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Condensed Matter Physics
NAME:

Homework 1: Atoms and Molecules: Due as announced on the course web page in the tentative
schedule. Homework solutions will be posted sometime after the due date in the tentative schedule. The
solutions are intended to be (but not necessarily are) super-perfect and often go beyond a fully correct
answer.

001 qfull 00200 1 3 0 easy math: Levi-Civita symbol
1. Let ijk be general integers from the range 1, 2, 3. The Levi-Civita symbol is defined

ǫijk =

{

1 if ijk are in cyclic order;
−1 if ijk are in anticyclic order;
0 if any two of ijk are equal.

The Levi-Civita symbol has many uses in mathematics and physics. There are two identities involving
the Levi-Civita symbol that are useful to know. The first because it is useful in proving the second and
the second because it turns up in many proofs.

The first identity is

ǫijkǫℓmn = δiℓδjmδkn + δimδjnδkℓ + δinδjℓδkm − δimδjℓδkn − δinδjmδkℓ − δiℓδjnδkm .

The second is
ǫijkǫiℓm = δjℓδkm − δjmδkℓ ,

where there is an Einstein summation on the repeated index i.

a) As a first step in proving the first identity, describe the behavior of its left-hand side (LHS). The
following parts to part (f) complete the proof of this identity

b) Now show that
RHS(ijk, ℓmn) = RHS(ℓmn, ijk) .

This equality shows that the RHS has the same exchange symmetry as the LHS side which is
necessary to proving the identity.

What the equality shows is that properties proven for the set of integers in the 2nd argument
position (i.e., the 2nd slot) also hold for the set of integers in the 1st argument position (i.e., the
1st slot). For example say that you proved a functional property for ℓmn in RHS(ijk, ℓmn). That
functional porperty must also hold for ijk in RHS(ℓmn, ijk) since ijk and ℓmn are general sets
of integers. But since RHS(ijk, ℓmn) = RHS(ℓmn, ijk), the property must also hold for ijk in
RHS(ijk, ℓmn). Thus, any functional property we prove for the 2nd slot also holds for the 1st slot,
and we don’t have to repeat the proof nor make a point of not having to repeat the proof.

c) Now show
RHS[ijk, P±(ℓmn)] = ±RHS(ijk, ℓmn) ,

where P± stands for permutation with the upper case being cyclic and the lower case being
anticyclic.

d) Now show that the RHS is zero if any two of ℓmn are all equal.

e) Given that all of the ijk have distinct values and all of ℓmn have distinct values, show that the
RHS is 1 if the values of ijk and ℓmn have the same cyclicity (i.e., differ in order from each other
by an even number of permutations) and −1 if they have different cyclicity (i.e., differ in order from
each other by an odd number of permutations).

f) Now complete the proof of the first identity. HINT: There is little left to do.

g) Why can’t the LHS of the first identity be factored into two identical formulae for the Levi-Civita
symbol? HINT: The is little left to do.

h) Now prove the second identity from the first identity. into two identical formulae for the Levi-Civita
symbol? HINT: This is easy.
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SUGGESTED ANSWER:

a) The LHS is zero if any two of ijk are equal or any two of ℓmn are equal and otherwise it is not
zero. If both ijk and ℓmn are made of distinct values, the LHS is not zero. When not zero,
the LHS equal 1 if ijk and ℓmn have the same cyclicity and −1 if they have different cyclicity.
Since ǫijk and ǫℓmn are just scalars, they do commute. Thus ǫijkǫℓmn = ǫℓmnǫijk.

b) For the RHS, note that the order of ijk are the same in every term and the order of ℓmn

runs through all 3! = 6 permutations going through all the terms. If you do the same set of
permutation operations to put the ℓmn integers all into the order ℓmn order to the ijk integers
simultaneously, the sets of ijk integers now run all 3! = 6 permutations going through all the
terms. You then can just commute the indices of the Kronecker delta functions and you get

RHS(ijk, ℓmn) = RHS(ℓmn, ijk) ,

QED. It is probably easiest to do this proof by inspection.
But if paranoia afflicts, then explicitly

RHS(ijk, ℓmn) = δiℓδjmδkn + δimδjnδkℓ + δinδjℓδkm − δimδjℓδkn − δinδjmδkℓ − δiℓδjnδkm

= δiℓδjmδkn + δkℓδimδjn + δjℓδkmδin − δjℓδimδkn − δkℓδjmδin − δiℓδkmδin

= δℓiδmjδnk + δℓkδmiδnj + δℓjδmkδni − δℓjδmiδnk − δℓkδmjδni − δℓiδmkδni

= RHS(ℓmn, ijk) ,

where we have used the fact that δij = δji. Thus, we have

RHS(ijk, ℓmn) = RHS(ℓmn, ijk) ,

QED all over again.

c) The proof is by inspection. But one can elaborate a bit. A cyclic permutation keeps the sum
of the first/second three terms the same. An anticycle permutation changes the first/second
into the second/first three terms.

d) Now we know that
RHS[ijk, P−(ℓmn)] = −RHS(ijk, ℓmn) .

A particular anticycle permutation case is

RHS(ijk, ℓnm) = −RHS(ijk, ℓmn) .

Now if m = n, we also have

RHS(ijk, ℓnm) = RHS(ijk, ℓmn) .

The conclusion is that
RHS(ijk, ℓmm) = 0 .

Obviously, the same is true for any anticyclic permutation of any two of ℓmn. Thus, we have
proven that if any two of ℓmn are equal, RHS(ijk, ℓnm) = 0.

e) Obviously only 1 term in of the RHS can be non-zero in this case and it must be either 1 or −1.
If the values of jkm are cyclic/anticyclic and the values of ℓmn are cyclic/anticyclic, non-zero
term is one of the first three in the RHS, RHS = 1, and the orders differ by an even number
of permutations (which could be zero permutations). If the values of jkm are cyclic/anticyclic
and the values of ℓmn are anticyclic/cyclic, RHS = −1, and non-zero term is one of the second
three in the RHS, RHS = −1, and the orders differ by an odd number of permutations.

f) Parts (b) through (e) show that the RHS behaves like the LHS in call cases. Valid is

ǫijkǫℓmn = δiℓδjmδkn + δimδjnδkℓ + δinδjℓδkm − δimδjℓδkn − δinδjmδkℓ − δiℓδjnδkm .
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g) To be factorable, the number of LHS terms would have to be the square of an integer and the
number of factors Kronecker delta functions in a term would have to be even. Neither of these
things is true. So the LHS can’t be factored into identical formulae for the Levi-Civita symbol.

Actually, the Levi-Civita symbol cannot be written as a simple formula containing
Kronecker delta functions of the form δjk and perhaps other straightforward elements. The
proof of this is that no one ever presents or hints that such a formula is possible.

One can, however, write a somewhat tricky formula for the Levi-Civita symbol using
Kronecker delta functions:

ǫijk = δi+1,jδj+1,k − δi−1,jδj−1,k ,

where there is NO Einstein summation and where the values obey a sort of cyclic math. The
three integers 1, 2, and 3 obey ordinary addition, except 1 is next “above” 3 and 3 is next
“below” 1. Thus, for any integer i (out of 1, 2, 3), i ± 3 = i. It is now clear for distinct ijk

that the RHS is 1 if ijk are cyclic in their values and −1 if ijk are anticyclic in their values.
You could verify this tediously if you afflicted by paranoia. If any two of ijk have the same
values, then the RHS is zero. If i = j or j = k, then the RHS is clearly is zero. Now i and k

have to differ by 2 in order for the two terms both be non-zero. But if i = k, the i and k differ
by 0 or 3. This i = k, the RHS sice is zero. Thus we have proven cyclic-math identity.

h) Begorra:

ǫijkǫimn = δiiδjmδkn + δimδjnδki + δinδjiδkm − δimδjiδkn − δinδjmδki − δiiδjnδkm

= 3δjmδkn + δkmδjn + δjnδkm − δjmδkn − δknδjm − 3δjnδkm

= δjmδkn − δjnδkm .

and thus valid is
ǫijkǫimn = δjmδkn − δjnδkm .

The second identity is very tedious to prove without having the first identity in hand.
The cyclic math formula for the Levi-Civita formula,

ǫijk = δi+1,jδj+1,k − δi−1,jδj−1,k ,

can also be used to prove the second identity. Since the Einstein summation rule is turned off
for the cyclic math formula, we have to use explicit summation signs. Behold:

∑

i

ǫijkǫimn =
∑

i

(δi+1,jδj+1,k − δi−1,jδj−1,k)(δi+1,mδm+1,n − δi−1,mδm−1,n)

=
∑

i

[δi+1,jδj+1,kδi+1,mδm+1,n − δi+1,jδj+1,kδi−1,mδm−1,n

− δi−1,jδj−1,kδi+1,mδm+1,n + δi−1,jδj−1,kδi−1,mδm−1,n]

=
∑

i

[δi+1,jδj+1,kδi+1,mδm+1,n − δi − 1, j − 2δj+1,kδi−1,mδm−1,n

− δi+1,j+2δj−1,kδi+1,mδm+1,n + δi−1,jδj−1,kδi−1,mδm−1,n]

= δj,mδj+1,kδm+1,n − δj−2,mδj+1,kδm−1,n − δj+2,mδj−1,kδm+1,n + δj,mδj−1,kδm−1,n

= δj,mδj+1,kδm+1,n − δj−2,mδj+1,kδj−3,n − δj+2,mδj−1,kδj+3,n + δj,mδj−1,kδm−1,n

= δj,m(δj+1,kδm+1,n + δj−1,kδm−1,n) − δj,n(δj−2,mδj+1,k + δj+2,mδj−1,k)

= δj,m(δj+1,kδj+1,n + δj−1,kδj−1,n) − δj,n(δj+1,mδj+1,k + δj−1,mδj−1,k)

= δj,m(δj+1,kδj+1,n + δj−1,kδj−1,n + δj,kδj,n) − δj,n(δj+1,mδj+1,k + δj−1,mδj−1,k + δj,kδj,m)

= δj,mδkn − δj,nδkm .

The proof using the cyclic math formula is not as elegant as I’d hoped.

Redaction: Jeffery, 2014jan01


