
1

Cosmology & Galaxies NAME:

Homework 3: The Friedmann Equation

1. “Let’s play Jeopardy! For $100, the answer is: It was derived from general relativity in 1922 with the
assumptions of a homogeneous and isotropic universe and that all mass-energy in the universe could
be modeled by a perfect fluid. A Newtonian derivation (which required extra natural hypotheses) was
given in 1934.

What is the , Alex?

a) Einstein equation b) Milne-McCrea equation c) Synge equation d) Bondi equation
e) Friedmann equation

2. A Newtonian derivation of the Friedmann equation (with extra natural hypotheses) could easily have
been done in the 19th century, but it wasn’t. There were probably 3 reasons why 19th century
astronomers did not think of such a derivation. First, many were still thinking of a universe that was
static on average even though dynamic equilibrium seemed hard to arrange, even though the universe
was obviously not in thermodynamic equilibrium (and so why should be in dynamic equalibrium), and
even though idea existed that the Milky was held up by rotation around the center of mass located
somewhere. Second, they did not know that other galaxies existed though some believed this and they
had not observed the general redshifts of the objects they thought might be other galaxies. Third,
they thought in terms of Newton’s absolute space (i.e., a single fundamental inertial frame) and did not
think of the alternative idea completely compatible with their data that all unrotating
with respect to the observable universe were elementary inertial frames (i.e., frames with respect to which
Newtonian physics and all other physics could be referenced to). The elementary inertia frames could
be incorporated into more general inertial frames (e.g., center-of-mass inertial frames) and the whole
observable universe could organized into the more general inertial frames. There is whole hierarchy of
general inertial frames that tops out with the comoving frames of the expanding universe.

What is the , Alex?

a) star frames b) planet frames c) free-fall frames d) thermodynamics frames
e) gravity frames

3. “Let’s play Jeopardy! For $100, the answer is: This theorem (originally proven by Newton by primitive
means) allows one to show by means of a COROLLARY that spherically symmetric masses should
interact gravitationally as though they are point masses as long as they are do not interpenetrate.

What is the , Alex?

a) Newton theorem b) shell theorem c) point-mass theorem d) sphere theorem
e) waste book theorem

4. “Let’s play Jeopardy! For $100, the answer is: The theorem that states that the only attractive central
forces that give closed orbits for all bound orbits are the inverse-square law force and the attractive
linear force (AKA Hooke’s law force or the radial harmonic oscillator force). All attractive central forces
give closed CIRCULAR orbits, of course.”

What is , Alex?

a) the virial theorem b) Euler’s theogonic proof c) the brachistochrone problem
d) Schubert’s unfinished symphony e) Bertrand’s theorem

5. The solutions of the Friedmann equation have characteristic cosmological quantities some of which
are called Hubble quantities since the Hubble constant is one of their ingredients. The table below
displays some the cosmological quantities. Since the currently determined values of the quantities
always fluctuate a bit depending on whose analysis is used, we have written the quantities as fiducial
values with correction factors that are 1 to within a few percent: h70 is the Hubble constant divided
by 70 (km/s)/Mpc (i.e., H0/(70 (km/s)/Mpc)), ωm,0 = Ωm,0/0.3, and ωΛ = ΩΛ/0.7. The asymptotic
Hubble quantities are those that will be the Hubble quantities as cosmic time goes to infinity if the
Λ-CDM model is correct.

Table: Cosmological Quantities
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Cosmic scale factor for the present cosmic time a0 = 1 by convention
Hubble constant H0 = 70h70 (km/s)/Mpc
Hubble time tH = 1/H0 = (13.968 . . .)/h70 Gyr
Hubble length ℓH = c/H0 = (13.968 . . .)/h70 Gly = (4.2827 . . .)/h70 Gpc
Critical density ρcritical = [3H2

0/(8πG)] = (9.2039 × 10−27)h2
70 kg/m3

= (1.3599× 1011)h2
70 M⊙/Mpc3

AKA Hubble density (i.e., the density implied by the Hubble constant at cosmic present)
Cosmological constant matter density parameter Ωm,0 = 0.3ωm,0

Cosmological constant Λ density parameter ΩΛ = 0.7ωΛ

Asymptotic Λ Hubble parameter HΛ = H0

√
ΩΛ =

√

Λ/3 = (58.566 . . .)h70
√

ωΛ (km/s)/Mpc
Asymptotic Λ Hubble time tHΛ

= (16.6955 . . .)/(h70
√

ωΛ) Gyr

Given that the Λ-CDM model is correct, to 1st order, the observable universe is already expanding
like a cosmological-constant universe with a = a0 exp(∆t/tHΛ

) (where ∆t = t − t0) and this formula
becomes more correct as time advances. On what time scale ∆t will the matter mass-energy density of
the observable universe fall to of order 2 % of the total mass-energy? Note you have to solve for a/a0

from

Ωm = Ωm,0

(a0

a

)3

≈ 0.02ΩΛ

and then solve for ∆t.

a) tHΛ
. b) 2tHΛ

c) 3tHΛ
. d) 4tHΛ

. e) 5tHΛ
.

6. In this problem, we will derive the generic Gauss’ law in its integral form and then specialize to the
gravity and Coulomb force cases.

NOTE: There are parts a,b,c,d. Some of the parts can be done independently, and so do not stop
if you cannot do a part.

a) Consider the generic inverse-square law central force

~f =
q

r2
r̂ ,

where q is a generic charge for the force located at the origin. Now consider the differential surface
area vector d ~A = dA n̂ for a CLOSED surface. The unit vector n̂ is normal to the differential
surface and points in outward direction. The differential solid angle subtended by the differential
surface area is dΩ. Prove

~f · d ~A = q(± dΩ)

where the upper/lower cases are for the solid angle cone going outward/inward through the
differential surface area. Note the charge could be inside or outside the closed surface. HINT:

This is an easy question, but a few words of explanation are needed. But NO words are during
exams.

b) Consider a differentally small cone extending from the origin. It intersects the closed surface n
times. Note that closed surface is finite, and so the cone must exit the closed surface for good at
some point. We form the sum

n
∑

i=1

~f · d ~Ai ,

where sum is over all intersections. What is the sum equal to in terms of solid angle for all cases?

c) Say you had multiple charges qi with total charge Q and total charge Qenclosed inside a closed
surface. Evaluate

∮

~f · d ~A .

The result is the generic Gauss’ law in its integral form. Specialize the result for the cases of gravity
and the Coulomb force.

d) What is the necessary condition for a force to obey Gauss’ law?
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7. Remarkably the linear force obeys analogues to Gauss’s law and shell theorem for the inverse-square
law force. Let the linear-force field (force per unit charge) for a point charge be

~f = kqrr̂ ,

where k is a constant which could be positive or negative, q is the charge (of some unspecified kind), and
r is the distance from the point charge. We assume Newtonian physics, and so to maintain Newton’s
3rd law, we require

~F1,2 = kq1q2r1,2r̂1,2 ,

where ~F1,2 is the force of point charge 1 on point charge 2.
There are parts a,b,c,d,f. Some of the parts can be done independently, and so do not stop if you

cannot do a part. Omit part (f) during exams.

a) Without words, for a close surface derive the linear-force Gauss’ law

∮

~f · d ~A = kQ ,

where ~f is the field due to the entire charge distribution, the integral is over the whole close
surface, and Q is the total charge of the charge distribution wherever it is in space. HINT: Recall
the divergence theorem (AKA Gauss’ theorem)

∮

~Y · d ~A =

∫

∇ · ~Y dV ,

where Y is a general vector field and the volume integral is over all volume V inclosed by the
closed surface (Wikipedia: Divergence theorem). Recall also the divergence operator for spherically
symmetric system in spherical coordinates obeys

∇ · ~Z =
1

r2

∂(r2Zr)

∂r
,

where Z is spherically symmetric, but otherwise general, and Zr is the radial component of ~Z
(Arfken-104).

b) For what symmetries can the linear-force field be easily solved for directly from the linear-force
Gauss’ law?

c) Without words, solve for the linear-force field for a spherically symmetric charge distribution. What
simple charge distribution would give an equivalent linear-force field for all radius r? What can this
result be called? How is this equivalent linear-force field different from the analogue result with the
inverse-square-law force?

d) Without words, show for a general charge distribution 1 and a spherical symmetric charge
distribution 2 that the force of distribution 1 on distribution 2 is exactly the same as when
distribution 2 is replaced point-charge 2. If charge distribution 1 were also spherically symmetric,
what be the force between them be equal to and what would it be if their centers coincided exaclty?

e) Say you had a charge distribution that maintained spherically symmetry no matter what, that had
its center of mass at its center, and the only external forces that acted on it were external linear
forces. How would described its motion? Recall Newton’s 2nd law:

~Fnet external = m~acm ,

where ~Fnet external is the net external force on a body of mass m and acm is the center of mass of the
body. Given the result of part (d) Without words, show for two spherically symmetric distribution
charges that the force of distribution 1 on distribution 2 is exactly the same HINT: Recall the
part (d) answer.

f) Is the linear force for spherically symmetric mass distribution with mass as its charge consistent
with linear force that occurs in the Newtonian derivation of the Friedmann equation:

~F =
Λ

3
mrr̂ ,
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where m is a test particle mass. There is no right answer. This is a discussion question.

8. The Friedmann equation of general relativity (GR) cosmology in its most standard form (e.g., Wikipedia:
Friedmann equations: Equations) is

H2 =

(

ȧ

a

)2

=
8πG

3
ρ − k

a2
+

Λ

3
,

where H is the Hubble parameter (which at current cosmic time is the Hubble constant H0 and has
fiducial value 70 (km/s)/Mpc), a is the cosmic scale factor, ȧ is the time derivative of the cosmic scale
factor with respect to cosmic time t, G = 6.67430(15) × 10−11 J m/kg2 is the gravitational constant,
ρ is the density of a uniform perfect fluid (in old-fashioned jargon AKA the cosmological substratum:
Bo-75–76) which is used to model the universal mass distribution, k is called the curvature (Li-24,28)
k/(c2a2) is called Gaussian curvature (CL-12,29), c = 2.99792458× 108 m/s is the vacuum light speed
as usual. and Λ is the cosmological constant which is the simplest form of the dark energy even though
is only a from of energy in one interpretation. Note k is often defined with an unabsorbed c2: i.e., the
shown k is replaced by kc2.

There are parts a,b,c. Some of the parts can be done independently, and so do not stop if you
cannot do a part. During exams do ONLY parts a,b,c,d.

a) Without words prove the Friedmann equation starting from the work-energy theorem

Emechanical =
1

2
mv2 − GMm

r
− 1

2

Λ

3
mr2 ,

where m is the mass of a test particle.

b) Without words prove the general Hubble law v = Hr, where v is recession velocity (i.e., the velocity
between comoving frames) and r is proper distance (i.e., the distance measurable in with a ruler at
one instant in cosmic time).

c) What is the asymptotic Hubble law (i.e., Hubble law valid in the limit z → 0)?

9. The scaled Friedmann equation for multi-component (power-law) density components is

h2 =

(

ẋ

x

)2

=
∑

p

Ωp,0x
−p ,

where 0 indicates the fiducial time which may be cosmic present, h = H/H0 is the scaled Hubble
parameter with H0 being the Hubble constant, x = a/a0 is the scaled cosmic scale factor, x0 = 1,
ẋ = dx/dτ is the rate of change of the scaled cosmic scale factor, τ = H0t = t/tH0

is the scaled time
with tH0

being the Hubble time, the Ωp,0 are the density parameters for the density components at the
fiducial time with their sum being 1, and p are the powers of the power-law density components.
NOTE: There are parts a,b,c,d,e,f,g. On exams, do ONLY parts a,b,c,d.

a) Without words, derive the general asymptotic solution τ(x) and its inverse x(τ) for the leading
density component as τ → 0 (i.e., the density component with highest p). As a shorthand, this
solution can be called the early universe solution. Assume p > 0. To avoid pointless generality,
assume x(τ = 0) = 0 (i.e., there is a point origin at time zero).

b) Without words, derive early universe formula for Ωp(τ) for p > 0.

c) Without words, derive the special case early universe solutions for p = 1, 2, 3, 4.

d) Without words, derive the Hubble parameter h = ẋ/x and the deceleration parameter q =
−ẍx/(ẋ)2 = −ẍ/(xh2) for the general early universe with p > 0. Simplify the latter as much
as possible. For what p values is the universe in positive/negative acceleration? For what p value
is the universe coasting?

e) We now assume the universe has only one density component with power p > 0. Without words,
derive the generic age of the universe formula (which we assume to the fiducial time where x = 1)
for τ and t and give the fiducial value version for t with the Hubble time tH0

= (13.968 . . .Gyr)/h70,
where h70 = H0/[70 (km/s)/Mpc]. special case solutions for p = 1, 2, 3, 4. Note the fi
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f) We assume the universe has only one density component with power p = 0. Without words, derive
x(τ) and x(t) assuming x(0) = 1. Note this universe is the de Sitter universe and the Hubble
constant H0 =

√

Λ/3.

g) Students are now welcome to view a table in the answer to this part that presents the single density
component solutions plus relevant features for powers p = 4, 3, 2, 1, 0. Note that if we assume that
the dependence of the density components on the scale factor is due to a perfect fluid pressure
obeying the equation of state ppressure = wρc2 where w is a constant parameter (with no special
name), then power

p = 3(1 + w) .

The w values are included in the table.

10. The differential equation (DE) for the perfect fluid of cosmology of the Friedmann equation is

ρ̇ = −3
ȧ

a

(

ρ +
p

c2

)

,

where ρ is mass-energy in the comoving frames of Friedmann cosmology and p is isotropic pressure
in those frames (in some sense) (Liddle 26). The perfect fluid DE can be derived rigorously from
general relativity (Carroll 333–334) or, perhaps fudgily, from classical thermodynamics. Remarkably,
this equation does not guarantee conservation of energy in the ordinary sense of classical physics: it
does embody the general relativity feature that the covariant derivative of the energy-momentum tensor
is zero (Carroll 117,120): i.e., the energy-momentum conservation equation. General relativity may or
may not in some sense conserve energy for cosmology, but certainly gravitating mass-energy is allowed
to appear and disappear by the perfect fluid DE.

Multiple perfect fluids can exist and if they are assumed to act independently (which is the usual
cosmological assumption), then they all obey there own perfect fluid DE: i.e., for perfect fluid i

ρ̇i = −3
ȧ

a

(

ρi +
pi

c2

)

.

In current standard cosmology (i.e., the ΛCDM model or simple variations thereof), it is assumed
that the perfect fluid equation of state (EOS) is of the form

p = wρc2 ,

where w is a constant parameter that seems to have no special name. Most standard/interesing values
of w are given by

w =











































0 for nonrelativistic (NR) mass-energy (AKA “matter”
or “dust”: Liddle-40);

1/3 for extreme relativistic (ER) mass-energy: most obviously photons,
but also the ER neutrinos of the Big Bang era and early cosmic dark ages;

−1 for cosmological constant (which name can also be used for constant dark energy;
−1/3 for zero-acceleration (or constant ȧ) universes such as

Fulvio Melia’s Rh = ct universe or a universe with cosmic scale
determined only by negative curvature k.

Solve for the formula for ρ(a) for general w and the 4 special cases of w listed above. Assume a0 and
ρ0 for cosmic present values.

11. Here we do the quick derivations of the Friedmann equation, the fluid equation, the Friedmann
acceleration equation, and some other results.

NOTE: There are parts a,b,c,d,e,f,g. On exams, do ONLY parts a,b,c,d,e. Some of the parts can
be done independently, and so do not stop if you cannot do a part.

a) Without words, derive the Friedmann equation in standard form (with the cosmological constant
force FΛ = (Λ/3)mr included) from classical physics with the hypotheses that all free-fall frames
are elementary inertial frames (as told to us by general relativity) and that the shell theorem for
a spherically symmetric mass distribution can be extended to infinite distance (which is validated
by Birkhoff’s theorem from general relativity). The derivation makes use of classical conservation
of mechanical energy. You should end up with a −k/a2 term among other things. You can a draw
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diagram if you like. HINT: Start with the conservation of mechanical energy of a test particle of
mass m:

E =
1

2
mv2 − GMm

r
−

(

1

2

)

Λ

3
mr2 .

b) Without words and starting from the 1st law of thermodynamics

dE = T dS − p dV + µ dN ,

derive the cosmological fluid equation in standard form (which means with dS = 0 adn dN = 0)
and in a form with ρ̇a/ȧ equal to something for use in part (d). Recall the rest-frame energy is
E = ρc2V .

c) Specialize the fluid equation to the special case where the equation of state is p = wρc2 where w
is the constant equation of state (which seems to have no special name). Determine the explicit
solution ρ(a) for the special case where ρ0 = ρ(a0). HINT: You will have to eliminate the time
derivative.

d) Without words, derive the acceleration equation (or Friedmann acceleration equation) in standard
form using parts (a) and (c). A subtle point is that you have to assume that the graviational
potential energy formula continues to be valid (though perhaps with a different meaning) for cases
where mass is not conserved. There is an argument why it should, but that is beyond the scope of
this question.

e) Without words, derive from the Friedmann equation the de Sitter universe solution which has ρ = 0
and k = 0, but Λ 6= 0.

f) Without words, derive the scaled Friedmann equation

h2 =

(

ẋ

x

)2

= Ωnon-k,Λ + Ωk + ΩΛ

with the scalings x = a/a0, τ = H0t, h = H/H0, ka = k/a2
0, and ρc = 3H2

0/(8πG). Note the
subscript 0 indicates fiducial time t0 which is often cosmic present and is not in general the Hubble
time. Implicitly show expressions for ρk, and ρΛ and the density parameters in the derivation.
What is the curvature equation at the fiducial time: i.e., the formula for Ωk,0. What does it mean
if Ωk,0 = 0 exactly.

g) Without words, derive the scaled accelertion equation using the same scalings and expressions as
in part (f) and p = wρc2.

12. Consider the following linear 1st order differential equation (DE):

x′ = A − kx ,

where t is the independent variable, A > 0 is a constant, and k > 0 is the rate constant.
There are parts a,b,c,d. Parts (a) and (b) can be done independently at least.

a) Solve for the constant solution xA. HINT: This is easy.

b) We can now write the DE as
x′ = k (xA − x) .

Without solving for non-constant solution describe what it must look like as a function of t for
arbitrary initial value x0 = x(t = 0). In particular, where are its stationary points if any? HINT:

Consider the continuity of all orders of derivative of x.

c) Given x0 = x(t = 0), solve for the solution x(t), x′(t), and the 1st order in small t solution x1st(t).
HINT: You can use an integrating factor, but there is a more straightforward way.

d) What is the e-folding time te of your solution and what does it signify? What is the x(te)? What
is the x1st(te)? What is remarkable about x1st(te)?

13. First order autonomous ordinary differential equations (FAODEs), linear or nonlinear, only have
solutions with stationary points at infinity (SPIs), (except for special cases which are not all that
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rare) and constant solutions. Actually, each SPI corresponds to a constant solution which could also be
viewed as a continuum of stationary points. Note an autononous differential equation depends only on
functions of the dependent variable, and so has no explicit dependence on the independent variable.

To investigate the SPI behavior of FAODEs consider the (somewhat general) FAODE

x(1) = [f(x)]
1/k

,

where t (not necessarily time) is the independent variable, the superscript (1) means 1st derivative with
respect to t, f(x) is an infinitely differentiable function with zeros at set of values {xi}, and k > 0. We
limit k to being greater than zero to avoid uninteresting generality. Since f(x) is infinitely differentiable
at (general) xi, we can expand f(x) about xi with some radius of convergence: i.e.,

f(∆x) =

∞
∑

j=ℓ

∆xjfj = ∆xℓfℓ + . . . ,

where ∆x = x − xi, the fj are expansion constants, and ℓ > 0 is the lowest (nonzero) order in the
expansion. Note ℓ 6= 0 since we have assumed xi is a zero of f(x): i.e., f(xi) = 0.

We will primarily be examining the lowest order solutions in ∆x, and so we will be dealing with

∆xℓ/kf
1/k
ℓ and related expressions. Mathematically, if ℓ/k is not an integer, complex numbers can

arise in these expressions. However, we are only interested FAODEs and their solutions corresponding
to physical systems involving real numbers. In these systems, the solutions just never evolve into
the complex number realm. So we are not going to concern ourselves with question what happens
mathematically if some our expressions can give rise to complex numbers. They never give rise to
complex numbers physically.

NOTE: There are parts a,b,c,d,e,f,g,h,i,j,k. On exams, only do parts i,j.

a) What is the behavior of x as a function of t between the points in the set {xi}.
b) In this question we are only interested in the SPI behavior and constant solution behavoir, and

so we are only interested in the behavior of x(t) when it is arbitrarily close to xi where SPI and
constant solutions occur. Therefore expand the FAODE about xi with dependent variable ∆x to
lowest order in the exponent.

c) Determine the formula p(n) for the exponent of ∆x in the n derivative of ∆x (for the lowest order
of the FAODE) with respect to t. HINT: Drop all constants that turn up in the differentiations.

d) What is behavior of the t derivatives of ∆x when x = xi for ℓ/k ≥ 1? What solutions x(t) are
implied by ℓ/k ≥ 1?

e) What is behavior of the t derivatives of ∆x for f(xi) for ℓ/k < 1 assuming the formula p(n) never
equals zero? What solution x(t) behavior is implied by ℓ/k < 1 in this case? Only a short answer
is expected to the last question.

f) If ℓ/k < 1 and the formula p(n) goes to zero for a stopping nst, what is the formula for ℓ/k as
a function of nst and what are the values of ℓ/k for the set nst = 1, 2, 3, . . . ,∞ and what do the
nst = 1 and nst = ∞ cases mean? What is the formula nst as a function of ℓ/k? What is this
formula good for?

g) What is implied by a stopping nst ∈ [2,∞) (i.e., an actual integer nst in this range)? Give the
solution for small ∆x(t) with with initial condition ∆x(t = 0) = 0. Describe the function behavior
at ∆x(t = 0) = 0: i.e., maximum or minimum stationary point or rising or falling inflection point.

h) What would you expect the two likeliest values for ℓ to be for physically relevant FAODEs? What
would you expect the two likeliest value for k 6= 1 to be for physically relevant FAODEs?

i) Now we intuited for the case of ℓ/k ≥ 1 that the stationary point would be a SPI, but we did
not prove this directly. To prove directly, we need to show that the small ∆x (meaning small in
absolute value) solutions of

∆x(1) = ∆xℓ/kf
1/k
ℓ

that go to zero only do so as t → ∞. Solutions that go to zero are convergent solutions. This means
that the constant solutions they correspond to are stable solutions: small perturbations from the
constant solutions damp out. Those that do not go to zero are divergent solutions. This means
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that the constant solutions they correspond to are unstable solutions: small perturbations from
the constant solutions cause non-stopping divergence from the constant solutions. Here consider
the ℓ/k = 1 case and the solutions for ∆x(t) starting from t = t0 and ∆x = ∆x0 as initial
conditions. Determine the solutions and under what conditions they are convergent/divergent.
Does convergent solution, in fact, have a SPI? HINT: Let y = ±∆x where the upper/lower case
is for positive/negative ∆x0.

j) Repeat part (i) for the case of ℓ/k > 1.

k) An optional continuation of the discussion of the part (h) answer.

14. In this problem, we will get some more insight into first order autonomous ordinary differential equations
(FAODEs) with stationary points that are not stationary points at infinity (SPIs) by examining a
solution beyond solution to lowest (nonzero) order around the stationary points. Consider the FAODE

x(1) = f(x) ,

where f(xi) = 0 (i.e., x = xi gives a stationary point of some kind) and the independent variable is t
(not necessarily time). However,

x(2) =
df

dx
x(1) =

df

dx
f(x) 6= 0

for x = xi. This means the stationary point is not a SPI.
NOTE: There are parts a,b,c,d. On exams, only do parts a,b,c.

a) Let

g(x) =
df

dx
f(x)

and determine a formal solution for f(x).

b) Assume x(t) has maximum and minimum at, respectively, xi and −xi. Now invent the simplest
f(x) you can starting from the part (a) answer, except it has a general constant coefficient so as to
give a general scale to the derivative x(1).

c) Now solve for x(t) given the part (b) answer. HINT: You could do this by integrating x(t), but
differentiating x(t) lead to solution by inspection.

d) Say a FAODE is given by

x(1) = [f(x)]
1/k

,

where t is the independent variable (not necessarily time), k > 0, f(x) is infinitely differentiable,
and f(x) = ∆xℓfℓ + . . . is the expansion of f(x) around the stationary point xi with ∆x = x − xi

starting with the lowest nonzero order. Then the lowest order FAODE is

∆x(1) = xℓ/kf
1/k
ℓ ,

In order for a solution of the FAODE to have stationary point that is not a SPI, there must be a
stopping (derivative order) nst given the formula

nst =
1

1 − ℓ/k

where an actual stopping nst must be an integer. If the formula gives a non-integer value, then
there is a singularity in the behavior of some order of derivative of x(t) at x = xi and that behavior
takes some analysis to determine. An actual stopping nst gives the only nonzero derivative order
of x(t) at x = xi. What are the ℓ and k values for the FAODE used in the part (c) and are they
consistent with a nonzero derivative order n = 2 which is what we imposed in the preamble?


