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Cosmology NAME:

Homework 5: Advanced Solutions of the Friedmann Equation

005 qfull 00110 1 3 0 easy math: radiation-matter universe somewhat completely
1. The Friedmann equation for the radiation-matter universe (which applies to the observable universe up

to of order 10 Gyr) in general scaled form is

(

ẋ

x

)2

= Ω4,0x
−4 + Ω3,0x

−3

where x is the cosmic scale factor with x0 = 1 for cosmic present, τ = H0t is the scaled cosmic time
with t being cosmic time in time units and H0 being the Hubble constant, Ω4,0 is the radiation density
parameter for cosmic present, and Ω3,0 is the matter density parameter for cosmic present.

NOTE: There are parts a,b,c,d,e,f,g. On exams, do ONLY parts a,b,c. The parts a,b,c can be
done independently, and so don’t stop if you can’t do one.

a) Determine the radiation-matter equality scale factor xeq: i.e., the x value that makes the radiation
and matter mass-energy equal.

b) Defining y = x/xeq, rewrite the Friedmann equation into a nice integrable form dw = f(y) dy (i.e.,
a special case scaled form), where w = τ/τsc is rescaled time and the form has no constants. What
is τsc in terms of the density parameters?

c) Solve the Friedmann equation form found in part (b) for w(y) with w(y = 0) = 0. You will need
the table integral

∫

y dy
√

1 + y
=

2

3
(y − 2)

√

1 + y .

d) For w(y), write out the special cases w(y = 0) w(y) to 2nd order in small y, w(y = 1) (at the
radiation-matter equality) w(y = 2) (at 2 times the radition-matter equality) w(y = 3) (at 3 times
the radition-matter equality which is where the exact y(w) formula changes form), and w(y >> 1)
(the large y asymptotic limit).

d) Solve for the asymptotic limiting small w and large w forms of y(w).

f) Transform the limiting forms found in part (d) into the general scaled forms: i.e., into x(τ) forms.

g) This a challenging part if you have some time. Yours truly has probably spent more time than it is
worth trying to find good analytic approximate for solutions x(τ) for cases where no exact solution
exists or the exact solution exists, but is too complex for easy understanding. In fact, the V model
solutions (Jeffery 2025) provide understandable exact solutions which are analogues to the standard
traditional, but non-exact, solutions for the Friedmann equation found by Alexander Alexandrovich
Friedmann (1888–1925), Georges Lemaitre (1894–1966), Willem de Sitter (1872–1934), and others
long ago. There may be no better way in general to understand those standard traditional, but
non-exact, solutions than using those V model solution analogues. However, in special cases, there
may be. One special case, is the radiaton-matter universe. In fact, an exact solution for y(w) exists
with two mathematically equivalent formulae that look rather different (Jeffery 2026). But both
formulae are too complex for easy understanding. However, a fairly accurate, easy-to-understand
interpolation formula does exist that agrees asymptotically with the symptotic limiting small w
and large w forms of y(w) found in part (d). See if you can find it. HINT: The formula uses
arctan[ysmall(w)] and it takes some playing around to find it.

SUGGESTED ANSWER:

a) Behold:

Ω4,0x
−4 = Ω3,0x

−3 implies xeq =
Ω4,0

Ω3,0
.

b) Behold:

dτ =
dx

x
√

Ω4,0x−4 + Ω3,0x−3
=

dy

y
√

Ω4,0x−4 + Ω3,0x−3
=

y dy

y2
√

Ω4,0x−4 + Ω3,0x−3
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=
y dy

y2
√

Ω3,0

√

xeqx−4 + x−3
=

y dy

y2
√

Ω3,0

√

x−3
eq y−4 + x−3
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eq dτ =

y dy
√

1 + y

Ω2
3,0

Ω
3/2
4,0

dτ =
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√
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dw =
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√
1 + y

,

where

τsc =
Ω

3/2
4,0

Ω2
3,0

.

c) Behold:

w =

∫ y

0

y′ dy′

√
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3
(y′ − 2)

√

1 + y′
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1 + y +
4

3
.

d) Behold:

w =
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in general.

0 for y = 0.
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to 2nd order in small y.
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for y = 1: the radiation-matter

= 0.390524291751 . . . equality.

4

3
= 1.333 . . . for y = 2: 2 times

the radiation-matter equality.

8

3
= 2.666 . . . for y = 3: 3 times

the radiation-matter
equality and where
the exact y(w) formula
changes form.

2

3
y3/2 for y >> 1: the large y asymptotic

limit.

e) Behold:

yrad = (2w)1/2 and ymat =

(

3

2
w

)2/3

,

where the subscripts stand, respectively, for exact radiation universe solution and exact matter
universe solution.

f) Behold:

xrad =

[

2x2
eq

(

Ω2
3,0

Ω
3/2
4,0

)

τ

]1/2

=
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2
√

Ω4,0 τ
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xmat =
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2
x3/2

eq
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g) An approach to interpolation formulae for radiation-matter universe leads us to formulae
that start as the pure radiation universe solution and then using a linear-saturation formula
(speaking a bit loosely) transition to the matter universe solution gradually. All the
interpolation formulae considered, of course, obey

yinterpol =











yrad = (2w)1/2 for w << 1.

ymat =

(

3

2
w

)2/3

for w >> 1.

After some playing around, the following formulae were considered:

yinterpol =







































































































































































































(

yrad

1 + yrad

)

(1 + ymat) Making use of the simple

linear-staturation formula
to effect the transition.

tanh(yrad)(1 + ymat) Making use of the hyperoblic
tangent’s small argument
linearity and
large argument
saturation property.

arctan[yrad/(π/2)]

(π/2)
(1 + ymat) Making use of the

=

{

arctan[(2w)1/2/(π/2)]

(π/2)

}

arctangent’s small argument

×

[

1 +

(

3

2
w

)2/3
]

linearity and large

argument saturation property.

S
[

1 − e−[yrad+gw]/S
]

Where the constants

+ymat

(

1 − e−hw4/3
)

S = 1/C, g, and h

are chosen to make the
formula agree with the
exact radiation-matter
universe solution
to order w2 in small w.

Of the three interpolation formulae using a linear-saturation formula, the simple linear-
saturation formula is the poorest, the tangent linear-saturation formula is only a little better,
and the arctangent linear-saturation formula is much better. The differences are just due to
the peculiarities of these formulae.

To determine the relative error of our formulae, we specified y and calculate the exact w
for that y from the exact radiation-matter universe solution w(y) and then used the calculated
w in the interpolation formulae to find the approximate y values for the calculated w value.

For arctangent linear-saturation formula, relative error goes to zero as w1/2 as w → 0, is
∼ −1×10−3 at w = 4.9983 . . .×10−5 rises to ∼ 0.045 at w = 0.108588 . . . then falls to ∼ −0.03
at w = 8/3, and then is falling asymptotically toward zero reaching ∼ −0.044 as w = 3853 . . . .
Over the range w ∈ [4.9983 . . . , 8/3], the root mean-square error of representative sample of
points is ∼ 0.02. on the path to slowly going asymptotically to 0.

For the last formula, the constants can be determined from exact formulae which are
too complex to be worth writing out explicitly for each of C, g, and h. The C constant is
determined from a quadratic whose value feeds into a formula for g which and then C and
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g feed into a formula for h. We have not done this calculation yet. However, the values are
expected to be of order 1. In fact, using values of 1 for all the constants except g = 4/3 (which
makes the formula agree to first order in w with the exact formula), the last formula gives a
solution which has a greater maximum error than the arctangent linear-saturation formula by
a factor of order 3, but is significantly more accurate as w → 0 and asymptotically as w grows
large.

Fortran-95 Code
print*,’Radiation-matter universe for y=1.’

w=(4.0_np/3.0_np)*(1.0_np-1.0_np/sqrt(2.0_np))

print*,’1,w’

print*,1,w

! 1 0.39052429175126996742

! 123456789a123456789b

Redaction: Jeffery, 2018jan01


