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ABSTRACT

In this paper, we present a new radiative transfer technique we call cell Monte

Carlo radiative transfer (CMC).

Subject headings: radiative transfer — methods: numerical — supernovae: gen-

eral

1. INTRODUCTION

Monte Carlo radiative transfer (MC) is a method of doing radiative transfer by sta-

tistical sampling. One propagates photon packets through a model atmosphere and from

counting their interactions in the atmosphere and the number of emergent packets, one can

calculate the radiative transfer effects of interest. The individual packets represent aggre-

gations of photons: for most radiative transfer situations, the number of actual photons far

exceeds actual computational ability. (In this paper, we will almost always use the term

photon packet for consistency even though much of the discussion applies equally well to

real photons.)

The model atmosphere usually consists of cells that are isotropic and homogeneous in

matter properties, but not in radiation field nor, if a moving atmosphere, in macroscopic

velocity field in general. (For brevity, we use the neologism isohomogeneous??? meaning

isotropic and homogeneous and related words when needed hereafter.) The discretization

of the model atmosphere into cells is an adequate approximation as a long as the cells are

sufficiently small. In general, one needs optically thin cells near the surface of an atmosphere

where radiation and matter properties change relatively rapidly with optical depth and

optically thick cells are adequate in the interior where those properties change relatively

slowly with optical depth. The shape of the cells is usually chosen to exploit the geometry of

the model. For plane-parallel atmospheres, one uses slab cells that are infinite in the parallel

1Department of Physics, University of Idaho, PO Box 440903 Moscow, ID 83844-0903, U.S.A.

2Homer L. Dodge Department of Physics & Astronomy, University of Oklahoma, 440 W. Brooks St.,

Norman, Oklahoma 73019, U.S.A.



– 2 –

directions and finite in the perpendicular direction (which usually the radial direction of an

atmosphere in astrophysics). For spherically-symmetric atmospheres, one uses shell slabs

that are concentric about the center of symmetry. For 3-dimensional atmospheres, the

simplest cell geometry is a cube.

MC has great advantages relative to other radiative transfer techniques:

1. Because it is a simulation of actual events, MC can usually treat systems

with great physical realism in a relatively straightforward way and avoid ap-

proximations needed in other radiative transfer methods. The other meth-

ods are principally difference equations methods or analytic or semi-analytic

methods. MC is also very general and flexible where other methods are often

restricted to particular systems or approximations. Aspects of systems that

MC treats relatively straightforwardly are complex photon-matter interac-

tions, complex 3-dimensional geometry, and complex 3-dimensional velocity

fields. MC is particularly useful for supernovae which are often significantly

3-dimensional in structure and are time dependent.

2. Often the main approximation of MC is its statistical nature. But the error

due to this approximation ordinarily can reduced as much as desired simply

by using sufficiently many photon packets in a MC run.

3. MC is embarrassingly parallelizable: it parallelizes approximately linearly in

the number of processors. Each photon packet for a given radiative trans-

fer calculation (which can be an iteration of a self-consistent atmosphere

calculation) can be propagated on a single processor independently of what

other packets are doing. Thus, one can propagate as many packets simulta-

neously as one has processors. One only has to sum the results from all the

processors at the end of the propagation stage.

4. MC gives very stable, fast convergence in self-consistent atmosphere calcu-

lations for reasons we discuss below.

5. Monte Carlo codes are often relatively simple to develop.

But there are severe disadvantages:

1. The downside of advantage 2 is that error in MC can be dominated by sta-

tistical error because it can be computationally too expensive to reduce this

error to a very low level by propagating sufficiently many photon packets.

There is an explicit trade-off between computational speed and accuracy.
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The nature of the statistical error in MC outputs is often as follows. Most

outputs of interest in an MC calculation are proportional to counts in out-

put bins and the mean values of each bin count are proportional to the total

number of photon packets in the calculation. Say we do a calculation with

N photons and have n counts in a bin with mean number of counts µ. The

probability distribution for count-in-bin and no-count-in-bin is binomial: let

p be the probability per photon packet of count-in-bin. Relative standard

deviation for the count-in-bin is

σrel =

√

1 − p

µ
∝ 1√

N
(1)

(e.g., Bevington 1969, p. 33). Often p << 1, and the probability for distri-

bution for count-in-bin and no-count-in-bin is approximately Poissonian in

which case

σrel =
1√
µ
∝ 1√

N
(2)

(e.g., Bevington 1969, p. 40). In either case, µ can be approximated by n

for a single calculation which is all that is often done. Actual errors in any

calculation scale as the relative standard deviation. Thus from equations (1)

and (2), we see that most outputs of interest will have relative errors that

scale as 1/
√

N . Consequently, we see that accuracy of outputs improves

only very slowly with the number of photon packets N in the calculation.

For example, to reduce the error of an output by a factor of 3, one must

usually propagate about 10 times more packets. It can be computationally

expensive to go from adequate accuracy to high accuracy.

2. Relative to other radiative transfer methods, MC is often particularly slow

for optically thick atmospheres (e.g., supernovae in the interior in the pho-

tospheric phase). The origin of this slowness is simply that it takes a long

computational time for photon packets to diffuse through optically thick

atmospheres. The relative speed of other radiative transfer methods in re-

gard to optically thick atmospheres is because they avoid tracking individual

photon-matter interactions which MC is simulating. This is the downside

of the high physical realism of MC.

To expand on the last-mentioned disadvantage, say, for example, one is injecting photon

packets at the inner boundary of a pure-scattering, plane-parallel atmosphere of optical

thickness τ in a Monte Carlo calculation. Figure 1 shows a cartoon a photon packet on

a random walk through the atmosphere. The typical number of photon packet steps (or
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flights) needed for an escaping packet to diffuse to the outer boundary is of order τ 2 from a

random-walk argument (e.g., Jeffery 2009)???. From this result, one can see that in general

the time of Monte Carlo calculation will increase like the square of a characteristic optical

depth of the atmosphere. The slow diffusion of packets in optically thick atmospheres can

make a Monte Carlo calculation prohibitively expensive for very optically thick atmospheres.

Can one do something about the slowness of MC in optically thick atmospheres? Yes.

Various acceleration techniques have been developed that can give orders of magnitude speed-

ups factors (e.g., Densmore et al. 2007). One of these is the random walk method of Fleck

& Canfield (1984) in which ordinary photon packet steps are replaced by macrosteps: for

simplicity, we call this method the macrostep random walk method (MRW). This procedure

was independently rediscovered in part by Jeffery & Mazzali (2007) (and called giant steps)

and perhaps by others. In astrophysical radiative transfer, the MRV method has recently

been used by Min et al. (2009) and was used in an early giant-steps version by (Mazzali et

al. 2001) without giving a discussion of the method. A method that give greater speed-up

factors in many cases is the discrete diffusion Monte Carlo (DDMC) of Densmore et al.

(2007).

In this paper, we offer a new accelerated MC method which we call cell Monte Carlo

radiative transfer (CMC). The advantage of CMC over other accelerated MC methods is that

it appears to have greater generality. Although we have done only limited calculations with

CMC, we believe that it can be used in many radiative transfer cases (e.g., static, moving,

time-independent, time-independent having complex 3-dimensional geometries, having com-

plex velocity fields). It also seems to us that CMC should be relatively easy to implement

in existing codes. Conceptually, CMC is simpler than either MRW or DDMC. Whether, it

is competitive in speed-up factors with these or other accelerated Monte Carlo methods is

left to future work.

The essence of CMC is to use standard MC to solve the radiative transfer in optically

thick subcells (optically thick as measured by some characteristic optical depth), then use

the subcell solutions to solve for the radiative in optically thick cells and then use the

cell solutions and standard MC radiative in the optically thin cells to solve the radiative

transfer for the whole atmosphere. The subcell and cell solutions involve calculating photon

transmission probabilities and other quantities which are mostly needed for the thermal state

solution. Because standard MC is used, CMC is a hybrid method like DDMC (Densmore

et al. 2007). The complete self-consistent solution of radiative transfer and thermal state

for all cells is obtained by a Lambda-iteration (e.g., Mihalas 1978, p. 147–150): radiative

transfer and thermal state solutions are done in an alternating iteration in each depends on

the other until both solutions converge to unchanging state.
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The speed-up factors achieved with CMC are because standard MC photon packets

flights (which have mean distances of optical depth 1) are replaced by effective flights over

subcells and cells. Each subcell and cell are many optical depth units thick. So far fewer

effective flights need to be calculated. CMC could be extended to optically thin cells (i.e.,

those of optical depth of order 1 or less), but for these cells CMC would be tend to be slower

than standard MC since CMC would require more flights rather than fewer compared to

standard MC. Also certain approximations that we make for CMC are only appropriate for

optically thick cells deep in the atmospheres.

We note that Lambda-iteration for optically thick atmospheres notoriously often fails to

converge in any reasonable computational time in difference equation methods (e.g., Mihalas

1978, p. 147–150). However, with MC the Lambda-iteration has been shown to give fast

convergence (in terms of number of iterations) for local-thermodynamic-equilibrium (LTE)

atmospheres (Lucy 1999a; Kasen et al. 2006) and atmospheres with NLTE (Lucy 2003;

Kromer & Sim 2009). The essential reason why the Lambda-iteration works well for MC

seems to be that energy conservation is strictly enforced by using energy packets (which are

often photon packets) that are indestructible (except for true energy sources and sinks) and

indivisible (Lucy 1999a, 2005a). In difference equation methods, energy conservation is only

necessarily satisfied in the limit of convergence. We see that MC can keep the atmosphere

closer to physical reality during the Lambda-iteration than the difference equation Lambda-

iteration. We also note that in the difference equation Lambda-iteration, information about

changed thermal state conditions tends to be transported by about optical depth 1 in each

radiative transfer calculation (e.g., Mihalas 1978, p. 149). In MC, the indestructible energy

packets can transport information about changed thermal state conditions throughout the

atmosphere in a single radiative transfer calculation. Thus, there is a global coupling of

the atmosphere in each radiative transfer calculation beyond just energy conservation. The

global coupling with MC probably greatly speeds up convergence to the atmosphere solution.

In developing CMC in this paper, we concentrate on plane-parallel and spherically

symmetric atmospheres and only outline the generalization to 3-dimensional atmospheres.

We also keep in mind the application of CMC to supernovae which are systems for the

flexibility of MC is of great use (as mentioned above) and for which CMC was originally

conceived. The use of MC for supernova analysis has flourished in recent years (e.g., Ambwani

& Sutherland 1988; Mazzali & Lucy 1993; Lucy 1999b, 2003, 2005a,b; Kasen et al. 2006; Sim

2007; Sim & Mazzali 2008; Kromer & Sim 2009).

Section 2 describes the basics of CMC. In § 3 demonstration CMC results are presented

for the plane-parallel grey atmosphere (e.g., Mihalas 1978, p. 53ff). The generalization

of CMC for 3-dimensional atmospheres is outlined in § 4. Section 5 outlines ideas for a
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relatively simple thermal state calculation with MC. Conclusions and discussion are given in

§ 6 Appendix B gives an introduction to standard MC.

2. BASICS OF CMC

Consider a plane-parallel or spherically-symmetric atmosphere divided into cells. The

division into cells is the basic discretization approximation of MC. For the plane-parallel

case, the cells are slabs, infinite in the planes of uniformity of the atmosphere (which we

take to be x-y direction planes) and finite in the non-uniform direction (which we take to

the radial direction). For the spherically-symmetric case, the cells are spherically symmetric

shell concentric about the center of symmetry.

The matter thermal state of the cells is always homogeneous: e.g., uniform density, uni-

form electron density, occupation numbers, temperature, opacities, emissivities, line profiles,

etc. This is not realistic, but the discretization is fine enough that it is an adequate approx-

imation. The radiation field on the other hand is not usually homogeneous nor isotropic in

reality and in the MC calculation.

The size of the cells must be appropriately determined for the atmosphere under con-

sideration.

3. DEMONSTRATION CALCULATIONS WITH THE GREY

ATMOSPHERE

4. GENERALIZATION OF CMC FOR 3-DIMENSIONAL ATMOSPHERES

5. THE THERMAL STATE CALCULATION

6. CONCLUSIONS AND DISCUSSION

Support for this work was provided by the Department of Physics of the University of

Idaho and the Homer L. Dodge Department of Physics & Astronomy of the University of

Oklahoma.
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A. ERROR IN MONTE CARLO RADIATIVE TRANSFER

CALCULATIONS

As stated in § 1 the error in all MC calculations for all statistically-determined quantities

tends to scale as 1/
√

N where N is the number photon packets in the calculation. In this

appendix, we review a special case derivation of this general result.

First note that the scaling tendency goes to an exact result in the limit that the rel-

ative standard deviations for statistical quantities grows small. To give an example where

the scaling does not apply consider a quantity determined from a count of photon packet

interactions that rarely occur. For sufficiently, small N the count may stay a constant zero

as N is varied, and so the error in the quantity stays constant.

Now say we want to calculate statistically-determined quantity Q. For example, Q

could be the mean specific intensity in a frequency bin, or the emergent flux in a frequency

bin. Determining Q is done by finding the mean contribution to Q per photon packet. This

process may be disguised in some cases, but it is the essence of the determination process

for all statistically-determined quantities.

Let us say that there are N packets in the calculation, but only the fraction f of them

can contribute to Q: f ≤ 1, of course. For example, the calculation may be time-dependent

and the count bin for Q may only exist for some time period in the calculation. Because the

calculation is statistical f itself will have a mean value f̄ and a standard deviation σf . The

calculated Q value is

Q =
C

fN

fN
∑

i=1

ni
∑

j=1

qij , (A1)

where C is some scaling constant, fN is the number of packets that can cause a contribution

to Q, ni the number of interaction of the ith packet that contribute to Q, and qij is the

contribution of the jth interaction of the ith packet to Q. For simplicity, we will assume

that mean (n̄) and standard deviation (σn) for the number of interactions per packet is the

same for all packets and that these values are constant in time. Similarly for simplicity, we

will assume that mean (q̄) and standard deviation (σq) for the contribution per interaction

is the same for all interactions and that these values are constant in time. We assume that

there is no correlation between ni and qij . Exception to this assumption are hard to think

for actual MC calculations.

The mean value of Q obtained by infinite number of repeats of the calculation is

Q̄ = Cn̄q̄ , (A2)
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where

n̄ = lim
fN→∞

1

fN

fN
∑

i=1

ni and q̄ = lim
fN→∞

1

fN

fN
∑

i=1

ni
∑

j=1

qij = lim
fN→∞

1

fN
n̄q̄i = n̄ lim

fN→∞

1

fN
q̄i ,

(A3)

where q̄i is the mean contribution from the ith packet.

To determine the standard deviation of Q, we assume that the standard deviations of

the input variables (i.e., f , ni, and qij) are small enough that we can drop all terms higher

than 1st order in these quantities in a Taylor expansion of Q around Q̄. This is just following

the usual 1st order error propagation procedure (e.g., Bevington 1969, p. 56–60). Note

∂Q

∂f

∣

∣

∣

∣

f=f̄

=
∂

∂f

[

Q̄ + (f − f̄)
∂Q

∂f

∣

∣

∣

∣

f=f̄ ,nk=n̄,qkℓ=q̄

+ . . .

]

∣

∣

∣

∣

f=f̄ ,nk=n̄,qkℓ=q̄

= 0 , (A4)

∂Q

∂nk

∣

∣

∣

∣

nk=n̄,nk=n̄,qkℓ=q̄

=
∂

∂nk

C

fN

fN
∑

i=1

ni(q̄ + . . .)

∣

∣

∣

∣

nk=n̄,nk=n̄,qkℓ=q̄

=
Cq̄

f̄N
(A5)

∂Q

∂qkℓ

∣

∣

∣

∣

nk=n̄,nk=n̄,qkℓ=q̄

=
C

fN

fN
∑

i=1

(n̄i + . . .)qij

∣

∣

∣

∣

nk=n̄,nk=n̄,qkℓ=q̄

= Cn̄ (A6)

(A7)

where we have made using of limiting values for f → f̄ , nk → n̄, and qkℓ → q̄. Now Taylor

expanding Q to 1st order in small quantities, we find

Q = Q̄ +
Cq̄

fN

fN
∑

i=1

(ni − n̄) +
Cn̄

fN

fN
∑

i=1

n̄
∑

j=1

(qij − q̄) (A8)

= Q̄ +
C

fN

fN
∑

i=1

(ni − n̄)q̄ +
C

fN

fN
∑

i=1

n̄
∑

j=1

(qij − q̄) , (A9)

where we note that the partial derivative with respect to f is actually zero to 1st order in

small quantities.

We now subtract Q̄ from both sides of equation (A9), square the equation, and average

over all quantities to obtain the variance in Q

σ2

Q =

(

C

fN

)2 [ fN
∑

i=1

fN
∑

k=1

〈(ni − n̄)(nk − n̄)〉q̄ (A10)

+

fN
∑

i=1

n̄
∑

j=1

fN
∑

k=1

n̄
∑

ℓ=1

〈(qij − q̄)(qkℓ − q̄)〉 (A11)
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+

fN
∑

i=1

fN
∑

k=1

n̄
∑

ℓ=1

〈(ni − n̄)(qkℓ − q̄)〉
]

(A12)

=

(

C

fN

)2
(

fN
∑

i=1

σnq̄ +

fN
∑

i=1

n̄
∑

j=1

σq +

fN
∑

i=1

n̄
∑

ℓ=1

σnq

)

(A13)

=

(

C2

fN

)

(q̄σn + n̄σq + n̄σnq) (A14)

The relative standard deviation for Q is

σQ rel =
σQ

Q̄
=

√

(σn/n̄) + (σq/q̄) + [σnq/(q̄n̄)]

fN
. (A15)

B. INTRODUCTION TO STANDARD MONTE CARLO RADIATIVE

TRANSFER
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Fig. 1.— A cartoon of a photon packet on a random walk through a pure-scattering, plane-

parallel atmosphere.
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Fig. 2.— The exact analytic, time-independent, isotropically-scattering, semi-infinite, plane-

parallel grey atmosphere solution and the Eddington approximation to it. To plot the so-

lutions on a logarithmic plot, we plot the solutions versus τr + 0.001. Thus, 0.001 on the

plot is physical optical depth zero. The solution extends to infinite optical depth in a nearly

linear extrapolation of the solution near optical depth 10.


