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Introduction

Problems for a Modern Physics Course (PMP) is a problem source book for a modern physics
course. The book is available in electronic form to instructors by request to the author. It can be
freely used and distributed for educational and non-commercial purposes. Express permission from
the author is not required.

The problems are grouped by topics in chapters: see Contents below. The chapters correspond
to the chapters of Robert Eisberg and Robert Resnick’s Quantum Physics of Atoms, Molecules,

Solids, Nuclei, and Particles. There are multiple-choice problems and full-answer problems. All the
problems have will have complete suggested answers eventually. The answers may be the greatest
benefit of PMP. The questions and answers can be posted on the web in pdf format.

At the end of the book is an appendix of answer tables for multiple choice questions.
PMP is currently under construction and whether it will grow to adequate size depends on

whether I have any chance to teach the modern physics course again.
Everything is written in plain TEX in my own idiosyncratic style. The problems all have codes

and keywords for easy selection electronically or by hand. The keywords will be on the problem
code line with additional ones on the extra keyword line which may also have a reference for the
problem A fortran program for selecting the problems and outputting them in quiz, assignment, and
test formats is also available. Note the quiz, etc. creation procedure is a bit clonky, but it works.
User instructors could easily construct their own programs for problem selection.

I would like to thank the Department of Physics & Astronomy of the University of Nevada, Las
Vegas for its support for this work. Thanks also to the students who helped flight-test the problems.
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Chapt. 1 Blackbody Radiation

Multiple-Choice Problems

001 qmult 00410 1 1 4 easy memory: blackbody radiation temperature
1. The blackbody radiation spectrum depends only on the:

a) density of the receiver. b) density of the emitter.
c) temperature of the receiver. d) temperature of the emitter.
e) the color of the emitter.

001 qmult 01120 2 1 2 moderate memory: density of states box quantization
2. The density of wavenumber states in wavenumber space (or k-space) per space space volume V

in the continuum limit for the box-quantization system (or particle-in-a-box system) is:

a) linear 1/V . b) independent of V . c) linear in V . d) quadratic in V .
e) cubic in V .

001 qmult 02010 1 4 3 easy deducto-memory: Planck idea
Extra keywords: modern physics

3. “Let’s play Jeopardy! For $100, the answer is: The person who first proposed that energy states
of microscopic systems could form a discrete (or quantized) set instead of a continuum.”

Who is , Alex?

a) Thomas Young (1773–1829) b) Lord Rayleigh (1842–1919)
c) Max Planck (1858–1947) d) Wilhelm Wien (1864–1928)
e) James Jeans (1877–1946)

Full-Answer Problems

001 qfull 01020 1 3 0 easy math: wave equation
4. The standard wave equation in 1 dimension is

∂2y

∂x2
=

1

v2

∂2y

∂t2
,

where y is the oscillating quantity, x is the 1 space dimension, t is time, and |v| is the constant
phase speed of wave propagation (WA-710). Because this differential equation has more than
one independent variable (it has x and t as independent variables), it is a partial differential
equation.

a) Verify that f(x− vt) is a general traveling wave solution of the wave equation where f(x)
is any function. What is the initial condition of the solution at time zero? What is the
direction of propagation of the solution? Consider the wave system as nonrelativistic and
note that v can be positive or negative.
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2 Chapt. 1 Blackbody Radiation

b) In quantum mechanics, it is traditional to write the argument of a 1-dimensional wave as
kx − ωt (rather than x − vt), where k is the wavenumber and ω is the angular frequency.
The ω is always taken as positive and the sign of k determines the direction of a traveling
wave: k > 0 gives travel in the positive direction and k < 0 gives travel in the negative
direction.

Since the wave equation is a linear equation, any two solutions can be added to
give another solution. You are given two traveling wave solutions A sin(kx − ωt) and
A sin(−kx − ωt), where A is a constant amplitude, k is a positive wave number, ω is
angular frequency, and ω/|k| = v, the phase speed. What is the superposition of the waves
(i.e., what is their sum) and what does this superposition amount to physically. HINT:

The trivial answer is not an answer.

001 qfull 01310 2 3 0 moderate math: Stirling series
Extra keywords: This is needed to find the Boltzmann distribution

5. Prove the Stirling’s approximation version

ln(N !) ≈
(

N +
1

2

)

ln(N) −N +
3

2
− 3

2
ln

(

3

2

)

+
1

8N
,

where N is an integer greater than or equal to 1. For very large N (as in most of statistical
mechanics), one usually uses the simpler and more memorable approximation

ln(N !) ≈ N ln(N) −N .

Actually, there is a more exact Stirling’s approximation. This is the real Stirling’s series given
by Arf-464 and WA-542. Both our Stirling approximation and the Stirling’s series become
more accurate as N increases. HINT: Write ln(N !) as a sum and approximate the sum by an
analytical integral. A sketch comparing the sum in histogram form and the integrand curve
helps to get the best simple choices for the integration boundaries. You will also need to a
Taylor’s series expansion of a form ln(1 + x) for small x.

001 qfull 01710 2 3 0 moderate math: Planck spectrum
6. There are several different ways of presenting the Planck or blackbody spectrum. They are

all equivalent in a sense, but each is most useful in some special case. The commonest one in
astrophysical radiative transfer circles is probably the frequency representation of the Planck
specific intensity:

Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
,

where h = 6.6260693(11) × 10−34 J s is Planck’s constant, c = 2.99792458 × 108 m/s is the
vacuum speed of light, ν is frequency (in hertz), k = 1.3806505(24)× 10−23 J/K is Boltzmann’s
constant, and T is temperature in kelvins. What Bν is the energy flow per unit time per unit
area (perpendicular to the flow direction) per unit frequency per unit solid angle. The energy
flow in a particular frequency differential dν is Bν dν.

Now if you want the wavelength (i.e., λ) representation, note that

ν =
c

λ
and dν = − c

λ2
dλ .

For an equivalent energy flow to Bν dν in the wavelength representation, one sets

Bλ dλ = Bν dν

from which it follows that

Bλ = Bν
dν

dλ
= Bν

c

λ2
=

2hc2

λ5

1

[ehc/(kTλ) − 1]
,



Chapt. 1 Blackbody Radiation 3

where we got rid of the minus sign for darn good reasons. One should really write Bλ dλ = Bν dν
as Bλ(−dλ) = Bν dν to account for the fact that a differential increase in ν is a differential
decrease in λ and we are trying to equate energy flows in a particular band: but no one ever
does this since it looks odd: we just know enough to suppress the minus sign.

What is the energy flux Fν (energy per unit radiating area per unit time per unit frequency
[in the frequency representation]) from a surface radiating like a blackbody? Well imagine
a differential patch of surface area dA with outward pointing normal vector: let the angle
from normal direction be θ. The amount of area presented by dA perpendicular to a specific
intensity beam flowing out at angle θ is dA cos θ which a simple diagram will show. Thus, the
differential bit of energy flux emerging from dA in differential solid angle sin θ dθ dφ (where φ
is the azimuthal angle) is

dFν = Bν cos θ sin θ dθ dφ .

Since Bν is angle independent we can integrate for Fν at once:

Fν =

∫ 2π

0

∫ π/2

0

Bν cos θ sin θ dθ dφ = 2π

∫ 1

0

Bνµdµ = πBν =
2πhc2

λ5

1

[ehc/(kTλ) − 1]
,

where we have used the transformation µ = cos θ and dµ = − sin θ dθ. So the difference between
Planck specific intensity and Planck flux is a pesky little factor of π.

What is the Planck energy density Eν? Well specific intensity divided by c is the energy
density per unit solid angle. The energy density per unit solid angle is Eν/(4π) since the
Planck radiation field is isotropic since it is all a thermodynamic equilibrium radiation field.
The division by c can most easily be understood by writing

Bν = c
Eν

4π

and saying (to oneself if no one else) the amount of energy through a bit of area dA perpendicular
to the direction of flow in a time dt from a box of volume dAds (where s is the coordinate along
the flow direction) is the energy moving in the direction of flow [Eν/(4π)] dAds. If one asks for
the flow per unit area per unit time (which is just Bν), one has Eν/(4π)]ds/dt, but photons
move at the speed of light and so ds/dt = c. So we get the last equation, and so one finds

Eν =
4π

c
Bν =

8πhν3

c2
1

[ehν/(kT ) − 1]
.

In the wavelength representation one has, of course,

Eλ =
4π

c
Bλ =

8πhc2

λ5

1

[ehc/(kTλ) − 1]
,

which is just ER-19’s equation for the energy density.

Wasn’t all that edifying. Now on to the problem.
NOTE: There are parts a,b.

a) Integrate

Fν =
2πhc2

λ5

1

[ehc/(kTλ) − 1]

over all frequency to find Stefan’s Law

F = σT 4 ,



4 Chapt. 1 Blackbody Radiation

where F is the fequency-integrated flux and σ = 5.670400(40) × 10−8 W/m2/K4. You
should be able to find σ in terms of fundamental constants. HINT: Change the integration
variable to x = hν/(kT ), remember the geometric series

1

1 − x
=

∞
∑

n=0

xn for |x| < 1 ,

note the factorial function

z! =

∫

0

tze−t dt

which for z a positive integer n is just n! (Arf-453), and note the Riemann zeta function

ζ(s) =
∞
∑

n=1

n−s for s > 1

(Arf-282) gives ζ(4) = π4/90 (Arf-285).

b) Now prove the Wien displacement law:

λmaxT = constant

where λmax is the maximum of Bλ and the Wien constant is 2.8977685(51) × 10−3 mK.
Actually the constant cannot be determined exactly analytically. So find a first
approximation. HINT: Let x = hc/(kTλ) and find

dBλ

dλ
=
dBλ

dx

dx

dt
.

The maximum of Bλ occurs for dBλ/dx = 0. Find the maximizing x value to a good first
approximation and then the approximate Wien constant.

001 qfull 02210 2 5 0 moderate thinking: Earth’s effective temperature
Extra keywords: suggested by ER-23-10

7. The solar constant S = 1366 W/m2 on average (Wikipedia: Solar radiation, 2008feb18). In fact,
it’s not exactly constant, due to varying Earth-Sun distance, sunspots, and the 11-year solar
cycle. But averaged over those variations, it is really very constant which is good for life on
Earth. The solar constant is the power per unit area (or energy flux) on a sphere surrounding
the Sun at the Earth’s distance from the Sun.

a) What is the AVERAGE power per unit area on the Earth? HINT: Remember the
Earth’s a rotating sphere. Think of its cross-sectional area in respect to the solar light flux
and its surface area.

b) The Earth’s average albedo is A = 0.30. The albedo is the fraction of just light
REFLECTED. What is the average power per unit area ABSORBED by the Earth?

c) Assuming the Earth is a perfect blackbody radiator and is in thermal energy steady state
(i.e., emits all the energy it ABSORBS and maintains a steady state), solve for the Earth’s
mean temperature. HINT: Power per unit area is flux. Blackbody flux is given by the
Stefan-Boltzmann law.



Chapt. 2 Photons

Multiple-Choice Problems

002 qmult 00210 1 4 5 easy deducto-memory: photoelectric effect
8. “Let’s play Jeopardy! For $100, the answer is: It is the emission of electrons from matter

caused by the absorption of photons. The effect in some sense includes photoionization as a
subcategory since photoionization agrees with the definition, but other cases such as emission
of non-localized electrons in materials are also included in the effect and are what one usually
thinks of when one says the name of the effect.”

What is the , Alex?

a) Mössbauer effect b) Hall effect c) quantum Hall effect d) Zeeman effect
e) photoelectric effect

002 qmult 00320 1 3 1 easy math: work function of gold
9. Given that the work function of gold (Au) is 4.8 eV, what is the maximum wavelength of light

that will cause the emission of a photoelectron? HINT: hc = 12398.419 eVÅ.

a) 2600 Å. b) 3000 Å. c) 5000 Å. d) 7000 Å. e) 10000 Å.

002 qmult 00430 1 1 3 easy memory: Compton equation
Extra keywords: ER-37

10. The Compton equation can be derived using the photon picture of electromagnetic radiation
and:

a) the photoelectric effect. b) classical energy and momentum conservation laws.
c) relativistic energy and momentum conservation laws. d) the Planck spectrum.
e) the Einstein equation E = mc2.

002 qmult 00440 1 3 5 easy math: proton Compton wavelength
11. The standard Compton equation is

∆λ = λscat − λinc = λC(1 − cos θ) ,

where λscat is the wavelength of the scattered photon, λinc is the wavelength of the incident
photon, θ is the scattering angle (i.e., the angle between the incident and scattering directions),
and λC is the Compton wavelength. Note that

λC =
h

mec
= 2.426310238(16)× 10−12 m

where h is Planck’s constant, me is the electron mass, and c is the speed of light. Compton
scattering by protons can occur too. What is the proton Compton wavelength?

a) 2.426310238(16)× 10−15 m ≈ 24.3 fm. b) 2.426310238(16)× 10−15 m ≈ 2.4 fm.
c) 2.426310238(16)× 10−12 m ≈ 0.024 Å. d) 1.321409855× 10−14 m ≈ 13.2 fm.
e) 1.321409855× 10−15 m ≈ 1.3 fm.

5



6 Chapt. 2 Photons

002 qmult 00750 1 4 4 easy deducto-memory: positronium
12. “Let’s play Jeopardy! For $100, the answer is: A bound state of matter which is usually formed

by a positron on its way to annihilation with an electron. It has a mean lifetime of 1.25×10−10 s
if it forms in the singlet ground state.”

What is , Alex?

a) pragmatium b) plutonium c) protonium d) positronium e) protesium

Full-Answer Problems

002 qfull 00390 2 3 0 moderate math: gold foil photoelectric effect
Extra keywords: ER-52

13. X-rays eject photoelectrons from a particular thin gold foil.

a) The X-rays have wavelength 0.710 Å. What is the energy of an individual photons in units
of joules, Kilo-electron-volts (KeV), and mec

2 = 510.998910(13)KeV?

b) The electrons are directed into a region of uniform magnetic field ~B and go into
UNIFORM CIRCULAR MOTION with radius r as determined by the magnetic
force. The observed MAXIMUM value of rB (sometimes called the magnetic rigidity
[Go-318]) is 1.88×10−4 T m where T m are tesla-meters. Find the maximum kinetic energy
of the photoelectrons in KeV. HINT: Recall the Lorentz force (which includes the magnetic
force) is given by

~F = q( ~E + ~v × ~B) ,

where ~E = 0 in our case, and the centripetal force magnitude by

F = m
v2

r
.

c) What is the minimum work in KeV done by the X-rays in ejecting the photoelectrons?
HINT: It is not the work function of thick gold sample. That is 4.8 eV (ER-408).

002 qfull 00830 1 3 0 easy math: photon probability density
Extra keywords: ER-52-8

14. You are given that the probability density for photon removal from a beam along a beam path
is

ρ(s) =
e−s/ℓ

ℓ
,

where s is the path coordinate from some initial position and ℓ turns out to be the mean free
path.

NOTE: There are parts a,b,c,d

a) Derive the probability for removal by point s.

b) Derive the probability for survival to point s.

c) Derive the general formula for the moments of the probability distribution. Give special-
case results for moments for powers m = 0, 1, 2. What is moment for power m = 1 called?
HINT: You will need the factorial function

z! =

∫ ∞

0

tze−t dt .

d) Derive the standard deviation formula for the probability density.



Chapt. 3 De Broglie’s Postulate and Matter Waves

Multiple-Choice Problems

Full-Answer Problems

003 qfull 00500 3 3 0 tough math: phase velocity, group velocity
15. It’s embarrassing thing in elemetary quantum mechanics to admit that the momentum

eigenstates or wavenumber eigenstates cannot be normalized. The two eigenstates are the same
thing since a momentum eigenvalue p is equal to h−k where k is the wavenumber eigenvalue.
This means that no particle can every actually be in a wavenumber eigenstate or have a definite
wavenumber eigenvalue. A particle can only ever be in superpositions of eigenstates.

a) The normalization condition for a wave function Ψ is that

∫ ∞

−∞

Ψ∗Ψ dx

be a finite, non-zero number. If this is the case, then one can normalize Ψ by multiplying
it by a constant such that one obtains

1 =

∫ ∞

−∞

Ψ∗Ψ dx .

Since Ψ∗Ψ is a probability density, normnalizability means that the probability of finding
a particle somewhere is 1 as logic dictates. The wavenumber eigenstates are given by

Ψk(x, t) =
ei(kx−ωt)

√
2π

,

where t is time, ω = E/h− is angular frequency, and the 1/
√

2π is a conventional factor.
Show that these eigenstates cannot be normalized.

b) An actual general wave function for a free particle Ψ(x, t) can be expanded in a
superposition of wavenumber eigenstates:

Ψ(x, t) =

∫ ∞

−∞

Φ(k)Ψk(x, t) dk ,

where Φ(k) is a function in k-space. This Ψ(x, t) is called a wave packet. Now Φ(k) is
actually the Fourier transform of Ψ(x, 0). By Plancherel’s theorem Ψ(x, 0) is the Fourier
transform of Φ(x, 0):

Φ(k) =

∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk ,

7



8 Chapt. 3 De Broglie’s Postulate and Matter Waves

Now the phase velocity of any wavenumber eigenstate is

v =
ω

k
=
E

p
=
h−k2

2m
.

But the classical velocity for a particle with energy E and momentum p is

vclas =
2E

p
= 2v .

There is a strange paradox here. This can be resolved by considering the concept of group
velocity. Assume Φ(k) is sharply peaked around k0 for a wave packet. This actually means
that Ψ(x, 0) is broad about the mean value of x. But this not a limitation since it turns
out that the idea of a group isn’t well defined for sharply peaked Ψ(x, 0) since the wave
packet spreads out so quickly. Since Φ(k) is sharply peaked around k0 we can Taylor’s
series expand ω(k) to first order in k. Do this and write the approximate expression for
the wave packet in terms of the function

e−i(ω0−ω′

0
k0)t .

c) Now one of the rules (i.e., micro-postulates) of quantum mechanics is that the physics
cannot be changed by a global phase factor in the wave equation: i.e., a factor A of the
whole wave function that satisfies

A∗A = 1 .

Use this rule to simplify the expression obtained in the part (b) answer and show that

Ψ(x, t) ≈ Ψ(x− ω′

0t, 0) .

d) What is the “phase velocity” of the wave packet result in part (c) answer. This group
“phase velocity” is the group velocity vg for the wave packet. Show that the group velocity
is the classical velocity one would expect classically for a particle of momentum p0 = h−k0.

003 qfull 00510 2 3 0 moderate math: Dopper shift matter wave
16. Something that is never discussed in quantum texts (as far the instructor can tell) is the non-

relativistic Doppler shift for matter waves. Perhaps this because one can always just work it
for oneself.

a) Given the de Broglie law

λ =
h

p

and that one makes frame transformation to a frame with velocity v0 relative to the initial
frame, find the transformation expressions for λ, k, and momentum. The problem is all
1-dimensional. Use prime symbols to indicate quantities in the new frame.

b) Now show that the group velocity transforms consistently: i.e.,

v′g|k′

1
= vg|k1

− v0

is obtained when one evaluates the group velocity in the primed frame. The subscript “1”
denotes the central wavenumber of the wave packet in this case.



Chapt. 4 The Bohr Atom

Multiple-Choice Problems

Full-Answer Problems

9



Chapt. 5 Schrödinger’s Equation and Non-Relativistic Quantum Mechanics

Multiple-Choice Problems

Full-Answer Problems

10



Chapt. 6 Applications of One-Dimensional NR Quantum Mechanics

Multiple-Choice Problems

Full-Answer Problems

006 qfull 00720 2 3 0 moderate math: infinie square well features
17. The one-dimensional infinite square well with a symmetric potential and width a is

V =

{

0 for |x| ≤ a/2;
∞ for |x| > a/2.

The eigenstates for infinite square well are given by

ψn(x) =

√

2

a
×

{

cos(kx) for n = 1, 3, 5 . . .;
sin(kx) for n = 2, 4, 6 . . .,

where

k =
nπ

a
and

ka

2
=
nπ

2
.

The n is the quantum number for eigenstates. The eigenstates have been normalized and are
guaranteed orthogonal by the mathematics of Hermitian operators of the which the Hamiltonian
is one. A quantum number is a dimensionless index (usually integer or half-integer) that specifies
the eigenstates and eigenvalues somehow. The eigen-energies are given by

En =
h−2
k2

2m
=

h−2

2m

(π

a

)2

n2 .

a) Verify the normalization of eigenstates.

b) Determine 〈x〉 for the eigenstates.

c) Determine 〈pop〉 for the eigenstates. HINT: Recall

pop =
h−
i

∂

∂x
.

d) Determine 〈p2
op〉 and the momentum standard deviation σp for the eigenstates.

e) Determine 〈x2〉 and the position standard deviation σx in the large n limit. HINT: Assume
x2 can be approximated constant over one complete cycle of the probability density ψ∗

nψn

f) Now for the boring part. Determine 〈x2〉 and the position standard deviation σx exactly
now. HINT: There probably are several different ways of doing this, but there seem to be
no quick tricks to the answer. The indefinite integral

∫

x2 cos(bx) dx =
x2

b
sin(bx) +

2

b2
x cos(bx) − 2

b3
sin(bx)

11



12 Chapt. 6 Applications of One-Dimensional NR Quantum Mechanics

might be helpful.

g) Verify that the Heisenberg uncertainty principle

∆x∆p = σxσp ≥ h−
2

is satisfied for the infinite square well case.



Chapt. 7 The Hydrogenic Atom

Multiple-Choice Problems

Full-Answer Problems

13



14 Chapt. 7 The Hydrogenic Atom

Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they
are neither intended to be complete nor completely explicit. There are fewer symbols than variables,
and so some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use
them.

18 Constants

c = 2.99792458× 108 m/s ≈ 2.998× 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

e = 1.602176487(40)× 10−19 C

ERydberg = 13.60569193(34) eV

ge = 2.0023193043622 (electron g-factor)

h = 6.62606896(33)× 10−34 J s = 4.13566733(10)× 10−15 eV s

hc = 12398.419 eVÅ ≈ 104 eV Å

h− = 1.054571628(53)× 10−34 J s = 6.58211899(16)× 10−16 eV s

k = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23),MeV

α = e2/(4πǫ0h−c) = 7.2973525376(50)× 10−3 = 1/137.035999679(94) ≈ 1/137

λC = h/(mec) = 2.4263102175(33)× 10−12 m = 0.0024263102175(33) Å

µB = 5.7883817555(79)× 10−5 eV/T

19 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

20 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]
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sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

21 Blackbody Radiation

Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

E = hν =
hc

λ
p =

h

λ

F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)
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22 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

23 Matter Waves

λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫ ∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

24 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t

ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗iφj dx = δij cj =

∫ b

a

φ∗jf(x) dx

[A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫ ∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ
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|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫ ∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫ ∞

−∞

dx 〈Ψi|x〉〈x|Ψj〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x)

P
dfe/o(x)

dx
= ∓dfe/o(x)

dx

25 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .

s p d f g h i . . .

26 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a0

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
mreduced =

m1m2

m1 +m2

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)
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Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

naZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
≈ −13.606× Z2

n2

mreduced

me
eV

27 Spin, Magnetic Dipole Moment, Spin-Orbit Interaction

S2
op =

3

4
h−

(

1 0
01

)

s =
1

2
s(s+ 1) =

3

4
S =

√

s(s+ 1)h− =

√
3

2
h−

Sz,op =
h−
2

(

1 0
0 −1

)

ms = ±1

2
χ+ =

(

1
0

)

χ− =

(

0
1

)

µb =
eh−
2me

= 9.27400915(26)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

µnuclear =
eh−
2mp

= 5.05078324(13)× 10−27 J/T = 3.1524512326(45)× 10−8 eV/T

~µℓ = −gℓµb

~L

h−
µℓ = gℓµbℓ(ℓ+ 1) µℓ,z = −gℓµb

Lz

h−
µℓ,z = −gℓµbmℓ

~τ = ~µ× ~B PE = −~µ · ~B ~F = ∆(~µ · ~B) Fz =
∑

j

µj
∂Bj

∂z
~ω =

gℓµb

h−
~B

~J = ~L+ ~S J =
√

j(j + 1)h− j = |ℓ − s|, |ℓ− s+ 1|, . . . , ℓ+ s triangle rule
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Jz = mj h− mj = −j,−j + 1, . . . , j − 1, j

E(n, ℓ,±1/2, j) = −ERyd

n2

m

me

[

1 +
α2

n2

(

n

j + 1/2
− 3

4

)]

28 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′

obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2

E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)
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τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)



Appendix 8 Multiple-Choice Problem Answer Tables

Note: For those who find scantrons frequently inaccurate and prefer to have their own table and
marking template, the following are provided. I got the template trick from Neil Huffacker at
University of Oklahoma. One just punches out the right answer places on an answer table and
overlays it on student answer tables and quickly identifies and marks the wrong answers

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

29. O O O O O 6. O O O O O

30. O O O O O 7. O O O O O

31. O O O O O 8. O O O O O

32. O O O O O 9. O O O O O

33. O O O O O 10. O O O O O

21
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Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

34. O O O O O 11. O O O O O

35. O O O O O 12. O O O O O

36. O O O O O 13. O O O O O

37. O O O O O 14. O O O O O

38. O O O O O 15. O O O O O

39. O O O O O 16. O O O O O

40. O O O O O 17. O O O O O

41. O O O O O 18. O O O O O

42. O O O O O 19. O O O O O

43. O O O O O 20. O O O O O
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Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

44. O O O O O 16. O O O O O

45. O O O O O 17. O O O O O

46. O O O O O 18. O O O O O

47. O O O O O 19. O O O O O

48. O O O O O 20. O O O O O

49. O O O O O 21. O O O O O

50. O O O O O 22. O O O O O

51. O O O O O 23. O O O O O

52. O O O O O 24. O O O O O

53. O O O O O 25. O O O O O

54. O O O O O 26. O O O O O

55. O O O O O 27. O O O O O

56. O O O O O 28. O O O O O

57. O O O O O 29. O O O O O

58. O O O O O 30. O O O O O
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NAME:

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

59. O O O O O 26. O O O O O

60. O O O O O 27. O O O O O

61. O O O O O 28. O O O O O

62. O O O O O 29. O O O O O

63. O O O O O 30. O O O O O

64. O O O O O 31. O O O O O

65. O O O O O 32. O O O O O

66. O O O O O 33. O O O O O

67. O O O O O 34. O O O O O

68. O O O O O 35. O O O O O

69. O O O O O 36. O O O O O

70. O O O O O 37. O O O O O

71. O O O O O 38. O O O O O

72. O O O O O 39. O O O O O

73. O O O O O 40. O O O O O

74. O O O O O 41. O O O O O

75. O O O O O 42. O O O O O

76. O O O O O 43. O O O O O

77. O O O O O 44. O O O O O

78. O O O O O 45. O O O O O

79. O O O O O 46. O O O O O

80. O O O O O 47. O O O O O

81. O O O O O 48. O O O O O

82. O O O O O 49. O O O O O

83. O O O O O 50. O O O O O
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Answer Table Name:

a b c d e a b c d e

84. O O O O O 31. O O O O O

85. O O O O O 32. O O O O O

86. O O O O O 33. O O O O O

87. O O O O O 34. O O O O O

88. O O O O O 35. O O O O O

89. O O O O O 36. O O O O O

90. O O O O O 37. O O O O O

91. O O O O O 38. O O O O O

92. O O O O O 39. O O O O O

93. O O O O O 40. O O O O O

94. O O O O O 41. O O O O O

95. O O O O O 42. O O O O O

96. O O O O O 43. O O O O O

97. O O O O O 44. O O O O O

98. O O O O O 45. O O O O O

99. O O O O O 46. O O O O O

100. O O O O O 47. O O O O O

101. O O O O O 48. O O O O O

102. O O O O O 49. O O O O O

103. O O O O O 50. O O O O O

104. O O O O O 51. O O O O O

105. O O O O O 52. O O O O O

106. O O O O O 53. O O O O O

107. O O O O O 54. O O O O O

108. O O O O O 55. O O O O O

109. O O O O O 56. O O O O O

110. O O O O O 57. O O O O O

111. O O O O O 58. O O O O O

112. O O O O O 59. O O O O O

113. O O O O O 60. O O O O O


