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Cosmology Name:

Homework 10: The Cosmic Microwave Background

1. Specific intensity and related quantities (e.g., energy density per unit wavelength) are conventionally
given in three representations: photon energy representation IE , frequency represenation Iν , and
wavelength represenation Iλ. These represenations are related by differential expression

IE dE = Iν dν = Iλ (−dλ) ,

where the minus sign is occasionally omitted if one knows what one means—which is that a differential
increase in photon energy/frequency corresponds to a differential decrease in wavelength.

a) As well as the three conventional representations, there is a hybrid representation

EIE = νIν = λIλ

which has the same value whichever of E, ν, or λ is used as the independent variable. Prove
the hybrid representation equality. Hint: You will have use differentials of the logarithm of the
independent variables (e.g., d[ln(E)]) and make use of the de Broglie relations E = hν = hc/λ.

b) Suggest two or three reasons why people might want to use the hybrid represenation for graphing.

c) Planck’s law (AKA the blackbody specific intensity spectrum) in the frequency represenation is

Bν =
2hv3

c2

1

ex − 1
, where x =

hν

kT
=

hc

kTλ
.

Derive the energy representation BE , wavelength represenation Bλ, and the hybrid represenation
EBE = νBν = λBλ in E, ν and λ forms.

d) Derive the Rayleigh-Jeans law (small x, small E, small ν, large λ approximation) and the Wien
approximation (large x, large E, large ν, small λ approximation) for BE , Bν , and Bλ Hint: This
pretty easy albeit tedious.

2. The total Debye function (i.e., the sum of the first and second Debye functions) is

Dz =

∫

∞

0

xz

ex − 1
dx = z!ζ(z + 1) ,

(e.g., Wolfram Mathworld: Debye functions; Wikipedia: Debye function) where the factorial function
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

























∫

∞

0
xze−x dx = z(z − 1)! for z not a negative integer and also not 0 for the second form;
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and Riemann zeta function (without anayltic continuation considered)
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in general;

ζ(1) =
∞
∑

ℓ=1

1

ℓ
= 1 +

1
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+
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3
+ . . . the divergent

harmonic series
(Ar-279);

ζ(2) =
π2

6
=

π2

2 · 3
= 1.644934066848226436472415166646 . . .

ζ(3) = 1.2020569031595942853997381615114 . . .

ζ(4) =
π4

90
=

π4

2 · 32 · 5
= 1.082323233711138191516003696541 . . .

ζ(5) = 1.036927755143369926331365486457 . . .

ζ(6) =
π6

945
=

π6

33 · 5 · 7
= 1.0173430619844491397145179297909 . . .

ζ(7) = 1.008349277381922826839797549849 . . .

ζ(8) =
π8

9450
=

π8

2 · 33 · 52 · 7
= 1.004077356197944339378685238508 . . .

ζ(9) = 1.002008392826082214417852769232 . . .

≈ 1 +

∫

∞

3/2

x−s dx = 1 +
(2/3)s−1

s − 1
integral

approximation;

1 +
1

2s
asymptotic form as
s → ∞.

(e.g., Wikipedia: Riemann zeta function; OEIS: Riemann zeta function).

a) Prove Dz = z!ζ(z + 1).

b) Determine the general moment formula Mn (where n is the moment power) for the distribution
f(x) = Axz/(ex − 1), where A is the normalization constant which you must determine too.
Specialize for n = 0 (the normalization), n = 1 (the mean), and n = 2. Determine the general
formula for the variance σ2

c) From the Planck’s law specific intensity,

Bν =
2hv3

c2

1

ex − 1
, where x =

hν

kT
=

hc

kTλ
,

show the total energy density of a blackbody radiation field is

ǫ = aT 4 ,

where

a =
8π5k4

15h3c3
= (7.5657332500339 . . .) × 10−16 J/m3/K4 = 1 J/m3 ×

(

1

6029.6164961230K

)4

is the radiation density constant. Remember to change an isotropic specific intensity into a density
you must multiply by 4π/c.

d) Show that the mean photon energy of blackbody radiation field is

E =
ζ(4)

ζ(3)
(3kT ) = (2.70117803291906 . . .) × kT

= 2.32769513× 10−4 eV × T = 1 eV ×
(

T

4296.09525 . . . K

)

,
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where k = (0.8617333262 . . .) × 104 eV/K.

e) It is quite possible to have a radiation field with a Planck law spectrum, but not a blackbody
radiation field energy density. Recall, an isotropic blackbody radiation field has energy density

ǫν =
4π

c
Bν .

Now say for example, say you have blackbody radiator sphere of radius R and you are a distance
r ≥ R from the center. The energy density at r is W = Ω/(4π) times that of isotropic blackbody
radiation field where Ω is the solid angle subtended by the sphere at r. The effect is called
geometrical dilution and, of course, is approximately true of stars. Show that the geometrical
dilution factor

W =
Ω

4π
=

1

2



1 −

√

1 −
(

R

r

)2




(Mi-120). Hint: Drawing a diagram may help.

3. The cosmic background radiation (CBR)(which in the modern observable universe is mostly the cosmic
microwave background (CMB)) conserves photon number to good approximation. This means photon
number density n varies with time.

a) Prove that the energy density of the CBR obeys

ǫ = ǫ0

(a0

a

)4

,

where 0 refers to the modern observable universe or any other reference cosmic time and a is the
cosmic scale factor.

b) Assume that the CBR can be parameterized by

ǫ = aRT 4 ,

where aR is the radiation density constant (usually symbolized by a) and T is a parameter that
would be temperature if the CBR had a Planck-law (i.e., blackbody) spectrum. Show that

T = T0

(a0

a

)

.

c) Planck’s law (AKA the blackbody specific intensity spectrum) in the frequency represenation is

Bν =
2hv3

c2

1

ex − 1
, where x =

hν

kT
=

hc

kTλ
.

Show that the CBR obeys this law as the observable universe evolves provided it obeys it at the
fiducial time and we define temperature evolution to obey the rule found in part (b). Hint: The
photons in a frequency bin stay in that frequency bin as the universe evolves, and so obey the same
energy scaling as the overall CBR. Thus at a general time, we have

Iν dν =
(a0

a

)4

Bν0
dν0 ,

where we have indeed assumed the fiducial time has a Planck-law spectrum. The proof requires
showing that Iν dν = Bν dν with the temperature evolution obeying the rule found in part (b).

4. Let’s consider the recombination of the cosmic radiation field: i.e., recombination.

a) Consider the differential equation

dNe

dt
= −CN2

e + CNI(NH − Ne) .

This is very simplified equation for recombination assuming a pure hydrogen gas with number
density NH and ionizing photon density NI: both we assume to be constant over the short time



4

scales. The Ne is the electron density which is also the hydrogen ion density by charge conservation.
The two C’s are rate coefficients which are equal by a detailed balancing argument that yours truly
is none too certain of. The products of the densities arise since the reactions are fluxes of one
kind of particle on density of another. Find the steady-state solution in terms of X = Ne/NH and
R = NI/NH and argue why it must be asymptotically approached as time goes to infinity.

Actually, the idea is that the steady-state solution is really a quasistatic process: “a
thermodynamic process that happens slowly enough for the system to remain in internal
equilibrium.” We are crudely/vaguely attempting to understand recombination in this question.
But we don’t get too far.

b) Find the limiting forms of solution X for R → 0 (to 1st order in small R), R = 1, and R → ∞ to
first order in small 1/R). What is special about X(R = 1) from a number point of view?

c) For the nonce, let’s define the recombination temperature of the cosmic radiation field by R(T ) = 1.
Let N be the photon density, we have

1 = R =
NI

NH
=

NI/N

NH/N
=

1

η
fI =

1

η

D
(2)
2 (x)

Dn
≈

1

η

e−xx2

2ζ(3)
,

where we have approximated the second Debye function by leading term which is valid for x >> 1
and where x = ER/(kT ) where E = 13.605693009(84) eV is the Rydberg energy (i.e., the ionization
energy of hydrogen) and T is the recombination temperature that we are solving for. The baryon-
to-photon ratio η = 6× 10−10 for a fiducial value, ζ(3) = 1.2020569031595942853997381615114 . . .,
and k = 0.86173303× 10−4 eV.

Solve for x by iteration and then determine T . Remember a iteration formula tends to
converge/diverge when its slope is low/high relative to 1. You could write a small computer
program to do the solution. Hint: In a test mise en scène, just do the zeroth order solution:
i.e., no iteration.


