Name:

Intro Astro Lab Prep Quiz: Sunspots

Instructions: There are X multiple-choice problems each worth 1 mark for a total of X marks altogether. Choose the BEST answer, completion, etc., and DARKEN fully the appropriate circle on the table provided below. Leave no answers blank. If you do not know answer, eliminate wrong ones and guess. Read all responses carefully. NOTE long detailed responses won't depend on hidden keywords: keywords in such responses are bold-faced capitalized.
This is a $2 X$ minute quiz.

1. Observationally, a \qquad is a small dark region of roughly circular or irregular shape or some other kinds of shape on the surface (i.e., photosphere) of the Sun.
a) sunspot
b) sun dog
c) sun hole
d) sun pit
e) sun welt
2. The earliest record of a sunspot was by Chinese astronomer Ge Dan (4th century BCE) in:
a) 1000 BCE .
b) 364 BCE .
c) 1066 .
d) 1610 .
e) 1929 .
3. An early consequence of the telescopic discovery of sunspots was the discovery that the Sun:
a) rotated.
b) periodically deformed into a cigar shape.
c) was red.
d) had magnetic fields.
e) had electric fields.
4. The Sun rotates:
a) once around every hour.
b) like solid sphere.
c) differentially.
d) on an axis lying in the ecliptic plane
e) not at all.
5. The Sun can rotate differentially since it is:
a) not in orbit.
b) like the Earth.
c) a liquid sphere.
d) a solid sphere.
e) a gas sphere.
6. Helioseismology tells that the Sun interior to about $0.65 R_{\odot}$:
a) has sunspots.
b) does not rotate.
c) is a solid sphere.
d) rotates approximately like a solid sphere.
e) rotates very differentially.
7. The surface equatorial sidereal period of the Sun is \qquad . As one moves toward the poles, the sidereal period increases and reaches a limiting value of about \qquad -.
a) 38 days; 24.5 days
b) 365.25 days; 38 days
c) 100 days; 365.25 days
d) 24.5 days; 38 days
e) 365.25 days; 1001 days
8. "Let's play Jeopardy! For $\$ 100$, the answer is: This kind of rotation or revolution period is regarded as the true physically-motivated period since it is referenced to inertial frames. In our modern general relativity understanding, inertial frames are reference frames in free fall under gravity not rotating with respect to the observable universe (i.e., the bulk matter of the observable universe). All other frames of reference are noninertial frames. However, noninertial frames can changed into effective inertial frames with the use of inertial forces which are not real forces, but techniques for accounting for the noninertial nature of noninertial frames. Inertial forces are not seen as tricks since they have a fundamental connection to gravity. The supreme local inertial frame for Earth in modern understanding is the one defined by cosmologically remote galaxies and the cosmic microwave background radiation."

What is a/an \qquad , Alex?
a) synodic period
b) sentence period
c) periodic table period
d) asynchronous period
e) sidereal period
9. To relate synodic and sidereal periods for some kinds of astronomical motions consider the following formula:

$$
360^{\circ}=\left(R-R_{\oplus}\right) p_{\mathrm{syn}}
$$

where R is the (sidereal) rotation rate of an astro-body (in degrees per unit time), $p_{\text {syn }}$ is the synodic period of the body, and R_{\oplus} is the (sidereal) revolution rate of the Earth (in degrees per unit time). Both R and R_{\oplus} are assumed constant as a simplifying approximation. Note ($R-R_{\oplus}$) is the rate of
rotation of astro-body relative to the Earth. Hereafter, we will think of the astro-body and Earth as aligned at time zero as a mental simplification though this assumption is not necessary to the analysis. If $\left(R-R_{\oplus}\right)>0$, the astro-body laps the Earth and $p_{\text {syn }}>0$. If $\left(R-R_{\oplus}\right)<0$, the Earth laps the astro-body and $p_{\mathrm{syn}}<0$ (i.e., one must count p_{syn} as a negative time in this case). If $\left(R-R_{\oplus}\right)=0$, the astro-body and Earth are at relative rest and $p_{\text {syn }}=\infty$. Now $R=360^{\circ} / p$ and $R_{\oplus}=360^{\circ} / p_{\oplus}$, where p and p_{\oplus} are the sidereal periods of, respectively, the astro-body and the Earth. Note that p must be counted as negative time if the astro-body rotates opposite to the Earth: i.e., it has retrograde rotation. After a little algebra, one finds \qquad
a) $1 / p=p_{\oplus}+1 / p_{\text {syn }}$
b) $1 / p=1 / p_{\oplus}+p_{\text {syn }}$
c) $p=1 / p_{\oplus}+1 / p_{\text {syn }}$
d) $1 / p+1 / p_{\oplus}=1 / p_{\text {syn }}$
e) $1 / p=1 / p_{\oplus}+1 / p_{\text {syn }}$

