Name:

Intro Astro Lab Prep Quiz: Lab 2: The Sky

Instructions: There are 10 multiple-choice problems each worth 10 marks for a total of 100 marks altogether. Choose the **BEST** answer, completion, etc., and **DARKEN** fully the appropriate circle on the table provided below. Read all responses carefully. **NOTE** long detailed responses won't depend on hidden keywords: keywords in such responses are bold-faced capitalized.

This is a 10 minute quiz.

	a	b	с	d	e		a	b	\mathbf{c}	d	е
1.	Ο	0	Ο	Ο	Ο	6.	Ο	Ο	0	0	0
2.	Ο	Ο	Ο	Ο	Ο	7.	Ο	Ο	Ο	Ο	Ο
3.	Ο	Ο	Ο	Ο	Ο	8.	Ο	Ο	Ο	Ο	Ο
4.	Ο	Ο	Ο	Ο	Ο	9.	Ο	Ο	Ο	Ο	Ο
5.	0	0	0	0	Ο	10.	Ο	Ο	0	0	0

Answer Table for the Multiple-Choice Questions

1. "Let's play *Jeopardy*! For \$100, the answer is: It is an imaginary sphere centered on the Earth, set at infinity, and used to project all astronomical objects on for mapping."

What is the _____, Alex?

a) celestial globe b) celestial sphere c) celestial cube d) Boundless

- e) sphere of the fixed stars
- 2. Which of the following in **NOT** on the celestial sphere?
 - a) celestial equator b) north celestial pole c) celestial meridian d) north pole e) ecliptic
- 3. From the Earth-at-rest perspective, the celestial sphere rotates ______ on the ______ once _____.
 - a) westward; celestial axis; civil day b) eastward; celestial axis; sidereal day
 - c) westward; celestial axis; sidereal day d) westward; celestial equator; sidereal day
 - e) eastward; celestial equator; civil day
- 4. The celestial sphere mapped onto a spherical surface is a:
 - a) sky globe b) celestial sphere c) celestial globe d) celestial glove e) terrestrial globe
- 5. The equatorial coordinate system for the celestial sphere is analogous to the ______ for the Earth.
 - a) geographical coordinate system b) horizontal coordinate system c) constellation system d) galactic coordinate system e) GPS system
- 6. "Let's play *Jeopardy*! For \$100, the answer is: These coordinates depend on time because of the Earth's axial precession."

What are _____, Alex?

a) longitude and latitude b) horizontal coordinates c) local coordinates

d) Cartesian coordinates e) equatorial coordinates

7. "Let's play *Jeopardy*! For \$100, the answer is: These coordinates are most useful for locating objects on the celestial sphere at one instant in time at one place on Earth."

What are _____, Alex?

a) moral coordinates b) longitude and latitude c) Cartesian coordinates d) equatorial coordinates e) horizontal coordinates

- 8. "Let's play *Jeopardy*! For \$100, the answer is: It is the angular coordinate of the horizontal coordinate system that is measured from the horizon along a great circle that passes through zenith."
 - What is _____, Alex?

a) polar angle b) altitude c) height d) azimuth e) algol

9. In the northern hemisphere north of the tropics, a meridian transit of the Sun occurs at azimuth ______ (as one would usually record it) and in the southern hemisphere south of the tropics, at azimuth ______ (as one would usually record it).

a) 180° ; 0° b) 0° ; 180° c) 90° ; 270° d) 0° ; 0° e) 180° ; 180°

10. The general formula for altitude along the meridian is

$$A_{\rm N/S} = 90^{\circ} + (\pm)_{\rm N/S}(L - \delta)$$

where N/S means measured from due north/south, $(\pm)_{N/S}$ means plus/minus for measured from due north/south, L is latitude counted positive/negative for north/south latitude, and δ is declination.

The declination of the south celestial pole (SCP) is -90° and in Las Vegas the latitude is approximately 36° N. For Las Vegas, what is the altitude of the SCP from due south and is it above, on, or below the horizon?

a) 0° ; on the horizon. b) 24° ; above the horizon. c) -36° ; below the horizon d) 54° ; above and below the horizon. e) -90° ; below the horizon.