Name:

Intro Astro Lab Prep Quiz: Lab 2: The Sky

Instructions: There are 10 multiple-choice problems each worth 10 marks for a total of 100 marks altogether. Choose the BEST answer, completion, etc., and DARKEN fully the appropriate circle on the table provided below. Read all responses carefully. NOTE long detailed responses won't depend on hidden keywords: keywords in such responses are bold-faced capitalized.
This is a 10 minute quiz.

Answer Table for the Multiple-Choice Questions

	a	b	c	d	e		a	b	c	d	e
1.	O	O	O	O	O	6.	O	O	O	O	O
2.	O	O	O	O	O	7.	O	O	O	O	O
3.	O	O	O	O	O	8.	O	O	O	O	O
4.	O	O	O	O	O	9.	O	O	O	O	O
5.	O	O	O	O	O	10.	O	O	O	O	O

1. "Let's play Jeopardy! For $\$ 100$, the answer is: It is an imaginary sphere centered on the Earth, set at infinity, and used to project all astronomical objects on for mapping."

What is the \qquad , Alex?
a) celestial globe
b) celestial sphere
c) celestial cube
d) Boundless
e) sphere of the fixed stars
2. Which of the following in NOT on the celestial sphere?
a) celestial equator
b) north celestial pole
c) celestial meridian
d) north pole
e) ecliptic
3. From the Earth-at-rest perspective, the celestial sphere rotates \qquad on the \qquad once per \qquad -
a) westward; celestial axis; civil day
b) eastward; celestial axis; sidereal day
c) westward; celestial axis; sidereal day
d) westward; celestial equator; sidereal day
e) eastward; celestial equator; civil day
4. The celestial sphere mapped onto a spherical surface is a:
a) sky globe
b) celestial sphere
c) celestial globe
d) celestial glove
e) terrestrial globe
5. The equatorial coordinate system for the celestial sphere is analogous to the \qquad for the Earth.
a) geographical coordinate system
b) horizontal coordinate system
c) constellation system
d) galactic coordinate system
e) GPS system
6. "Let's play Jeopardy! For $\$ 100$, the answer is: These coordinates depend on time because of the Earth's axial precession."

What are \qquad , Alex?
a) longitude and latitude
b) horizontal coordinates
c) local coordinates
d) Cartesian coordinates
e) equatorial coordinates
7. "Let's play Jeopardy! For $\$ 100$, the answer is: These coordinates are most useful for locating objects on the celestial sphere at one instant in time at one place on Earth."

What are \qquad Alex?
a) moral coordinates
b) longitude and latitude
c) Cartesian coordinates
d) equatorial coordinates
e) horizontal coordinates
8. "Let's play Jeopardy! For $\$ 100$, the answer is: It is the angular coordinate of the horizontal coordinate system that is measured from the horizon along a great circle that passes through zenith."

What is \qquad , Alex?
a) polar angle
b) altitude
c) height
d) azimuth
e) algol
9. In the northern hemisphere north of the tropics, a meridian transit of the Sun occurs at azimuth
\qquad (as one would usually record it) and in the southern hemisphere south of the tropics, at azimuth \qquad (as one would usually record it).
a) $180^{\circ} ; 0^{\circ}$
b) $0^{\circ} ; 180^{\circ}$
c) $90^{\circ} ; 270^{\circ}$
d) $0^{\circ} ; 0^{\circ}$
e) $180^{\circ} ; 180^{\circ}$
10. The general formula for altitude along the meridian is

$$
A_{\mathrm{N} / \mathrm{S}}=90^{\circ}+(\pm)_{\mathrm{N} / \mathrm{S}}(L-\delta)
$$

where N / S means measured from due north/south, $(\pm)_{\mathrm{N} / \mathrm{S}}$ means plus/minus for measured from due north/south, L is latitude counted positive/negative for north/south latitude, and δ is declination.

The declination of the south celestial pole (SCP) is -90° and in Las Vegas the latitude is approximately $36^{\circ} \mathrm{N}$. For Las Vegas, what is the altitude of the SCP from due south and is it above, on, or below the horizon?
a) 0°; on the horizon. b) 24°; above the horizon. \quad c) -36°; below the horizon
d) 54°; above and below the horizon.
e) -90°; below the horizon.

