required result:

EIE = νIν = λIλ QED.

b) First, since EIE = νIν = λIλ, there is no wondering about how the values would differ if you
graphed the one instead of the other since they are all the same. They hybrid represenation
is neutral. Second, if you use a logarithmic horizontal axis (which is often convenient for
large energy/frequency/wavelength bands), you can integrate up energy by eye which is useful
for quick estimates. Third, for the energy and frequency representations, there is often an
exponential decline as you go beyond the peak. Among other things, this is due to the inverse
exponential behavior of the Planck spectrum beyond the peak: so thermal or semi-thermal
will exhibit a rapid decline beyond the peak. If there is a rapid decline beyond the peak, using
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the hybrid representation can flatten the spectrum and save you from needing an ugly large
vertical range to see the whole spectrum.

c) Behold:

BE = Bν
dν

dE
=

2E3

h3c2

1

ex − 1
and Bλ = −Bν

dν

dλ
=

2hc2

λ5

1

ex − 1
,

and so

EBE =
2E4

h3c2

1

ex − 1
= νBν =

2hv4

c2

1

ex − 1
= λBλ =

2hc2

λ4

1

ex − 1
.

d) Behold:

BE =




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
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


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




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





2E3

h3c2

1

ex − 1
in general;

2E3

h3c2x
=

2E2

h3c2
kT for x << 1: Rayleigh-Jeans law;

2E3

h3c2
e−x for x >> 1: Wien approximation;

Bν =




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
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
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





2hv3

c2

1

ex − 1
in general;

2hv3

c2x
=

2v2

c2
kT for x << 1: Rayleigh-Jeans law;

2hv3

c2
e−x for x >> 1: Wien approximation;

Bλ =




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
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
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
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







2hc2

λ5

1

ex − 1
in general;

2hc2

λ5x
=

2c

λ4
kT for x << 1; Rayleigh-Jeans law;

2hc2

λ5
e−x for x >> 1: Wien approximation;

Redaction: Jeffery, 2018jan01

002 qfull 00510 1 3 0 easy math: Debye function and blackbody radiation results

2. The total Debye function (i.e., the sum of the first and second Debye functions) is

Dz =

∫

∞

0

xz

ex − 1
dx = z!ζ(z + 1) ,

(e.g., Wolfram Mathworld: Debye functions; Wikipedia: Debye function) where the factorial function

z! =














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

∫

∞

0
xze−x dx = z(z − 1)! for z not a negative integer and also not 0 for the second form;

n! for integer n ≥ 0;
√

π for z = −1/2;

(2z)!!

2(z+1/2)

√
π for half-integer z ≥ 1/2;
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and Riemann zeta function (without anayltic continuation considered)

ζ(s) =


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








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

∞
∑

ℓ=1

1

ℓs
in general;

ζ(1) =
∞
∑

ℓ=1

1

ℓ
= 1 +

1

2
+

1

3
+ . . . the divergent

harmonic series
(Ar-279);

ζ(2) =
π2

6
=

π2

2 · 3 = 1.644934066848226436472415166646 . . .

ζ(3) = 1.2020569031595942853997381615114 . . .

ζ(4) =
π4

90
=

π4

2 · 32 · 5 = 1.082323233711138191516003696541 . . .

ζ(5) = 1.036927755143369926331365486457 . . .

ζ(6) =
π6

945
=

π6

33 · 5 · 7 = 1.0173430619844491397145179297909 . . .

ζ(7) = 1.008349277381922826839797549849 . . .

ζ(8) =
π8

9450
=

π8

2 · 33 · 52 · 7 = 1.004077356197944339378685238508 . . .

ζ(9) = 1.002008392826082214417852769232 . . .

≈ 1 +

∫

∞

3/2

x−s dx = 1 +
(2/3)s−1

s − 1
integral

approximation;

1 +
1

2s
asymptotic form as
s → ∞.

(e.g., Wikipedia: Riemann zeta function; OEIS: Riemann zeta function).

a) Prove Dz = z!ζ(z + 1).

b) Determine the general moment formula Mn (where n is the moment power) for the distribution
f(x) = Axz/(ex − 1), where A is the normalization constant which you must determine too.
Specialize for n = 0 (the normalization), n = 1 (the mean), and n = 2. Determine the general
formula for the variance σ2

c) From the Planck’s law specific intensity,

Bν =
2hv3

c2

1

ex − 1
, where x =

hν

kT
=

hc

kTλ
,

show the total energy density of a blackbody radiation field is

ǫ = aT 4 ,

where

a =
8π5k4

15h3c3
= (7.5657332500339 . . .) × 10−16 J/m3/K4 = 1 J/m3 ×

(

1

6029.6164961230K

)4

is the radiation density constant. Remember to change an isotropic specific intensity into a density
you must multiply by 4π/c.

d) Show that the mean photon energy of blackbody radiation field is

E =
ζ(4)

ζ(3)
(3kT ) = (2.70117803291906 . . .) × kT

= 2.32769513× 10−4 eV × T = 1 eV ×
(

T

4296.09525 . . . K

)

,
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where k = (0.8617333262 . . .) × 104 eV/K.

e) It is quite possible to have a radiation field with a Planck law spectrum, but not a blackbody
radiation field energy density. Recall, an isotropic blackbody radiation field has energy density

ǫν =
4π

c
Bν .

Now say for example, say you have blackbody radiator sphere of radius R and you are a distance
r ≥ R from the center. The energy density at r is W = Ω/(4π) times that of isotropic blackbody
radiation field where Ω is the solid angle subtended by the sphere at r. The effect is called
geometrical dilution and, of course, is approximately true of stars. Show that the geometrical
dilution factor

W =
Ω

4π
=

1

2



1 −

√

1 −
(

R

r

)2




(Mi-120). Hint: Drawing a diagram may help.

SUGGESTED ANSWER:

a) Behold:

Dz =

∫

∞

0

xz

ex − 1
dx =

∫

∞

0

xze−x

(

∞
∑

ℓ=0

e−ℓx

)

dx =

∞
∑

ℓ=0

∫

∞

0

xze−(ℓ+1)x dx

=

∞
∑

ℓ=0

1

(ℓ + 1)z+1

∫

∞

0

tze−t dt = z!

∞
∑

ℓ=1

1

ℓz+1
= z!ζ(z + 1) QED.

b) Behold:

Mn = A

∫

∞

0

xz+n

ex − 1
dx =







































(z + n)!ζ(z + n + 1)

z!ζ(z + 1)
in general;

1 for normalization n = 0;

(z + 1)
ζ(z + 2)

ζ(z + 1)
for the mean n = 1;

(z + 2)(z + 1)
ζ(z + 3)

ζ(z + 1)
for n = 2.

For the variance,

σ2 = M2 − M2
1 =

[

(z + 1)

ζ(z + 1)

]2 [(
z + 2

z + 1

)

ζ(z + 3)ζ(z + 1) − ζ(z + 2)2
]

.

c) Behold:

ǫ =
4π

c

∫

∞

0

Bν dν =
4π

c

∫

∞

0

2hv3

c2

1

ex − 1
dν

=
4π

c

2h

c2

(

kT

h

)4 ∫ ∞

0

x3

ex − 1
dx =

4π

c

2h

c2

(

kT

h

)4

[3!ζ(4)] =
4π

c

2h

c2

(

kT

h

)4
π4

15

=
8π5k4

15h3c3
QED.

d) Behold:

E =

∫

∞

0
Bν dν

∫

∞

0
Bν/(hν) dν

= kT
3!ζ(4)

2!ζ(3)
=

ζ(4)

ζ(3)
(3kT ) = (2.70117803291906 . . .) × kT

= (2.32769513 . . .) × 10−4 eV × T = 1 eV ×
(

T

4296.09525 . . . K

)

QED.
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e) Let µ = cos θ, where θ is the angle measured from the radial direction from the sphere center.
Note that

dΩ = sin θ dθ dφ = −dµ dφ

and the cosine of the angle from the radial direction to the limb of the sphere is

µ = cos θ =

√
r2 − R2

r
=

√

1 −
(

R

r

)2

.

Behold:

W =
Ω

4π
=

1

4π

∫ 1

µ

∫ 2π

0

dµ dφ =
1

2
(1 − µ) =

1

2



1 −

√

1 −
(

R

r

)2


 QED.

Fortran-95 Code
print*

sigma=5.670374419e-8_np ! exact MKS

https://physics.nist.gov/cuu/Constants/Table/allascii.txt

clight=2.99792458e8_np ! exact

https://physics.nist.gov/cuu/Constants/Table/allascii.txt

boltev=0.8617333262e-4_np ! exact but irr

https://physics.nist.gov/cuu/Constants/Table/allascii.txt

! 1 23456789a1

radcon=4.0_np*sigma/clight

tem_radcon=radcon**(-0.25_np)

print*,’radcon,tem_radcon’

print*,radcon,tem_radcon

! 7.56573325003392847185E-0016 6029.6164961230119483

! 1 23456789a123456 1234 56789a123456

zeta3=1.2020569031595942853997381615114_np

zeta4=1.082323233711138191516003696541_np

coef=3.0_np*zeta4/zeta3

coefev=coef*boltev

tem_fid=1/coefev

print*,’coef,coefev,tem_fid’

print*,coef,coefev,tem_fid

! 2.7011780329190638961 2.32769513096571802645E-0004

4296.0952518945998619

! 1 23456789a123456 1 23456789a1 1234 56789a1

Redaction: Jeffery, 2018jan01

010 qfull 00110 1 3 0 easy math: The cosmic evolution of CMB/CRF
3. The cosmic background radiation (CBR)(which in the modern observable universe is mostly the cosmic

microwave background (CMB)) conserves photon number to good approximation. This means photon
number density n varies with time.

a) Prove that the energy density of the CBR obeys

ǫ = ǫ0

(a0

a

)4

,

where 0 refers to the modern observable universe or any other reference cosmic time and a is the
cosmic scale factor.

b) Assume that the CBR can be parameterized by

ǫ = aRT 4 ,
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where aR is the radiation density constant (usually symbolized by a) and T is a parameter that
would be temperature if the CBR had a Planck-law (i.e., blackbody) spectrum. Show that

T = T0

(a0

a

)

.

c) Planck’s law (AKA the blackbody specific intensity spectrum) in the frequency represenation is

Bν =
2hv3

c2

1

ex − 1
, where x =

hν

kT
=

hc

kTλ
.

Show that the CBR obeys this law as the observable universe evolves provided it obeys it at the
fiducial time and we define temperature evolution to obey the rule found in part (b). Hint: The
photons in a frequency bin stay in that frequency bin as the universe evolves, and so obey the same
energy scaling as the overall CBR. Thus at a general time, we have

Iν dν =
(a0

a

)4

Bν0
dν0 ,

where we have indeed assumed the fiducial time has a Planck-law spectrum. The proof requires
showing that Iν dν = Bν dν with the temperature evolution obeying the rule found in part (b).

SUGGESTED ANSWER:

a) Since photon number is conserved, photon density n goes as 1/a3. Now since photon energy
E goes as 1/a, we must have

ǫ ∝ nE ∝ 1

a3

1

a
=

1

a4
, and so ǫ = ǫ0

(a0

a

)4

QED.

b) We have,

ǫ = aRT 4 aRT 4 = ǫ0

(a0

a

)4

T ∝ 1

a
T = T0

(a0

a

)

QED.

c) Behold:

Iν dν =
(a0

a

)4

Bν0
dν0 =

(a0

a

)4 2hν3
0

c2

1

ex0 − 1
dν0

=
2hν3

c2

1

ex0 − 1
dν =

2hν3

c2

1

ex − 1
dν

= Bν dν ,

provided we define T by

x0 =
hν0

kT0
=

hν(a/a0)

kT0
=

hν

kT0(a0/a)
=

hν

kT
or T = T0

(a0

a

)

which is just the rule we found in part (b): QED.

Redaction: Jeffery, 2018jan01

010 qfull 00310 1 3 0 easy math: recombination studied
4. Let’s consider the recombination of the cosmic radiation field: i.e., recombination.

a) Consider the differential equation

dNe

dt
= −CN2

e + CNI(NH − Ne) .

This is very simplified equation for recombination assuming a pure hydrogen gas with number
density NH and ionizing photon density NI: both we assume to be constant over the short time
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scales. The Ne is the electron density which is also the hydrogen ion density by charge conservation.
The two C’s are rate coefficients which are equal by a detailed balancing argument that yours truly
is none too certain of. The products of the densities arise since the reactions are fluxes of one
kind of particle on density of another. Find the steady-state solution in terms of X = Ne/NH and
R = NI/NH and argue why it must be asymptotically approached as time goes to infinity.

Actually, the idea is that the steady-state solution is really a quasistatic process: “a
thermodynamic process that happens slowly enough for the system to remain in internal
equilibrium.” We are crudely/vaguely attempting to understand recombination in this question.
But we don’t get too far.

b) Find the limiting forms of solution X for R → 0 (to 1st order in small R), R = 1, and R → ∞ to
first order in small 1/R). What is special about X(R = 1) from a number point of view?

c) For the nonce, let’s define the recombination temperature of the cosmic radiation field by R(T ) = 1.
Let N be the photon density, we have

1 = R =
NI

NH
=

NI/N

NH/N
=

1

η
fI =

1

η

D
(2)
2 (x)

Dn
≈ 1

η

e−xx2

2ζ(3)
,

where we have approximated the second Debye function by leading term which is valid for x >> 1
and where x = ER/(kT ) where E = 13.605693009(84) eV is the Rydberg energy (i.e., the ionization
energy of hydrogen) and T is the recombination temperature that we are solving for. The baryon-
to-photon ratio η = 6× 10−10 for a fiducial value, ζ(3) = 1.2020569031595942853997381615114 . . .,
and k = 0.86173303× 10−4 eV.

Solve for x by iteration and then determine T . Remember a iteration formula tends to
converge/diverge when its slope is low/high relative to 1. You could write a small computer
program to do the solution. Hint: In a test mise en scène, just do the zeroth order solution:
i.e., no iteration.

SUGGESTED ANSWER:

a) Behold:

0 = −CN2
e +CNI(NH−Ne) 0 = X2 +R(1−X) X =

R ±
√

R2 + 4R

−2
X =

√
R2 + 4R − R

2
,

where only the positive solution is physically relevant.
First, since the differential equation is a 1st order one with no special features that would

give a stationary point at a finite time, it can only have stationary points at t = ±∞: i.e.,
asymptotic solutions. Second, we note that if right-hand side is positive/negative, then Ne will
increase/decrease with time but then the right-hand side will go to zero and the Ne will have
a stationary point. But by the first point, this can only be at t = ∞. So our solution is the
asymptotic solution: i.e., the steady-state solution.

b) Behold:

X =



































































√
R2 + 4R − R

2
in general;

R

2
for R << 1, and note

the ionized fraction
is not R in this limit;√

5 − 1

2
= 0.618033988749894848204586834365638117720 . . . which is the

golden ratio minus 1;

1 − 1

R
for R → ∞.

c) A good guess at convergent iteration formula is

x = − ln[2ζ(3)η] + 2 ln(x) since
dx

dx
=

2

x
<< 1
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for x rather large which it probably is. The computer program is displayed below. The values
obtained are:

x = 26.9444659685049923755 and T = 5859.74 K .

The recombination temperature (as we’ve defined it for the nonce) is not decoupling
temperature, but should be of the same order of magnitude. The fiducial decoupling
temperature is 3000 K. So our result is, indeed, not so far off.

Fortran-95 Code
print*

zeta3=1.2020569031595942853997381615114_np !

http://oeis.org/wiki/Riemann_zeta_function

eryd=13.605 693 009_np ! (84)

https://physics.nist.gov/cuu/Constants/Table/allascii.txt

boltev=0.86173303e-4_np ! (50)

https://physics.nist.gov/cuu/Constants/Table/allascii.txt

eta=6e-10_np ! fiducial baryon-to-photon ratio

!

https://en.wikipedia.org/wiki/Big_Bang_nucleosynthesis#Characteristics

x0=-log(2.0_np*zeta3*eta)

x=x0

i=0

do

i=i+1

xold=x

x=x0+2.0_np*log(x)

if(abs(xold-x)/x .le. 1.e-12_np) exit

print*,i,xold,x

end do

trec=eryd/(boltev*x)

print*,’x0,x,trec’

print*,x0,x,trec

! 20.3569101047609651092 26.9444659685049923755

5859.74001252925990268

Redaction: Jeffery, 2018jan01


