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ABSTRACT

The solution of the Saha equation (understood to be actually the solution of

what we call in this note the Saha-CC equation) for the ionization state of a gas

in local thermodynamic equilibrium (LTE) must in general be done numerically.

There are some tricks needed to do the solution accurately and robustly. In this

education note, we elucidate some aspects of the Saha equation and its solution

not expanded on by Mihalas’ book Radiative Transfer and try elucidate some of

the tricks.

Subject headings: atomic processes — methods: numerical — radiative transfer

— stars: atmospheres — supernovae: general

1. INTRODUCTION

The solution of the Saha equation (understood to be actually the solution of what we call

in this note the Saha-CC equation) gives the ionization state (i.e., the ionization occupation

numbers) for an ionized gas (i.e., a plasma) in the state of local thermodynamic equilibrium

(LTE). Except for the hydrogenic case (neutral and singly-ionized for one species), there

is no simple analytic solution. The numerical solution given density and composition is in

principle straightforward, but tricks are needed to do the solution accurately and robustly.

In this education note, we try elucidate the Saha equation and some of those tricks.

As indicated in the first paragraph the (formal) Saha equation itself is not what is solved

for the ionization state. It is an equation combining the Saha equation for all the ionization

stages of all the elements with charge conservation (i.e., overall charge neutrality) that is

solved for the ionization state. This combined equation seems to have no common name,

and so we call it the aforementioned Saha-CC equation since we need a name for it.
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It should be pointed out that the assumption of LTE is extremely simplifying and when

applicable extremely useful in obtaining the ionization state. One feature of LTE ionization

states is that usually only 1 or 2 ionization stages of an element are abundant. We will show

why this is so in § 5????.

Note that in many astrophysical environments non-LTE (NLTE) holds and the LTE

ionization state may be very wrong. In particualar, there may be 3 or more abundant

ionization states for an element.

Supernovae in the photospheric phase are peculiar case. Parameterized synthetic spectra

using the the LTE ionization state can give qualitatively good fits to observed spectra (e.g.,

Jeffery & Branch 1990, esp. p.170, 214), suggesting the LTE ionization state is qualitatively

a valid approximation for the photospheric phase. However, it is well known that supernova

atmospheres are pretty much always NLTE for at least three reasons:

1. The density is too low to enforce thermodynamic equalilibrium via collisions.

2. The radiation is in general non-Planckian both in shape and scale everywhere in the

atmosphere, and so cannot enforce LTE in the matter.

3. Radioactive species mixed far outward into the ejecta can lead to non-thermal ioniza-

tion via ionizing radiations.

Thus, quantitative accuracy in the calculation of synthetic spectra for supernovae needs

NLTE in general.

In § 2 of this note, we expand on a fine point of the derivation of the Saha equation.

Section 3 presents the Saha equation and the inverse Saha equation. Section 4 presents the

hydrogenic Saha-CC equation and its analytic solution. Analytic solutions of the Saha-CC

equation are derived in § 6. Section 7 presents what we call the ionization function which is

useful in understanding the numerical solution of the Saha-CC equation. Section 8 describes

the numerical solution of the Saha-CC equation. Conclusions are in § 9. Appendix A presents

numerically good solutions of the quadratic equation: these are needed in the numerical

solution of the Saha-CC equation.

2. THE STATISTICAL WEIGHT OF FREE ELECTRONS

One fine point of the derivation of the Saha equation not elucidated by Mihalas (1978,

p. 112) is reason for assigning the volume element of the (differential) statistical weight for
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free electrons to be n−1
e , the inverse of the electron density of the gas which is just the volume

per electron Ve. Here we give the elucidation.

In fact, statistical weights for different degrees of freedom are multiplied to get the

total statistical weight and also, in fact, the statistical weights appear only in ratios in Saha

equation Mihalas (1978, p. 112–113). There is one ratio for the atomic energy levels and

another for the free electrons and these multiplied together. Now the statisical weights for an

differentially narrow energy band (containing states ge) for free electrons (or any fermions)

of number Ne is

we(Ne) =
ge!

Ne!(ge − Ne)!
(1)

(e.g., Pointon 1978, p. 61). The ratio of statistical weights for free electrons for the case one

ionization stage to the next higher one is then

we(Ne + 1)

we(Ne)
=

Ne!

(Ne + 1)!

(ge − Ne)!

[ge − (Ne + 1)]!
=

ge − Ne

Ne + 1
≈ ge

Ne

, (2)

where the approximation holds for ge >> Ne (i.e., a nondegenerate gas: Pointon e.g., 1978,

p. 65) and large numbers of electrons. The approximate ratio holds for applications of the

Saha equation. The number of states ge follows from box quantization

ge = g
d3k

(2π)3
V , (3)

where spin degeneracy g = 2 for electrons (and all fermions), d3k/(2π)3 is the differential

wavenumber volume available for electrons with wavenumber ~k = (kx, ky, kz), and V is the

volume of the box. The ge formula is easily derived a rectangular box of volume V . Although

no proof ever seems to be given, the box quantization formula holds asymptotically for large

irregular volume or locally uniform gases where there is no specified boundaries at all and

volume is indeterminate, but not needed for calculations.

Given equation (3), the ratio of statistical weights for free electrons (for the nondegen-

erate gas case) is
we(Ne + 1)

we(Ne)
= g

d3k

(2π)3

V

Ne
= g

d3k

(2π)3

1

ne
(4)

which combined with other relevant factors (including the appropriate Boltzmann factor) is

used in the derivation of the Saha equation (Mihalas 1978, p. 112–113).
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3. THE SAHA EQUATION

The Saha equation is

Njk

Nj+1,k
= neΦjk(T ) = neCI

Ujk(T )

Uj+1,k(T )
T−3/2 exp

(

Xjk

kT

)

, (5)

where k is atom/element (or the Boltzmann constant in a different meaning understood from

context), j is ionization stage, T is temperature, Φjk(T ) can be called the Φ function, Njk

is number density of an ionization stage, Ujk(T ) is the partition function of an ionization

stage, Xjk is the ionization energy from stage j to state j + 1, and

CI =
1

2

(

h2

2πmek

)3/2

= (2.070 665 141 6) × 10−16 cm3 K3/2 (6)

can be called the Saha constant and has approximately 11 significant digits based on CO-

DATA constants (NIST CODATA, 2020). The notation for the Saha equation follows Mihalas

(1978, p. 112–113) with some obvious simplifications. The inverse Saha equation is

Nj+1,k

Njk
=

1

ne
Ψjk(T ) =

1

neCI

Uj+1,k(T )

Ujk(T )
T 3/2 exp

(

−Xjk

kT

)

, (7)

where Ψjk(T ) can be called the Ψ function. The inverse Saha equation is useful in under-

standing the solution for ionization state and electron density of a gas.

It is enlightening to the write the Saha equation and inverse Saha equation in terms

of fiducial quantities. We have chosen those quantities to be hydrogen in neutral and once

ionized stages at temperature T = 104 which is approximately effective temperature of A0

stars (Wikipedia: A-type main-sequence star). The formulae are

in terms of natural units with kTRydberg = ERydberg = (13.605 693 122 994) eV (i.e., the

Rydberg energy) and TRydberg = ERydberg/k = 157887.5124 K (NIST CODATA, 2020). One

obtains
Nj+1,k

Njk
=

1

ne
Ψjk(T ) =

Uj+1,k(T )

Ujk(T )

ne,fid

ne

(

kT

ERydberg

)3/2

exp

(

−Xjk

kT

)

, (8)

where the fiducial Rydberg (electron density is

ne,fid = 2

(

2πmeERydberg

h2

)3/2

= (3.029 784 927 541 21) × 1023 cm−3 (9)

which has approximately 14 significant digits based on CODATA constants (NIST CODATA,

2020). Obviously, the inverse Saha equation for hydrogen for ionization states 0 and 1 is

N1,1

N0,1

=
1

ne

Ψ0,1(T ) =
U1,1(T )

U0,1(T )

ne,fid

ne

(

kT

ERydberg

)3/2

exp

(

−ERydberg,reduced

kT

)

, (10)
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where ERydberg,reduced = ERydberg(me,reduced/me) = 13.598 287 264 287 eV is the reduced

In fact, ne,fid is about 10000 times higher than the density of air at standard temperature

and pressure (Wikipedia: Number Density: Examples; Wikipedia: Density of Air: Dry Air)

and is much higher than the particle number density (which is comparable to the electron

density which is part of it) in most optically thin astrophysical plasmas. If temperatures in

those plasmas are of order TRydberg or greater, then they will be ionized or highly ionized.

Supernovae in the photospheric phase are peculiar case as mentioned in § 1. The Saha

equation predicts their ionization state not so badly even though there are reasons why

it should not: see § 1 for the reasons. Typically supernovae have singly or doubly ionized

atoms as known from spectroscopy. The inverse Saha equation in terms of natural units does

not, alas, allow a by inspection prediction of ionization for supernovae. Supernovae in the

photospheric and nebular eras typically have particle densities many orders of magnitude

less than ne,fid, but temperatures of order a few a few thousand kelvins much less than

TRydberg. One has to actually calculate the Saha equation ionization prediction numerically

for particular cases.

4. THE HYDROGENIC SAHA-CC EQUATION

The Saha equation combined with charge conservation gives an equation can be used to

calculate the electron density. We will call this equation the Saha-CC equation, where CC

stands for charge conservation. When speaking one often just calls this equation the Saha

equation too: context tells you which equation is meant.

For the hydrogenic case where one has only neutral and singly ionized (and is not

considering the negative ion: e.g., the H− ion (i.e., hydride ion)), the Saha-CC equation is

simple derive and can be solved analytically. The derivation is obviously

ne = Nk

(

N1,k

N0,k + N1,k

)

= Nk

(

1

neΦ0,k + 1

)

= Nk

(

1

ne/Ψ0,k + 1

)

, (11)

where here k labels a general atom treated as hydrogenic. For the scaled solution, we define

scaled electron density and atom density by, respectively,

x = neΦ0,k =
ne

Ψ0,k
and X = NkΦ0,k =

Nk

Ψ0,k
, (12)

both of which are small for high ionization (Ψ0,k large) and large for low ionizaion (Ψ0,k

small). The scaled hydrogenic Saha-CC equation is

x =
X

x + 1
, (13)
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which is just a quadratic equation. The scaled solutions are

x =


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


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













1

2
(
√

1 + 4X − 1) numerically-poor exact solution;

2X

1 +
√

1 + 4X
numerically-good exact solution;

X − X2 + 2X3 + . . . ≈ X small X (high ionization) series solution;

−1

2
+
√

X
(

1 +
1

8

1

X
− 1

128

1

X2

+
1

4096

1

X3
+ . . .

)

≈
√

X large X (low ionization) series solution;
√

5 − 1

2
= φ − 1 = 0.6018 . . . for X = 1, where φ is the golden ratio;

1 for X = 2.
(14)

The numerically-poor exact solution is poor because for X small one gets roundoff from the

subtraction between nearly equal values. On the other hand, the numerically-good exact

solution agrees with both small/large X series solutions to within a relative error of . 10−18

as X goes to zero/infinity. So the numerically-good exact solution is good everywhere and

should be used in numerical calculations.

Note it is slightly paradoxical that what we call high/low ionization in equation (14)

gives the lower/higher electron density. The resolution of the paradox, which holds for all

plasma cases, is just that atoms are in a high/low ionization state for low/high atom density,

and therefore low/high electron density. Atoms are just more recombined at high density. For

LTE calculations, this has nothing do to with recombination rates which could be anything.

It is because the allowed phase space for free electrons decreases as their density increases,

forcing a larger number into the bound state. The allowed phase space is, of course, limited

by the Pauli exclusion principle. The average ionization stage, which we call the ionization

function, is electron density over atom density when charge conservation holds (i.e., the

plasma is has overall neutrality) For the hydrogenic case, the ionization function is

x

X
=


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


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












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









2

1 +
√

1 + 4X
exact formula;

1 − X + 2X2 + . . . small X (high ionization) formula;

− 1

2X
+

1√
X

(

1 +
1

8

1

X
− 1

128

1

X2

+
1

4096

1

X3
+ . . .

)

≈ 1√
X

large X (low ionization) series solution.

(15)
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The formula shows clearly that hydrogenic ionization decreases with X with the only sta-

tionary point at X = ∞.

The exact solution for the hydrogenic Saha-CC equation (eq. (14) above) can be used

to calculate an approximate electron density in general (for LTE). Let us call this the 1st

hydrogenic approximation. For this approximation, one simply treats all protons as if they

were hydrogen atoms and Nk in the formulae above is replaced by the number density of

protons Np for which the formula is

Np = ρ
∑

k

XkZk

Akmu
, (16)

where ρ is density, Xk is mass fraction, Zk is atomic number, Ak is atomic mass, and mu is

the atomic mass unit (amu or u).

The 1st hydrogenic approximation will obviously give an overestimate of the electron

density almost always since beyond the first ionization energy most ionization energies are

greater than the reduced Rydberg. However, the approximation gives the right answer in

two important limits: 1) for pure hydrogen (neglecting the negative ion); 2) for completely

ionized atoms. Also however, the overestimate is probably at worst a factor of ∼ 30 since the

iron-peak element ejecta of supernovae Ia (SNe Ia) is probably the highest metalicity ejecta

in astrophysics. A factor ∼ 30 is not bad if the calculated electron density is only used as

initial value in numerical solution for electron density from the (general) Saha-CC equation

(see § 5 below).

Note negative ions are probably always a trace abundance in astrophysical plasma, and

so probably can always be neglected in calculating electron density. However, negative ions

can have high opacity, and so be important in radiative transfer, and so can have a significant

indirect effect on electron density. For important example, the negative hydrogen ion (H− or

hydride) is an important opacity source in solar type stars and stars cooler than solar type

stars (e.g., Mihalas 1978, p. 104). Note overall charge conservation requires that there must

be positive ions if there are negative ions.

We can do somewhat better than 1st hydrogenic approximation with what we will call

the 2nd hydrogenic approximation which handles the low and high ionization limits exactly

and interpolates between them approximately with an overestimate usually.

For low ionization limit, we treat all atoms as have just the stages 0 and 1. The Saha-CC

equation becomes for the low ionization limit is

ne =
∑

k

Nk

(

1

ne/Ψ0,k + 1

)

=
∑

k

NkΨ0,k

ne
, (17)
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where both equalities are in the limit of low ionization: i.e., all Ψ0,k << 1 and all Ψj>0,k

considered negligible. By inspection, the low ionization limit solution for ne is

ne =

√

∑

k

NkΨ0,k =

√

Na

∑

k

Nk

Na
Ψ0,k =

√

Na

∑

k

fkΨ0,k =
√

NaΨ0,a , (18)

where we have used following formulae

Na = ρ
∑

k

Xk

Akmu
, fk =

Nk

Na
, and Ψ0,a =

∑

k

fkΨ0,k , (19)

where Na is the number density of atoms, fk is the number fraction of atom k, and Ψ0,a

is the weighted mean Ψ function. The low ionization limit solution shows that just as for

hydrogenic solution, the electron density for low ionization state goes as the square root of

the number of atoms. We can also write a scaled low ionization limit solution:

x =
√

X , (20)

with definitions x = ne/Ψ0,a and X = Na/Ψ0,a.

The 2nd hydrogenic approximation itself is the interpolation formula

ne =























Na

Na/Np +
√

Na/Ψ0,a

in general;

√

NaΨ0,a in the low ionization limit (i.e., small Ψ0,a limit);

Np in the high ionization limit (i.e., large Ψ0,a limit).

(21)

The 2nd hydrogenic approximation is exactly correct in the two limits as mentioned above

neglecting, of course, negative ions and molecule formation. However, in between the two

limits it will be usually be an overestimate as mentioned above since the Ψ0,k functions will

become large sufficiently many atoms are nearly all singly ionized and this well before the

high ionization limit. However, as argued above for the 1st hydrogenic approximation, the

overestimate is probably at worst a factor of ∼ 30 since the iron-peak element ejecta of

supernovae Ia (SNe Ia) is probably the highest metalicity ejecta in astrophysics. A factor

∼ 30 is not bad if the calculated electron density is only used as initial value in numerical

solution for electron density from the general Saha-CC equation.

The advantage of the 2nd hydrogenic approximation over the 1st hydrogenic approxi-

mation is that it is exact for general compositions in the low ionization state limit (i.e., small

Ψ0,a limit)
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5. THE SAHA-CC EQUATION

The Saha-CC equation (i.e., the general Saha-CC equation) is

ne = Na

∑

k

fk

Jk
∑

j=Lk

jfjk , (22)

where recall Na is the number density of atoms, fk is the number fraction for atom k, and

fjk is the number fraction for ionization stage j of atom k.

The formula for fjk is

fjk =
Njk

Nk

=
Njk

∑Jk

m=Lk
Nmk

=
Njk/NMkk

∑Jk

m=Lk
Nmk/NMkk

, (23)

where Lk is the lowest ionization stage considered (usually zero for the neutral atom or

−1 for singly-charge negative atom: e.g., the H− ion (i.e., hydride ion)), Jk is the highest

ionization stage considered (the highest possible being the atomic number), and Mk is a

fiducial ionization stage. Note that Lk, Jk, and Mk are all functions of k (i.e., of the atom

under consideration). Since, in fact, the ionization state of an atom is usually completely

dominated by one or at most two ionization stages, it is sometimes mentally clarifying and

probably numerically best to choose M to be the ionization stage of maximum occupation

number. Note that Mihalas (1978, p. 114) sets Mk to Jk in all cases which choice has the

advantage that the formulae for the fjk have only positive powers of ne in their numerators

and denominators and look simpler than for other choices of Mk. We make use of this

advantage below in § 6.
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Now what can be called the generalized Saha equation is

Njk

NMkk
=


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
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

NMk+1,k

NMkk

. . .
Njk

Nj−1,k

=

j−1
∏

ℓ=Mk

(neΦℓk)
−1

= n(Mk−j)
e

j−1
∏

ℓ=Mk

Ψℓk for j > Mk;

Njk

Nj+1,k

. . .
NMk−1,k

NMkk

=

Mk−1
∏

ℓ=j

(neΦℓk)

= n(Mk−j)
e

Mk−1
∏

ℓ=j

Φℓk for j < Mk;

j
∏

ℓ=Mk±1

(

neΦ{ ℓ−1

ℓ
},k

)∓1

= n(Mk−j)
e

(

Φ{ ℓ−1

ℓ
},k

)∓1

where the upper case

is for j > Mk

and the lower case

is for j < Mk.

(24)

Note that the product symbol expressions for j = Mk is set to 1 in all cases in equation (24).

Also note the denominator terms in equation (23) are, of course, given by equation (24) with

the j replaced by the dummy index m.

If we choose Mk = Jk (as per Mihalas 1978, p. 114), the Saha-CC equation is

ne = Na

∑

k

fk

∑Jk

j=Lk
jnJk−j

e

∏Jk−1
ℓ=j Φℓk

∑Jk

j=Lk
nJk−j

e

∏Jk−1
ℓ=j Φℓk

, (25)

where the product symbol expressions for j = Jk are set to 1 in all cases and for cases where

j = 0 there is a zero term in the numerators. Equation (25) explicitly shows the powers of

ne dependence of Saha-CC equation and, as aforesaid, has only positive powers of ne in the

numerators and denominators, and so looks simpler than for other choices of Mk.

6. ANALYTIC SOLUTIONS OF THE SAHA-CC EQUATION

The Saha-CC equation cannot be solved analytically in general. In the hydrogenic case,

it can easily be solved analytically as we have already shown in § 4 since it is just a quadratic

equation. Analytic solutions are also possible as long as there are only powers of ne less than

or equal to n4
e occur when the Saha-CC equation is rearranged as a polynomial (Wikipedia:

Quartic function: History) and in at least one other case as we show below.



– 11 –

To elucidate possible analytic solutions, let’s consider a gas consisting of hydrogen

(k = 1), helium (k = 2), and lithium (k = 3) which is of interest since an example ac-

tually occurs: i.e., the primordial cosmic composition given by Big Bang nucleosynthesis

(Wikipedia: Big Bang nucleosynthesis). In this case (allowing for H− but not other negative

ions), equation (25) from § 5 specializes to

ne = N1

( −n2
eΦ−1,1Φ0,1 + 1

n2
eΦ−1,1Φ0,1 + neΦ0,1 + 1

)

+ N2

(

neΦ1,2 + 2

n2
eΦ0,2Φ1,2 + neΦ1,2 + 1

)

+N3

(

n2
eΦ1,3Φ2,3 + 2neΦ2,3 + 3

n3
eΦ0,3Φ1,3Φ2,3 + n2

eΦ1,3Φ2,3 + neΦ2,3 + 1

)

. (26)

We see that cases for hydrogen, helium, and lithium alone all have analytic solutions since

they give, respectively, a cubic, a cubic, and a quartic. However, no combination of the atoms

gives an analytic solution since one gets quintic or higher order polynomial equations. But

if we neglect the negative ion state for hydrogen, the combination of hydrogen and helium

gives a quartic, and so does have analytic solution.

In fact, general cubic and quartic analytic solutions are complicated, and so not useful

for simple understanding. Also one has to identify the physically correct root and perhaps

deal with numerical accuracy problems in some limits. The upshot is that fast, accurate

numerical solutions to the cubic and quartic Saha-CC equations is probably preferrable,

unless one has done a careful analysis to show that an analytic solution is better.

The aforementioned “at least one other” analytic solution can be obtained for the un-

realistic case where all the Φ/Ψ functions are equal and we have ionization stages zero to

infinity. Let’s call this case the infinite-ionization-stage case. To start on getting the solution,

we define the scaled inverse electron density by

y = x−1 = (neΦ)−1 =
Ψ

ne
< 1 , (27)

where Φ and Ψ are the common equal Φ and Ψ functions, and x is the scaled electron density

as in § 4, eq. (12). For the infinite-ionization-stage case, the Saha-CC equation (eq. 22) with

Mk = 0 and X = Na/Ψ (as in § 4, eq. (12)) specializes to

x = y−1 = X

∑∞

j=0 jyj

∑∞

j=0 yj
=

Xy(∂/∂y)[
∑∞

j=0 yj]
∑∞

j=0 yj
=

Xy(1− y)−2

(1 − y)−1
=

Xy

1 − y
, (28)

where we have used the infinite geometric series formula which converges for y < 1 (e.g.,
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Arfken 1985, p. 279). Equation (28) is a quadratic equation for y with solutions

x = y−1 =



















































































2X√
1 + 4X − 1

numerically-poor exact solution;

1

2
(
√

1 + 4X + 1) numerically-good exact solution;

1 + X − X2 + 2X3 + . . . ≈ 1 + X small X (high ionization) series solution;

1

2
+
√

X
(

1 +
1

8

1

X
− 1

128

1

X2

+
1

4096

1

X3
+ . . .

)

≈
√

X large X (low ionization) series solution;
√

5 + 1

2
= φ = 1.6018 . . . for X = 1, where φ is the golden ratio;

2 for X = 2.
(29)

At this point, one should recall the discussion in § 4 explicating why small/large X gives

high/low ionization.

The infinite-ionization-stage case scaled solutions are similar to the scaled hydrogenic

Saha equation solutions and the two solutions are the same asymptotically in the limit that

X becomes large: they both have x →
√

X as X becomes large. This is understandable

since as X becomes large, the zeroth and first ionization stages of infinite-ionization-stage

atom become asymptotically the only non-neglegible ones: i.e., the infinite-ionization-stage

atom becomes asymptotically the hydrogenic atom. On the other hand, as X becomes small

there is a profound difference between the hydrogenic case and the infinite-ionization-stage

case. In the former, asymptotically x = X (electron density scales with atom density) and in

the latter x = 1 + X (electron density approaches a constant value). The constant electron

density (scaled value 1) as X approaches zero is the limit electron density for our formalism

for infinitely many ionization stages with atom density going to zero.

Note that x = 1 (implying y = 1) violates our assumption in deriving the infinite-

ionization-stage case scaled solutions that y < 1. However, x = 1 as a limit is still valid.

As pointed out above, the infinite-ionization-stage case is unrealistic, but it is interesting

in that it does have an analytic solution.

7. THE IONIZATION FUNCTION

What we called the ionization function FI in § 4 is just the average ionization stage.

In § 4, we gave the ionization function for the hydrogenic atom. For the general ionization
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function, obtained using the right-hand side of the Saha-CC function in the form of equation

(25) (see § 5), we find

FI =
ne,out

Na

=
∑

k

fk

∑Jk

j=Lk
jzJk−jζjJk

∑Jk

j=Lk
zJk−jζjJk

, (30)

where we have defined the scaled electron density and scaled product of Φ functions by

z =
ne

Na

and ζjJk
=

Jk−1
∏

m=j

(NaΦmk) , (31)

and where ne,out is an electron-density-like parameter which is the electron density when

charge conservation (i.e., overall neutrality of the plasma) is imposed which we have done

hitherto in this note. In nature, overall neutrality usually holds although special conditions

may give a net charge in relatively small regions. We are not interested in such cases, but

rather in the use of ionization function in numerical solutions for ne with overall neutrality:

i.e.., numerical solutions of the Saha-CC equation. What we want to prove about the ion-

ization function in this section is that it is a strictly decreasing function of ne (except for a

minium at ne = ∞) since that feature greatly aids in obtaining numerical solutions as we

discuss in § 8.

In fact, in § 4, we have already given an argument that shows why FI should decrease

with increasing electron density. The argument actually applies whether charge conservation

holds or not. However, here we give a mathematical proof that verifies definitively that

argument and shows that FI is strictly decreasing (except for a minium at ne = ∞).

Now we only need to consider the single-element ionization function FI,k since all single-

element ionization functions have the same behavior. Also to avoid finicky, unimportant

cases we will assume Jk > max(Lk, 0). The single-element ionization function (now using
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distinct dummy indices) is

FI,k =







































































































































∑Jk

j=Lk
jzJk−jζjJk

∑Jk

m=Lk
zJk−mζmJk

in general;

Jk + (Jk − 1)zζJk−1,Jk
+ (Jk − 2)z2ζJk−2,Jk

1 + zζJk−1,Jk
+ z2ζJk−2,Jk

+ . . .

= Jk

[

1 − z

Jk
ζJk−1,Jk

+ z2

(

1

Jk
ζ2
Jk−1,Jk

− 2

Jk
ζJk−2,Jk

)]

+ . . .

= Jk − zζJk−1,Jk
+ z2

(

ζ2
Jk−1,Jk

− 2ζJk−2,Jk

)

+ . . . for z small;

Lkz
Jk−LkζLkJk

+ (Lk + 1)zJk−Lk−1ζLk+1,Jk

zJk−LkζLkJk
+ zJk−Lk−1ζLk+1,Jk

+ . . .

= Lk + z−1(NaΦLkk)
−1 + . . . for z large;

1

zNaΦ ± 1
with upper/lower case for the

hydrogenic/infinite-ionization-stage case,

where we have written the hydrogenic Φ0,k

as just Φ for simplicity.

(32)

We note that at z = 0 the ionization function has value Jk: i.e., z = 0 gives complete

ionization. On the other, at z = ∞ the ionization function has value Lk which is zero

ionization in the case that Lk = 0. Note that if charge conservation (i.e., overall neutrality)

is imposed, ionization function less than zero is not possible since then it equals ne/Na where

ne is the number density of free electrons which can never be negative.

The derivative of the single-element ionization function is

dFI,k

dz
=



































































−1

2







∑Jk

j=Lk

∑Jk

m=Lk
(j − m)2z2Jk−j−m−1ζjJk

ζmJk

(

∑Jk

m=Lk
zJk−mζmJk

)2






in general;

−ζJk−1,Jk
+ 2z

(

ζ2
Jk−1,Jk

− 2ζJk−2,Jk

)

+ . . . for z small;

−z−2(NaΦLkk)
−1 + . . . for z large;

− NaΦ

(zNaΦ ± 1)2
with upper/lower case for the

hydrogenic/infinite-ionization-stage case.

(33)

The general derivative is clearly always negative or possibly zero. However, since we assumed

Jk > Lk always and the ζj,Jk
functions are always greater than zero, the numerator of the
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general formula clearly has non-zero terms. Thus the derivative is always negative, except

possibly at z = 0 and z = ∞. The small-z derivative shows that the general derivative is

not zero at z = 0. The large-z derivative shows that the general derivative is zero at z = ∞.

Thus, we have verified that the ionization function is strictly decreasing except that it has a

minimum at z = ∞.

Note from equation (33) that since ζJk−1,Jk
can less than or greater than 1, the slope

of the ionization function at z = 0 can be less than or greater than −1. Thus in general

the slope of the ionization function can be less than or greater than −1. This result has an

important consequence in the numerical solution of the Saha-CC equation as we elucidate

in § 8.

The 2nd derivative of the single-element ionization function allows us to see if the

ionization function curves up (positive 2nd derivative) and/or down (negative 2nd derivative)

as z increases from zero. The 2nd derivative of the single-element ionization function for the

small and large z cases is

d2FI,k

dz2
=



























































2
(

ζ2
Jk−1,Jk

− 2ζJk−2,Jk

)

+ . . .

= 2NaΦJk−1,k (NaΦJk−1,k − 2NaΦJk−2,k) + . . .

for z small;

2z−3(NaΦLkk)
−1 + . . . for z large;

2(NaΦ)2

(zNaΦ ± 1)3
with upper/lower case for the

hydrogenic/infinite-ionization-stage case.

(34)

The large-z 2nd derivative is positive, and so the ionization function always curves up asymp-

totically as z → ∞. The small-z 2nd derivative will be positive almost always and maybe

always. This is because ΦJk−1,k > ΦJk−2,k is generally true since Φj,k depends on the an expo-

nential of the ionization energy Xjk (see the Saha equation (eq. 5) in § 3) and Xjk increases

with j (i.e., ionization stage) as general rule. However, all though we know of no exceptions

to this general rule, but there might be some odd case. Also however, Φj,k does depend on

the ratio of partition functions Ujk/Uj+1,k and this ratio is generally not monotonic with j.

Also however again, there is that factor of 2 multiplying NaΦJk−2,k small-z 2nd derivative.

The three “howevers” mean we cannot guarantee that (NaΦJk−1,k−2NaΦJk−2,k) in the small-

z 2nd derivative will always be positive. This means that we cannot guarantee that the 2nd

derivative in general will always be positive. There might be some small negative regions

sometimes.



– 16 –

8. THE NUMERICAL SOLUTION OF THE SAHA-CC EQUATION

The most direct numerical solution of the Saha-CC equation is by an iteration equation.

To be general for a moment, consider the iteration equation

x = f(x) , (35)

where the satisfying x is the solution. One solves for x by estimating somehow an initial

value x0 and substituting it into f(x) as input to obtain x1 as an output, and then using x1

as input to obtain output x2, and so on until the inputs and outputs converge to the same

numerical value within some criterion. However, convergence is not obtained in general:

there can be divergence or some kind of oscillation. There also can be multiple solutions,

and so one has somehow select the solution one wants.

However, if there is only one solution, there is a simple criterion guaranteeing conver-

gence. To elucidate, say we have iteration equation (35) and, for simplicity and without

loss of generality, we make the x = 0 the exact solution. There is no loss of general-

ity because if x∞ 6= 0 is the single solution, then we could define xnew = x − x∞ and

fnew(xnew) = f(xnew + x∞) − x∞ and then use iteration equation xnew = f(xnew) just sup-

pressing the subscripts “new”.

We can graphically represent the solution of x = f(x) (being x = 0 as just discussed

without loss of generality) as the intersection of the curves y = f(x) and y = x in the

x-y plane. Now we divide the x-y plane into 4 quadrants delimited by lines y = x and

y = −x. We label the quadrants 1, 2, 3, 4 going counterclockwise from quandrant 1 which is

bisected by the positive x axis. The convergence criterion is f(x) has a single solution (only

x = 0 satisfies x = f(x)) and f(x) is entirely contained within quadrants 1 and 3 (without

touching the boundaries of the quadrants, except at x = 0 itself). Note f(x) does not have

to be monotonic.

For a proof of the convergence criterion, say the (i − 1)th iterate is xi−1. Then the ith

iterate is xi = f(xi−1). Given the criterion, we know that

−|xi−1| < xi < |xi−1| implying |xi−1| > −xi > −|xi−1| . (36)

Since the absolute value |xi| must be one of xi and −xi, we find for all i that

|xi| < |xi−1| . (37)

Thus, the absolute value of the iterate |xi| decreases as i increases. Since there is only a

single solution x = 0, the iterate xi cannot go to any value other than 0 even as i → ∞.

Since equation (37) is a strict inequality, we cannot have xi = 0 for finite i since that would
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imply xi+1 equal to xi. So convergence to xi = 0 only occurs asymptotically as i → ∞. That

completes the proof of the convergence criterion along with the extra result that convergence

only happens asymptotically as the iteration goes infinity.

Before leaving our general considerations, there is another useful result to prove. Say

f(x) (not necessarily satisfying the convergence criterion) is monotonic with single solution

x∞. If f(x) is monotonic increasing, then

xi = f(xi−1 > x∞) > f(x∞) = x∞ and xi = f(xi−1 < x∞) < f(x∞) = x∞ (38)

which implies that an iteration starting at greater/less than x∞ is always greater/less than

x∞. On the other hand, if f(x) is monotonic decreasing, then

xi = f(xi−1 > x∞) < f(x∞) = x∞ and xi = f(xi−1 < x∞) > f(x∞) = x∞ (39)

which implies that the iteration oscillates about the solution.

Now Saha-CC equation, formulated iteration equation in terms of the scaled variables

of § 7, is

z = FI(z) , (40)

where recall FI(z) is the ionization function. Unfortunately, the Saha-CC equation does

not in general satisfy the simple convergence criterion given above since as discussed in

§ 7 (just after the derivative equation eq. (33)) since we cannot guarantee that the slope

of the ionization function function (which is monotonic decreasing) is less than −1: thus,

the ionization function can go outside quandrants 1 and 3. However, since the ionization

function must be in the range from
∑

k Lk ≥ 0 to
∑

k Jk, we can code the iteration never to

diverge. Since FI(z) is monotonic decreasing, the iteration will oscillate about the solution

and we can code the allowed range to decrease between minimum and maximum values for

z: i.e., zmin and zmax. If the minimum and maximum values stop changing, we can get the

iteration unstuck by choosing the next input value for the iteration to be

z =
1

2
(zmin + zmax) . (41)

The just described iteration procedure will converge albeit probably rather slowly. We call

this the unaccelerated iteration or the 0th accelerated iteration.

As the last paragraph suggests, there are accelerated iterations. What we will call the

1st accelerated iteration is that we choose the accelerated input zi−1 for the i iteration step

to be

zi−1 =
1

2
(zmin,i−1 + zmax,i−1) , (42)
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where (i − 1) ≥ 1: i.e, you have to have done iterates 0 and 1 to start the acceleration. In

fact, the 1st accelerated iteration is not very good. Numerically experiments show it can be

slightly faster or slightly slower than the unaccelerated iteration. In some special cases, it

might be much faster or slowler.

9. CONCLUSIONS

The conclusions are essentially given in the abstract and the Introductuion (§ 1).

Support for this work has been provided the Department of Physics & Astronomy of

the University of Nevada, Las Vegas.

A. NUMERICALLY GOOD SOLUTIONS OF THE QUADRATIC

EQUATION

Numerically good solutions of the quadratic equation (i.e., numerically good quadratic

formulae) are needed for the numerical solution of the Saha-CC equation (see § 8). For

reference, we derive them here.

The quadratic equation in conventional form is

ax2 + bx + c = 0 . (A1)

The quadratic equation is solved by completing the square:

0 = ax2 + bx + c

0 = x2 +
b

a
x +

c

a

0 = x2 +
b

a
x +

b2

4a2
− b2

4a2
+

c

a

0 =

(

x +
b

2a

)2

− b2

4a2
+

c

a

x +
b

2a
= ±sgn(a)

√

b2

4a2
− c

a
= ±

√
b2 − 4ac

2a

xa,± =
−b ±

√
b2 − 4ac

2a
, (A2)

where there are real solutions only for discriminant (b2−4ac) ≥ 0, there two distinct solutions

for (b2 − 4ac) > 0, there is only one solution for (b2 − 4ac) = 0, and where function sgn(x)

returns +1 for x ≥ 0 and −1 for x < 0.
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Now equation (A2) is the conventional form of the solution to the quadratic equation:

i.e., it is the conventional form of the quadratic formula. However, obviously it will be

numerically poor for one or other of the upper and lower case solutions since there will be

significant roundoff error when |4ac/b2| << 1. However, which case is poor depends on the

sign of b which makes things tricky.

The path to get two numerically good solutions is to introduce a factor of −sgn(b) into

the second to last equation in the derivation of equation (A2). We can do this since nothing

forbids us: the new second to last equation is still a solution of the third to last equation in

the derivation of equation (A2). We now solve to get

x +
b

2a
= ∓sgn(b)sgn(a)

√

b2

4a2
− c

a
= ∓sgn(b)

√
b2 − 4ac

2a

xa,± = − 1

2a

[

b ± sgn(b)
√

b2 − 4ac
]

, (A3)

where we have introduced the subscript “a,±” for clarity. It is now clear that the upper/lower

case of solution xa,± is numerically good/poor since b and sgn(b) always have the same sign.

How does one get a numerically good version of the lower case solution of equation (A3)?

We define xc,± = xa,∓ and obtain an expression for xc,± using difference of squares:

xc,± = xa,∓ = = − 1

2a

[

b ∓ sgn(b)
√

b2 − 4ac
]

= − 1

2a

[ −4ac

−b ∓ sgn(b)
√

b2 − 4ac

]

= −2c

[

1

b ± sgn(b)
√

b2 − 4ac

]

. (A4)

Note that the upper/lower case of xc,± is numerically good/poor for the same reason the

upper/lower case of xa,± is numerically good/poor: b and sgn(b) always have the same sign.

Point to emphasize, there are only two mathematical solutions, unless the discriminant

(b2−4ac) = 0. As the derivation of equation (A4) shows, the upper/lower case of xc,± (which

numerically good/poor) is mathematically equal to the lower/upper case of xa,± (which is

numerically poor/good).

We now define

q± = −1

2

[

b ± sgn(b)
√

b2 − 4ac
]

(A5)

which is always numerically good and write the solutions for x by

xa,± =
q±
a

and xc,± =
c

q±
, (A6)
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where the upper/lower case solutions are the numerically good/poor solutions.

Point to emphasize, the upper and lower cases of xa,± and of xc,± are distinct solutions,

unless the discriminant (b2 − 4ac) in equation (A5) is zero. Just to verify explicitly:

xa,±

xa,∓
=

xc,∓

xc,±
=

q±
q∓

=
q2
±

q∓q±
=

q2
±

ac
=







real q2
±/(ac) 6= 1 for (b2 − 4ac) > 0;

(b2/4)/(4ac) = 1 for (b2 − 4ac) = 0;

complex number for (b2 − 4ac) < 0.

(A7)

Similarly, the numerically good/poor solutions are the distinct solutions (unless the discrim-

inant (b2 − 4ac) in equation (A5) is zero) since

xa,±

xc,±
=

q2
±

ac
. (A8)

Note the solutions xa,± and xc,∓ are identical solutions. Just to verify explicitly:

xa,±

xc,∓

=
xa,∓

xc,±

=
q±q∓
ac

=
1

4ac

(

b2 − b2 + 4ac
)

= 1 always. (A9)

In conclusion, to compactly get the 2 numerically-good mathematically-distinct solu-

tions to a quadratic equation evaluate q+ using equation (A5) and then evaluate xa,+ and

xc,+ using equation (A6).

Note also the following special cases for the solutions in equation (A6):

1. If a = b = c = 0, there is no solution and x is indeterminate.

2. If a = b = 0 and c 6= 0, there is no solution, x is indeterminate, and equation is

inconsistent.

3. If a = 0, b 6= 0, and c = 0, there is only one solution xc,+ = 0.

4. If a 6= 0 and b = c = 0, there is only one solution xa,± = 0.

5. If a 6= 0, b 6= 0, and c = 0, there are solutions xa,+ = −b/a and xa,− = xc,+ = 0.

6. If a 6= 0, b = 0, and c 6= 0, there are solutions xa,± = ∓
√

−c/a and xc,± = ∓
√

−c/a.

7. If a = 0, b 6= 0 and c general, the only solution is xc,+ = −c/b (i.e., the linear equation

solution).

8. If the discriminant (b2 − 4ac) < 0, there are no real solutions.

9. If the discriminant (b2−4ac) = 0, xa,± = −b/(2a) and xc,± = −2c/b = −b/(2a) = xa,±.

So there is only a single solution.

10. If the discriminant (b2 − 4ac) > 0, there are two real solutions.
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