Introductory Astronomy

NAME:

Homework 8: The Sun: Homeworks and solutions are posted on the course web site. Homeworks are NOT handed in and NOT marked. But many homework problems ($\sim 50-70\%$) will turn up on tests.

	Answer Table					Name:						
	a	b	c	d	e		a	b	с	d	е	
1.	0	0	Ο	Ο	Ο	37.	Ο	Ο	Ο	0	Ο	
2.	Ο	Ο	Ο	Ο	Ο	38.	Ο	Ο	Ο	0	0	
3.	Ο	Ο	Ο	Ο	Ο	39.	Ο	Ο	Ο	0	0	
4.	Ο	Ο	Ο	Ο	Ο	40.	Ο	Ο	Ο	0	0	
5.	Ο	Ο	Ο	Ο	Ο	41.	Ο	0	0	Ο	0	
6.	Ο	Ο	Ο	Ο	Ο	42.	Ο	0	0	Ο	0	
7.	Ο	Ο	Ο	Ο	Ο	43.	Ο	0	0	Ο	0	
8.	Ο	Ο	0	Ο	Ο	44.	Ο	0	0	0	0	
9.	Ο	Ο	0	Ο	Ο	45.	Ο	0	0	0	0	
10.	Ο	Ο	Ο	Ο	Ο	46.	Ο	0	0	Ο	0	
11.	Ο	Ο	0	Ο	Ο	47.	Ο	0	0	0	0	
12.	Ο	Ο	0	Ο	Ο	48.	Ο	0	0	0	0	
13.	Ο	Ο	0	Ο	Ο	49.	Ο	0	0	0	0	
14.	Ο	Ο	Ο	Ο	Ο	50.	Ο	0	0	0	Ο	
15.	Ο	Ο	Ο	Ο	Ο	51.	Ο	0	0	Ο	0	
16.	Ο	Ο	0	Ο	Ο	52.	Ο	0	0	0	0	
17.	Ο	Ο	0	Ο	Ο	53.	Ο	0	0	0	0	
18.	Ο	Ο	0	Ο	Ο	54.	Ο	0	0	0	0	
19.	Ο	Ο	0	Ο	Ο	55.	Ο	0	0	0	0	
20.	Ο	Ο	0	Ο	Ο	56.	Ο	0	0	0	0	
21.	Ο	Ο	0	Ο	Ο	57.	Ο	0	0	0	0	
22.	Ο	Ο	0	Ο	Ο	58.	Ο	0	0	0	0	
23.	Ο	Ο	Ο	Ο	Ο	59.	Ο	Ο	0	0	0	
24.	Ο	Ο	Ο	Ο	Ο	60.	Ο	Ο	0	0	0	
25.	Ο	Ο	Ο	Ο	Ο	61.	Ο	Ο	Ο	0	0	
26.	Ο	Ο	Ο	Ο	Ο	62.	Ο	Ο	Ο	0	0	
27.	Ο	Ο	Ο	Ο	Ο	63.	Ο	Ο	Ο	0	0	
28.	Ο	Ο	Ο	Ο	Ο	64.	Ο	Ο	Ο	0	0	
29.	Ο	Ο	Ο	Ο	Ο	65.	Ο	0	0	0	0	
30.	Ο	Ο	Ο	Ο	Ο	66.	Ο	0	0	0	0	
31.	Ο	Ο	Ο	Ο	Ο	67.	Ο	Ο	Ο	0	0	
32.	Ο	Ο	Ο	Ο	Ο	68.	Ο	Ο	Ο	0	0	
33.	Ο	Ο	Ο	Ο	Ο	69.	Ο	Ο	Ο	0	0	
34.	0	0	Ο	Ο	0	70.	Ο	Ο	Ο	0	Ο	
35.	0	0	Ο	Ο	Ο	71.	Ο	Ο	0	Ο	0	
36.	Ο	Ο	Ο	0	Ο	72.	Ο	Ο	Ο	Ο	Ο	

001 qmult 00007 1 4 1 easy deducto-memory: reading done 2

1. Did you complete reading the Introductory Astronomy Lecture before the **SECOND DAY** on which the lecture was lectured on in class?

a) YYYessss! b) Jawohl! c) Da! d) Sí, sí. e) OMG no!

SUGGESTED ANSWER: (a),(b),(c),(d)

Wrong answers:

e) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

008 qmult 00200 1 4 3 easy deducto-memory: Sun diameter

2. The diameter of the Sun is about:

a) 1 Earth diameter. b) 30 Earth diameters. c) 109 Earth diameters. d) 1 astronomical unit. e) 1 light-year.

SUGGESTED ANSWER: (c) Ni-117 gives 109 Earth diameters and that sounds about right.

Wrong answers:

- a) This would make the Sun the same size as the Earth.
- d) This would make the Sun's surface extend right to Earth's orbit.

Redaction: Jeffery, 2001jan01

008 qmult 00220 1 4 3 easy deducto-memory: solar luminosity

- Extra keywords: CK-262,266
- 3. The solar luminosity is L_{\odot} is:

a) 100 W. b) 3.846×10^{-26} W. c) 3.846×10^{26} W. d) 1.496×10^{11} m. e) 6.9599×10^8 m.

SUGGESTED ANSWER: (c)

Wrong answers:

- a) An incandescent light in your room has the same luminosity as the Sun.
- d) This is the astronomical unit. The meter unit should be a clear giveaway.
- e) This is the solar radius to the photosphere. The meter unit should be a clear giveaway.

Redaction: Jeffery, 2001jan01

008 qmult 00230 1 1 5 easy memory: Sun photosphere temperature

4. The temperature of the solar photosphere is about:

a) 300 K. b) 600 K. c) 273 K. d) 40000 K. e) 6000 K.

SUGGESTED ANSWER: (e)

Wrong answers:

c) This is the freezing temperature of water.

Redaction: Jeffery, 2001jan01

008 qmult 00250 1 4 4 easy deducto-memory: solar constant defined

5. "Let's play *Jeopardy*! For \$100, the answer is: It is the electromagnetic radiation energy per unit time per unit area from the Sun at 1 astronomical unit from the Sun."

What is the solar _____, Alex?

a) wind b) variable c) eclipse d) constant e) Sun

SUGGESTED ANSWER: (d)

Wrong answers:

b) Since the solar constant does actually vary a bit, "solar variable" might be a better name.

e) As Lurch would say: "Aaaarh."

Redaction: Jeffery, 2001jan01

008 qmult 00252 1 1 1 easy memory: solar constant value

6. The solar constant (i.e., the electromagnetic radiation energy per unit time per unit area from the Sun at 1 astronomical unit from the Sun) is:

a) 1367.6 W/m^2 . b) 1000.00 W/m^2 . c) 0. d) -1367.6 W/m^2 . e) infinite.

SUGGESTED ANSWER: (a)

Wrong answers:

- b) Doesn't this seem suspiciously round and precise for a physical variable that has not be defined to be round and precise.
- e) As Lurch would say: "Aaaarh."

Redaction: Jeffery, 2001jan01

008 qmult 00256 2 5 5 moderate thinking: solar constant and light bulbs

7. The solar constant (i.e., the electromagnetic radiation energy per unit time per unit area from the Sun at 1 astronomical unit from the Sun) is about 1367.6 watts per square meter. If you were at 1 astronomical unit from the Sun in space and had a square kilometer of solar panels (of 100 % efficiency), how many 100 watt light bulbs could you run on solar power?

a) 100 watts. b) 1000. c) 1367.6. d) 1.3676×10^{11} . e) 1.3676×10^7 .

SUGGESTED ANSWER: (e)

Behold:

$$1367.6 \,\mathrm{W/m^2} \times \left(\frac{10^3 \,\mathrm{m}}{1 \,\mathrm{km}}\right)^2 \left(\frac{1 \,\mathrm{light \ bulb}}{100 \,\mathrm{W}}\right) = 1.3676 \times 10^7 \,\mathrm{light \ bulbs \ /km^2} \ .$$

Wrong answers:

- a) Wrong number, wrong units.
- d) This is obtained by multiplying by 100, not dividing by 100.

Redaction: Jeffery, 2001jan01

008 qmult 00300 1 4 5 easy deducto-memory: interior of Sun specified

Extra keywords: CK-263,267-4

8. "Let's play *Jeopardy*! For \$100, the answer is: This astrophysical body has three main interior layers:
1) a core (in which thermonuclear reactions occur) that extents out to about 25 % of the body's radius;
2) a radiative transfer zone which extends **OUT** to about 71 % of the body's radius; 3) a convective zone that extends **FROM** about 71 % of the body's radius to the body's surface."

What is _____, Alex.

a) the Moon b) Venus c) the Milky Way d) the Earth e) the Sun

SUGGESTED ANSWER: (e) See Cox-342.

Wrong answers:

a) No. It's not the Moon.

Redaction: Jeffery, 2001jan01

008 qmult 00310 1 4 3 easy deducto-memory: radiative transfer in Sun

9. Out to about 71% of the Sun's radius, the dominant energy transfer mechanism is:

a) electron conduction. b) neutrino transfer. c) radiative transfer (i.e., transfer by electromagnetic radiation). d) convection. e) an explosive shock wave.

SUGGESTED ANSWER: (c) This is energy transfer by EMR. Cox-342 and CM-243 say 71 % which agrees with older references.

Wrong answers:

- a) This is important in metals.
- b) This is important during the core collapse phase of supernovae
- e) This is important during the explosion phase of supernovae.

Redaction: Jeffery, 2001jan01

008 qmult 00410 115 easy memory: solar photosphere explained

Extra keywords: this question is specialized for the Sun

- 10. Why can't we see deeper into the Sun than the photosphere?
 - a) Line spectra overlap too severely at deeper layers.
 - b) The question is absurd. We see right through the photosphere to the bottom of the convection layer.
 - c) The question is absurd. Solar flares prevent any observation deeper than the chromosphere.
 - d) Radiation from deeper layers escapes too easily.
 - e) Radiation from deeper layers is absorbed before it can escape the Sun.

SUGGESTED ANSWER: (e) The students should know the answer even if they don't know what a solar flare or convection layer is.

Wrong answers:

b) I don't think the question is absurd.

Redaction: Jeffery, 2001jan01

008 qmult 00450 213 moderate memory: solar granule

- 11. A granule is:
 - a) a kind of cereal.
 - b) a grain of dust.
 - c) the top of a rising current of **HOT** gas in the Sun. Granules are seen in the solar photosphere. They last about 10 minutes and then lose their identity with their surroundings. The risen gas **COOLS** and then sinks.
 - d) the top of a rising current of **COLD** gas in the Sun. Granules are seen in the solar photosphere. They last about 10 minutes and then lose their identity with their surroundings. The risen gas **HEATS** up and then sinks.
 - e) a solar flare by another name.

SUGGESTED ANSWER: (c)

If one remembers that granules are in the Sun then two answers are ruled out. Cox-364 confirms that the mean lifetime of granules is 10 minutes.

Wrong answers:

- d) Rising matter in convection is hot.
- e) A rather stupid synonym if it were true.

Redaction: Jeffery, 2001jan01

008 qmult 00510 $1\ 4\ 3$ easy deducto-memory: five Sun outer layers 1

12. The five outermost layers of the Sun (defining layers of the Sun generously) can be labeled:

- a) convection zone, photon, chromosome, coronation street, and solar sail.
- b) convection zone, photosphere, chromosphere, corona, and solar sail.
- c) convection zone, photosphere, chromosphere, corona, and solar wind.
- d) convection zone, photon, chromosome, corona, and glabron.
- e) construction zone, photosphere, chromosphere, corona, and glabron.

SUGGESTED ANSWER: (c)

Wrong answers:

- a) You've got to be kidding.
- b) Not solar sail.
- d) A glabron is a nonce word meaning hairless particle. Just in case you needed to know.

e) Construction zones are on Earth, cowboy.

Redaction: Jeffery, 2001jan01

008 qmult 00514 1 4 1 easy deducto-memory: two of five Sun outer layers 3 $\,$

13. Two of the five outermost layers of the Sun (defining layers of the Sun generously) are:

a) photosphere and chromosphere. b) carnation and corona. c) corona and paloma. d) rio and sands. e) chromosphere and Asteroid Belt.

SUGGESTED ANSWER: (a)

Wrong answers:

d) Rio and sands? This is the Las Vegas answer.

Redaction: Jeffery, 2001jan01

008 qmult 00710 1 1 4 easy memory: corona visible to naked eye

14. The corona of the Sun is only visible to the naked eye:

a) at sunset. b) when the Moon is a crescent in the western sky. c) during partial solar eclipses. d) during total solar eclipses. e) when the Sun is below the horizon.

SUGGESTED ANSWER: (d)

Wrong answers:

c) Well no.

Redaction: Jeffery, 2001jan01

008 qmult 00750 2 3 3 moderate math: corona extent and Mercury

15. The solar corona has no sharp boundary, but it has been traced out to about 30 solar radii. The Sun's equatorial radius is 6.96342×10^8 m and the astronomical unit in meters is $1.49597870700 \times 10^{11}$ m. How far has the corona been traced out in astronomical units and does this trace of the corona reach to the orbit of Mercury which has a mean radius of 0.38709893 AU?

a) 0.387 AU and yes. b) 0.14 AU and yes. c) 0.14 AU and no. d) 0.387 AU and no. e) 1 AU and yes/no.

SUGGESTED ANSWER: (c)

Se-151 gives $30 R_{\odot}$ as the record for tracing the corona. See Cox-12 for the Sun's radius and the astronomical unit and Cox-294 for Mercury's orbital radius.

Behold:

$$\begin{split} R_{\rm corona} &\approx 30 \, R_{\odot} \\ &\approx 30 \, R_{\odot} \times \left(\frac{6.96342 \times 10^8 \,\mathrm{m}}{R_{\odot}} \right) \left(\frac{1 \,\mathrm{AU}}{1.49597870700 \times 10^{11} \,\mathrm{m}} \right) \\ &\approx 0.14 \,\mathrm{AU} \;. \end{split}$$

So the corona according to the given radius does not reach to Mercury at 0.38709893 AU from the Sun.

```
Fortran Code
```

```
print*
rsun=6.95508d+8 ! Cox mean radius, equatorial radius
6.96342(65)e+8 m https://en.wikipedia.org/wiki/Sun
au=1.49597870700d+11 ! Cox-12
https://en.wikipedia.org/wiki/Astronomical_unit defined value
rsunau=rsun/au
rcorona=30.d0*rsunau
print*, 'rsunau,rcorona'
print*,rsunau,rcorona
! 4.64918382023468170E-003 0.13947551460704044
```

Wrong answers:

e) As Lurch would say: "Aaaarh."

Redaction: Jeffery, 2001jan01

008 qmult 00800 144 easy deducto-memory: solar wind defined

16. The solar wind is:

- a) the air that blows off the northern hemisphere oceans during geomagnetic storms.
- b) the plasma gas that cools the Sun's photosphere.
- c) an optical illusion in the corona that causes the corona to look like fluffy orange clouds.
- d) the plasma gas that streams from the Sun out into INTERSTELLAR SPACE.
- e) the plasma gas that streams from the Sun out into INTERGALACTIC SPACE.

SUGGESTED ANSWER: (d)

Wrong answers:

e) The solar wind doesn't make it to intergalactic space.

Redaction: Jeffery, 2001jan01

008 qmult 00810 1 4 4 easy deducto-memory: solar wind speed

17. The solar wind is a stream of particles that moves approximately along radial paths outward from the Sun: inward is the negative direction and positive is the outward direction. The solar wind near the Earth is typically moving at a radial velocity of about:

a) -200 km/s. b) -200 m/s. c) -200 cm/s. d) 400 to 500 km/s. e) 400 to 500 km.

SUGGESTED ANSWER: (d)

Wrong answers:

e) Wrong units.

Redaction: Jeffery, 2001jan01

008 qmult 00820 2 3 5 moderate math: solar wind mass loss

- 18. The Sun loses mass at a rate of about 2×10^9 kg/s. Convert this rate into solar masses per year to the same number of significant figures as given. **NOTE:** The mass of the Sun is $M_{\odot} = 1.9885 \times 10^{30}$ kg and the length of a year in seconds to 0.5% accuracy is $\pi \times 10^7$ s.
 - a) $2 \times 10^{30} \text{ kg/yr.}$ b) $2 \times 10^{-30} M_{\odot}/\text{yr.}$ c) $2 \times 10^9 M_{\odot}/\text{yr.}$ d) $3 \times 10^{14} M_{\odot}/\text{yr.}$ e) $3 \times 10^{-14} M_{\odot}/\text{yr.}$

SUGGESTED ANSWER: (e)

Behold:

$$\begin{split} 2\times 10^9\,\mathrm{kg/s} &\approx 2\times 10^9\,\mathrm{kg/s} \times \left(\frac{1\,M_\odot}{1.9885\times 10^{30}\,\mathrm{kg}}\right) \left(\frac{\pi\times 10^7\,\mathrm{s}}{1\,\mathrm{yr}}\right) \\ &\approx 3\times 10^{-14}\,M_\odot/\mathrm{yr} \end{split}$$

Foukal, P. 1990, Solar Physics, (New York: John Wiley & Sons, Inc.), p. 436 coughs up this much hidden number $2 \times 10^{12} \text{ g/s}$ or $3 \times 10^{-14} M_{\odot}/\text{yr}$. Se-152 is wrong; FMW-293 is wrong too.

Wrong answers:

d) The Sun would be gone in a flash at this rate.

Redaction: Jeffery, 2001jan01