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Introduction

Cosmology Problems (CP) is a source book for instructors of cosmology at the low-cal end of
the graduate level. The book is available in electronic form to instructors by request to the author.
It is free courseware and can be freely used and distributed, but not used for commercial purposes.

The problems are grouped by topics in chapters: see Contents below. For each chapter there are
two classes of problems: in order of appearance in a chapter they are: (1) multiple-choice problems
and (2) full-answer problems. Almost all the problems have complete suggested answers. The
answers may be the greatest benefit of CP. The problems and answers can be posted on the web in
pdf format.

The problems have been suggested by many sources, but have all been written by me. Given
that the ideas for problems are the common coin of the realm, I prefer to call them redactions.
Instructors, however, might well wish to find solutions to particular problems from well known
texts. Therefore, I give the suggesting source (when there is one or when I recall what it was) by a
reference code on the extra keyword line. Caveat: my redaction and the suggesting source problem
will not in general correspond perfectly or even closely in some cases. The references for the source
texts and other references follow the contents. A general citation is usually, e.g., Ar-400 for Arfken,
p. 400.

At the end of the book are two appendices. The first is an equation sheet suitable to give to
students as a test aid and a review sheet. The second is a set of answer tables for multiple choice
questions.

Cosmology Problems is a book in progress. There are gaps in the coverage and the ordering of
the problems by chapters is not yet final. User instructors can, of course, add and modify as they
list.

Everything is written in plain TEX in my own idiosyncratic style. The questions are all have
codes and keywords for easy selection electronically or by hand. A fortran program for selecting
the problems and outputting them in quiz, assignment, and test formats is also available. Note the
quiz, etc. creation procedure is a bit clonky, but it works. User instructors could easily construct
their own programs for problem selection.

I would like to thank the Physics & Astronomy Department of University of Nevada, Las Vegas
for its support for this work. Thanks also to the students who helped flight-test the problems.
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Chapt. 0 General Questions

Multiple-Choice Problems

000 qmult 00100 1 4 1 easy deducto-memory: reading and done
1. Did you complete reading for this cosmology lecture before it was lectured/bypassed on in class

and the corresponding homework by the day after?

a) YYYessss! b) Jawohl! c) Da! d) Śı, śı. e) OMG no!

Full Answer Problems

1



Chapt. 2 History of Cosmology

Multiple-Choice Problems

Full Answer Problems

2



Chapt. 3 Miscellaneous Problems

Multiple-Choice Problems

Full-Answer Problems

002 qfull 00110 1 3 3 hard math: ancient Egyptians and unit fractions
2. The ancient Egyptian mathematicians thought there was something unfundamental about non-

unit fractions (those not of the form 1/n) though they made a bit of an exception for 2/3
(Boyer-13–14). So they thought it a good idea to expand non-unit fractions as sums of unit
fractions (those of the form 1/n).

There are parts a,b,c.

a) Show the general rational number m/n can be expanded into infinitely many possible unit
fraction expansions. HINT: This is trivial.

b) The ancient Egyptians apparently thought some kinds of unit-fraction expansions were
good, but have not left us any definite rules (Boyer-14). Probably they never formulated
any. However, we can formulate a rule/algorithm. Specify an rule/algorithm for expanding
general m/n in unit fractions

m/n =

I
∑

i=1

ki

ni

where the denominators ni are all divisors of n in increasing order of size, there are I
divisors in total, and ki are all zero or 1, except that kI can be greater than 1. HINT:
The proof just requires some subtraction using a recurrence relation.

c) Use your rule/algorithm from the part (b) answer to expand 601/360 in unit fractions. You
could do this by hand or write a small computer progam do to it. Note that 360 has 24
divisors which is probably one of the main reasons why the ancient Babylonian astronomers
chose it for the division of the circle—they wanted easy division. The other main reason
was probably to get angle unit nearly equal to the distance the Sun moved every day on
the celestial sphere. HINT: If you write a computer code, make it find the divisors with
the mod function for you then it will be general for any denominator n. Try your code out
on 1170/360.

d) Consider m/n and an expansion in the harmonic series with omissions:

m

n
=

K
∑

ℓ=2

kℓ

ℓ
,

where ki = 1 or zero and K is in general ∞. Why is it always possible to make this
expansion? Can the series truncate with K finite? I will give one buck to the first person
who finds out by themselves or from some source whether or not the expansion truncates
to finite K always.

3
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002 qfull 00120 1 3 3 hard math: frustum volume AKA frustrum volume
3. A general cone is 3-dimensional shape formed from a planar base and continuum of line segments

from the base’s perimeter to a vertex (or apex) not in the plane of the base. The height of the
cone is the length of the perpendicular from the base plane to the vertex. A general frustum—or,
tripping off the tongue erroneously, frustrum—is a general cone with the top sliced off parallel
to the base.

The ancient Egyptian mathematicians were very interested in frustums because of the
topless pyramid kind—they are were always designing and building things like that. They even
knew the rule for the volume of square pyramidal frustum which in modern formula form is

V =
∆h

3
(a2 + ab+ b2) ,

where ∆h is the height of the frustum (not the height of the pyramid it’s cut from), a is the
base square side length, and b is the top square side length. The ancient Egyptians probably
deduced this rule by constructing a square pyramidal frustum from simpler parts (Boyer-21).

There are parts a,b.

a) By the power of pure guess, generalize the volume formula to that of a general frustum
with base area A and top area B.

b) Prove your generalization from the part (a) answer. HINT: Note the following factoids.
Factoid 1: You can approximately replace any cone/frustum by a SET of equal-base-area
square cones/frustums with their base-parallel slices slid appropriately: just picture it.
Factoid 2: If you slide parallel slices of 3-dimensional shape, you don’t change the volume
of the shape (e.g., for parallelopiped obviously).

c) Now derive the volume of a general cone with base area A and height h without using the
equation in the preamble or the formula found in the parts (a) and (b) answers. HINT:
The area of any base-parallel slice Az is proportional to the square of the distance from
the vertex to the slice z along the perpendicular from the base plane to the vertex. This is
obvious if you envisage the slice as covered by a grid: each grid line obviously scales as z.

d) Now what is the volume of a frustum with base of area A and height to the invisible vertex
h, and top with area B and height to the invisible vertex hB?

e) Given ∆h = h − hB, derive the formula found in the part (a) answer from the formula
found in the part (d) answer. HINT: You will have to express h and hB in terms of ∆h,
A, and B making use of the integrand used in the part (d) answer, and do some mildly
tricky algebra which is accelerated by using the sum/difference of cubes formula:

a3 ± b3 = (a± b)(a2 ∓ ab+ b2) .

f) Who is responsible for

. . .
Come, every frustum longs to be a cone,
And every vector dreams of matrices.
Hark to the gentle gradient of the breeze:
It whispers of a more ergodic zone.
. . .
I see the eigenvalue in thine eye,
I hear the tender tensor in thy sigh.
Bernoulli would have been content to die,
Had he but known such a2 cos(2φ).
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002 qfull 00210 1 3 0 easy math: Pythagorean theorem I

4. The Pythagorean theorem was known to the ancient Babylonians, but not as far as known the
ancient Egyptians, long before Pythagoras (c. 570–c. 495 BCE) (Boyer-42). But it is likely the
ancient Babylonians never gave a general proof: they just did not think in terms of general
proofs. The ancient Greek mathematicians may or may not have learnt of the Pythagorean
theorem from the ancient Babylonians. However, they probably gave the first general proof.
Late reports say Pythagoras himself proved it and hence its name. This may just be legend
(Boyer-54; Wikipedia: Pythagorean theorem: History). Euclid (fl. 300 BCE) gives the first
proof on the historical record. We will not attempt his proof, but something simpler. By
the way, no one wrote equations like we do before circa 1600—they used other klutzy ways of
expressing formulae (see Wikipedia: History of mathematical notation: Symbolic stage).

Assume a Euclidean 2-dimensional space. Since the space is Euclidean or flat, a square (a
4-sided polygon with sides of equal length and right-angle vertices) has area A = d2 where d is
the length of a side. Prove the Pythagorean theorem for this Euclidean space. HINT: Draw
a square with side length a + b and an inscribed square of side length c where the vertices of
the inscribed square touch the first square sides at the points that divide the sides into parts of
length a an b.

002 qfull 00220 1 3 0 easy math: Pythagorean theorem II with area rule

5. In 2-dimensional Euclidean space (i.e., 2-dimensional flat space), we have a simple area principle.
If you draw a general closed contour, you can tile it without overlap with squares of equal size
with side length a. We define a2 as the area of the squares. The sum of areas a2 for closed
contour in the limit that a → 0 and number of squares goes to infinity is the area A of the
closed contour. An identical closed contour anywhere in the space has the same area A and
if you scale any the linear dimension of the contour by f , the area scales by f2. Somewhat
obviously, the area of two general closed contours (joined or separated) must equal the sum of
areas of the two general closed contours since the tiled areas just equal the count of squares of
area a2 times aread a2 before you take the limit.

The area principle implies the Pythagorean theorem and consequently the metric of 2-
dimensional flat space: ds2 = dx2 + dy2, where x and y are general perpendicular coordinates
and ds is the distance or interval between two points with coordinates that differ by dx and dy.

There are parts a,b,c,d. The parts can be done independently, and so do not stop if you
cannot do a part.

a) Use the area principle to prove the area of a right triangle with sides of length a and b
forming the right angle is ab/2. HINT: Imagine little squares of side length e and tile a
rectangle with them, count the squares, find the area of the rectangle as e → 0 and the
number of squares goes to infinity, and then use symmetry.

b) Draw a diagram of a square with sides of length a + b and an inscribed square with side
of length c with corners touching the sides of the first square (which is the circumscribed
square) at points a from each corner of the first square.

c) Use answers from the parts (a) and (b) to prove the Pythagorean theorem: i.e., c2 = a2+b2.

d) Prove the metric ds2 = dx2 +dy2 holds for a 2-dimensional flat space. HINT: This is easy.

002 qfull 00230 1 3 0 easy math: Pythagorean theorem III with area rule with Euclid’s 5th postulate

6. Can we prove the Pythagorean theorem semi-rigorously? Yes.

There are parts a,b,c,d,e,f,g,h,i. The parts can be done independently, and so do not stop
if you cannot do a part.

a) Assume an homogeneous, isotropic (homist) 2-dimensional space. Assume there is a
geodesic rule: i.e., there is a rule for measuring distance and for measuring the stationary
distance between two points. Draw intersecting equal length geodesics that intersect at
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their midpoints and that have 4-fold rotational symmetry about their intersection point.
A full rotation about the intersection point is measured as 360◦. How would you describe
size of the angles subtended at the intersection point separating the crossed geodesic arms
and why would you say this? Note draw the geodesics vertical and horizontal, so that the
descriptions in the following parts are consistent with the diagram.

b) Now draw geodesics between the endpoints of your crossed geodesics, but note we are not
assuming Euclidean (i.e., flat space) so that these geodesics could bend outward/inward
from intersection point in some projection or another. You now have a square (but not
necessarily a Euclidean square). Call it square 1. Now copy square 1 to square 2 and
translate square 2 to the upper right so that the lower left corner endpoints of square 2 lie
on the upper right corner endpoints of square 1. Is there a space between geodesics of the
two squares joining common endpoints? Why or why not?

c) Now copy square 2 to square 3 and translate square 3 to the lower right, but otherwise with
the same intructions as in part (b). Now copy square 3 to square 4 and translate square
4 to the lower left, but otherwise with the same intructions as in part (b). Does square 4
necessarily share a common geodesic with the original square 1? Why or why not?

d) The answer to part (c) was no. However, if there is a common geodesic then the space
is a Euclidean plane and, at the common corner of the 4 squares, the angles between the
geodesics that meet there are all 90◦. Postulating that they are 90◦ is equivalent to Euclid’s
5th postulate. For long ages mathematicians wondered if 5th postulate was derivable from
Euclid’s first 4 postulates. The answer is no. Even somewhat obviously no since, among
other things, geodesics that are parallel on a sphere at the equator (i.e., separated by a
mutually perpendicular geodesic there) meet at the poles.

Assuming a Euclidean plane, prove that ines (as we now call geodesics) parallel at
one location (i.e., separated by a mutually perpendicular line) stay the same perpendicular
distance apart no matter how extended. There are probably many ways of proving this, but
one path is to start by noting that equal squares of any size can tile the whole Euclidean
plane without overlap which actually is an immediate consequence of our considerations
above.

e) The fact that one can tile the Euclidean plane completely with squares without overlap
suggests an area concept. Consider differential rectangles of side lengths dx and dy. Define
their area to be dx dy. We define area to be countable in the sense that the area of N
rectangles is N dxdy. You can tile completely any region surrounded by a closed curve
with equal differential rectangles with no rectangles wholly out of the region. We define
the area of the region by

A = lim
N→∞, dx dy→0

N dxdy .

That such limit exists in general requires a rigorous proof that we will not do here. However,
one can prove the limit exists in special cases easily and those special cases they also show
why defining the area of the differential rectangles in terms of the lengths of their sides
is reasonable since finite regions of sufficient symmetry also have areas specified by their
defining lengths. An important point is that area is independent of the ordering of the
adding up the differentials areas. As a nonce expression, we call this independence the area
principle.

Determine the area of a large rectangle of sides a and b in terms of differential rectangles
and take the limit so that the properties of the differential rectangles vanish.

f) Prove that the area of a right triangle with sides forming the right angle being of length a
and b is ab/2. HINT: You do need to use the area principle.

g) Draw a diagram of a square with sides of length a + b and an inscribed square with side
of length c with corners touching the sides of the first square (which is the circumscribed



Chapt. 3 Miscellaneous Problems 7

square) at points a from each corner of the first square.

h) Use the area principle to prove the Pythagorean theorem: i.e., c2 = a2 + b2.

i) Prove the metric ds2 = dx2 + dy2 holds for a Euclidean plane. HINT: This is easy.

002 qfull 00310 1 3 0 easy math: Golden Ratio and Fibonacci sequence, golden ratio
7. The golden ratio φ is a special number known since Greco-Roman antiquity. But there’s

nothing especially special about it. There are many special numbers: all small natural numbers
(0, 1, 2, . . .), all small prime numbers (2, 3, 5, 7, 11, 13, . . .), e = 2.71828 . . . , pi = π = 3.14159 . . . ,
the Euler-Mascheroni constant γ = 0.57721566 . . . , etc. Here we will investigate the golden ratio
just a bit.

There are parts a,b.

a) Draw a line segment of length a and divide into two parts of of lengths b and c: thus
a = b+ c. The golden ratio is just the ratio when

a

b
=
b

c
.

b) Let’s do a general investigation of ratios of the form

a

b
= g

b

c
,

where a = b + c. Solve for the positive case of the ratio a/b as a function of g only. Find
the cases for g = ∞, 1, 0. The case g = 1 gives the golden ratio itself.

c) Prove that
1

φ
= φ− 1 .

d) In 1202, Fibonacci, perhaps independantly of Indian mathematics, discovered the Fibonnaci
sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . which has an interesting connection to the golden ratio.

The discovery was from the problem of reproducing pairs of rabbits. A pair takes 1
month to mature from birth and reproduces a new pair after maturity every one month:
so the first reproduction happens 2 months after birth. Consider times ti separated by 1
month periods. Say you at time ti−1 you had ni−1 adult pairs. However, only the adult
pairs ni−2 existing at time ti−2 can reproduce at ti−1 since the new baby pairs at time ti−2

have only just matured at ti−1. So at ti−1, the old adult pairs ni−2 produce ni−2 babies
who mature to be adult pairs at time ti. So the number of adult pairs at time ti is

ni = ni−1 + ni−2

which is, of course, a recurrence relation valid for i ≥ 2.
Starting with 1 baby pair and no adult pairs at time zero, compute by inspection the

Fibonnaci sequence until you get bored.

e) In the limit i → ∞, the ratio of adjacent numbers following from Fibonacci recurrence
relation

ni = ni−1 + ni−2

for i ≥ 2, n0 ≥ 0, and n1 > 0 obeys

Ri =
ni

ni−1
→ φ .

Note we are allowing more general initial ni values than for Fibonacci sequence. In fact,
the Ri’s alternate with every increment of i between being too high and too low compared
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to φ as i → ∞ and they go to φ exactly for finite i in only one special case. Prove the
above statements. HINT: Start from the Fibonacci recurrence relation, use the definition
ǫi = (Ri − φ)/φ, and remember the part (c) result.

f) Find a reasonable approximate asymptotic formula for the ni from part (e) as i → ∞. It
should be exactly correct in one special case.

g) The recurrence relation
ni = ni−1 + ni−2

can be turned into a differential equation by changing i into continuous variable t expanding
nt and n(t−2) about t−1 to 1st order. Make the transformation and solve the differential
equation. How does the solution compare to the approximate asymptotic formula of
part (f)?

002 qfull 00410 1 3 0 easy math: quadratic formula made numerically robust
8. The quadratic formula (which is the solution of the quadratic equation) is an infamous example

of case where the standard analytic form (which is what everyone remembers) is numerically
rotten. The equation and formula in standard form are, respectively,

ax2 + bx+ c = 0 and x =
−b±

√
b2 − 4ac

2a
.

The numerical rottenness occurs if |4ac| << b2: in this case, one of the roots can become
affected by severe round-off error. We’ll see how to fix the problem in this problem.

NOTE: There are parts a,b,c,d,e,f. The parts cannot be done independently, but parts (a)
and (b) are not so hard and the later parts are just intricate.

a) Solve the quadratic equation for the standard quadratic formula using completing the
square. Note we assume that a, b, and c are pure real numbers.

b) The crucial insight is that root cause of the numerical problem is the sign of b. If
|4ac| << b2, then the standard formula gives numerically good solution for one sign of
b and numerically bad one for the other. Note if b = 0, there is no problem at all:

x = ±
√

−c
a

.

So the trick to getting a numerically robust quadratic formula is to isolate sign of b: i.e.,
to factorize b into its sign and absolute value. Rewrite the standard formula in the form

x± =
−sgn(b)|b| ±

√
b2 − 4ac

2a
= −1

2
sgn(b)

(

|b| ±
√
b2 − 4ac

a

)

,

where we note that the sgn(b)(±1) = (±1) if the (±1) is uncorrelated with the sgn(b), using
a bit of clairvoyance for a nice formula we put the factor of 1/2 where it’s been put, and
the sign function is given by

sgn(b) =

{

1 for b > 0.
1 for b = 0 which is unlike the usual definition of 0.
−1 for b < 0.

As now written, we can see that solution x+ is numerically robust, but solution x− is not.
But you can make solution x− robust by using the a difference of squares factor. Write the
numerically robust quadratic formula for solution x− in terms

q = −1

2
sgn(b)

(

|b| +
√

b2 − 4ac
)
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when the moment is right. HINT: Recall the difference of squares formula:

(a+ b)(a− b) = a2 − ab+ ab− b2 = a2 − b2 .

c) What can you say about the robust solutions when the discriminant (b2 − 4ac) < 0 and
what can you say about q, a, b, and c in this case?

d) What can you say about the robust solutions when a = 0 and q 6= 0, and what can you say
about q, b, and c in this case?

e) What can you say about the robust solutions when a 6= 0 and q = 0, and what can you say
about a, b, and c in this case?

f) What can you say about the robust solutions when a = 0 and q = 0, and what can you say
about b and c in this case?

002 qfull 00510 1 3 0 easy math: simple 1st order DE solution
9. Consider the following linear 1st order differential equation (DE):

x′ = A− kx ,

where t is the independent variable, A > 0 is a constant, and k > 0 is the rate constant.
There are parts a,b,c,d. Parts (a) and (b) can be done independently at least.

a) Solve for the constant solution xA. HINT: This is easy.

b) We can now write the DE as
x′ = k (xA − x) .

Without solving for non-constant solution describe what it must look like as a function of
t for arbitrary initial value x0 = x(t = 0). In particular, where are its stationary points if
any? HINT: Consider the continuity of all orders of derivative of x.

c) Given x0 = x(t = 0), solve for the solution x(t), x′(t), and the 1st order in small t solution
x1st(t). HINT: You can use an integrating factor, but there is a more straightforward way.

d) What is the e-folding time te of your solution and what does it signify? What is the x(te)?
What is the x1st(te)? What is remarkable about x1st(te)?

002 qfull 00520 1 3 0 easy math: simple 1st order DE solution variant: conflate with 00510?
Extra keywords: Has part (b) of the original 01010. Is it worth anything?

10. Consider the following linear 1st order differential equation:

x′ = A− kx ,

where t is the independent variable, A > 0 is a constant, and k > 0 is the rate constant.
There are parts a,b,c,d. Parts (a) and (b) can be done independently at least.

a) Solve for the constant solution xA. HINT: This is easy.

b) Where is it possible for a non-constant solution of a 1st order differential equation to have
a stationary point? Will there be stationary points at those t locations for the particular
differenital equation of the preamble? HINT: Consider the differential equation written
in the form

x′ = k

(

A

k
− x

)

and consider what happens to the solution as t → ∞ and remember that if the solution
becomes constant, it stays constant. It helps to think graphically.
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c) Given x0 = x(t = 0), solve for the solution x(t) and the 1st order in small t solution x1st(t).
HINT: You can use an integrating factor, but there is a more straightforward way.

d) What is the e-folding constant te and what does it signify? What is the x(te)? What is
the x1stte)? What is remarkable about x1st(te)?

002 qfull 00550 1 5 0 tough math: Solving a 1st-order polynomial DE
Extra keywords: (Tu2003-12) Not very relevant to cosmology and needs reworking

11. Consider the 1st order nonlinear differential equation

x′ = a

n
∏

i=1

(x− xi) ,

where t (which may or may not be time) is the independent variable, a is constant, and the xi

are the roots of the polynomial on the right-hand side: the roots increase monotonically with
index i: i.e., they obey x1 ≤ x2 ≤ ... ≤ xn.

a) Solve the equation for the general solution for n = 0: i.e., when x′ = a.

b) Solve the equation for the general solution for n = 1: i.e., when x′ = a(x− x1). Since this
is a warm-up question, a solution by inspection is not adequate.

c) Qualitatively and compactly describe the solutions of the differential equation in all regions
for n ≥ 2. HINT: The equation is a 1st order differential equation and the right-hand
side is infinitely differentiable everywhere. There are 4 cases to consider. Don’t forget to
describe the stability of the constant solutions: i.e., does a sufficiently small perturbation
lead to a restoration to the constant solution or a permanent departure from it.

d) Consider distinct roots xj−1 and xj for the case with n ≥ 2. Find an approximate
interpolation solution which has the correct values at t = ±∞. The approximate solution
should contain the function element ge−ht where h can be positive or negative, but not zero
and g > 0 always. The values of h and g are determined in part (e) just below. HINT:
This is pretty easy.

e) Continuing with the problem from part (d), determine h by requiring that the approximate
solution satisfy the differential equation at the midpoint x = (xj + xj−1)/2 and g by
requiring that it pass through the point (t0, x0), where x0 ∈ (xj−1, xj). HINT: This is a
lot easier than it seems at first.

f) Continuing with the problem from part (d), show that the approximate formula is, in fact,
the exact solution for the case of n = 2. This solution is called the logistic function.
HINT: Simplify the formula for h and then differentiate the solution for n = 2 and keep
substituting the solution for n = 2 to eliminate the h and ge−ht function elements.

g) Now solve the equation for the general solution for general n ≥ 2 and all roots the same
xr: i.e., for xi = xr for all i. HINT:

002 qfull 00560 1 3 0 easy math: perturbation solutions for 1st order DEs
12. Consider the 1st order (ordinary, autonomous) differential equation

x′ = f(x) ,

where x is the dependent variable and t is the independent variable and we assume f(x) is
infinitely differentiable and contains no fractional roots. The 1st order DE rule (as yours truly
calls it) applies to this DE. We have f(xi) = 0 and therefore xi yields a constant solution and
a stationary point at either of ±∞.

NOTE: There are parts a,b.
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a) Assuming (df/dx)(xi) 6= 0, solve without words for the 1st order perturbation solution in
small ∆x = x−xi. Let ∆x0 be the initial perturbation, time zero is 0, and R1 = (df/dx)(xi)
for compactness. What is the condition for convergence/divergence in the future to the
constant solution? What is the condition for convergence/divergence in the past to the
constant solution? HINT: Recall the antiderivative of 1/y is always ln(|y|).

b) Now assume the lowest order nonzero coefficient in the expansion of f(x) in small δx is
(dkf/dxk)(xi) where k ≥ 2. The write the solution only in terms of |∆x| and |∆x0| since
that seems most clear and start from the differential form

d|∆x|
|∆x|k = hRk dt ,

where for k even h = ±1 with upper case for ∆x > 0 and lower case for ∆x < 0 and for
k odd h = 1, and Rk = (dkf/dxk)(xi) for compactness. Show why this differential form is
correct before you use it.

c) What happens as hRkt INCREASES/DECREASES from 0? At what time t is there
an infinity?

002 qfull 00590 1 3 0 easy math: logistic function
13. The logistic function (called that for a darn good reason) turns up in many contexts looking

like:

f(x) =















fM
1 + e−r(x−x0)

=
fM

1 + (fM/f0 − 1)e−rx
in general form;

1

1 + e−x
=

ex

ex + 1
=

1

2
[tanh(x/2) + 1] in natural or reduced form.

In this question, we only use the natural form for simplicity and elegance.
There are parts a,b,c,d.

a) Determine f ′ (which is, in fact, called the logistic distribution), f ′′ (also write it as an
explicitly even function which it is), the antiderivative of f (easy if you write f in terms of
ex), and the integral of f ′ from −x to x. Use the natural form of the function.

b) Determine stationary points of f and f ′ and the values of f and f ′ at those points. Use
the natural form of the function.

c) The logistic function can be used as a smooth replacement for the Heaviside step function:

H(x) =

{

0 x < 0;
1/2 x = 0;
1 x > 0.

Show that logistic function becomes the that Heaviside step function with the appropriate
limiting procedure. HINT: This is really easy.

d) The logistic function is actually the solution of a 1st order nonlinear differential equation.
This equation shows up, for example, in population dynamics. Say you have population
N that grows at rate (per population) r with unlimited resources. However, the rate with
resources limited by carry capacity (or maximum population) K is modeled as r(1−N/K)
which is zero when N → K. The growth differential equation for N , sometimes called the
Verhulst-Pearl equation, is

dN

dt
= r

(

1 − N

K

)

N ,

Reduce this equation to natural form and find the solution. Then write the solution out
in population-dynamics form for general initial population N0 at t = 0 and show the small
N/K and t→ ∞ asymptotic limiting cases explicitly. HINT: You’ll need a table integral.
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002 qfull 00610 1 3 0 hard math: 1st order DE rule I (version II better, conflate?)
Extra keywords: This version may be completely obsolete due to the 640 version

14. A 1st order homogeneous differential equation, linear or nonlinear, of the form

f ′ = g(f) ,

(with independent variable t which g has NO explicit dependence on) at points where it is
infinitely differentiable only has solutions that are strictly in/decreasing or that are constant.
Note that differentiable at a point means there is a finite derivative of the same value taken from
above or below the point and there is no singularity at the point (which is usually implied by the
first condition). Also note that strictly in/decreasing means there are no have stationary points
and constant means constant for a finite region. The constant solutions are often stable/unstable
in the sense that small perturbations from them lead to convergent/divergent behavior with
increasing independent variable.

The rule actually requires the extra condition that higher derivatives of the differential
equation f 〈n〉 (where we use angle brackets to indicate differentiation order when primes will
not do) do NOT generate zero-over-zero cases: i.e., cases where a f ′ on the right-hand side of
the equation is multiplied by a factor that cancels the zero at stationary point making the higher
order derivative on the left-hand side of the equation non-zero. Such a non-zero f 〈n〉 means
that a Taylor expansion around the stationary point will show curvature. That zero-over-zero
cases occur will be proven showing important examples.

There are parts a,b,c,d,e,f,g. The parts can all be done independently, and so do not stop
if you cannot do a part.

a) Prove the rule given in the preamble for a g(f) that does NOT generate zero-over-
zero cases. HINT: Use proof by induction using the general Leibniz rule (which is the
generalization of the product rule):

(rs)〈n〉 =

n
∑

k=0

(

n

k

)

r〈n−k〉s〈k〉 ,

where r and s are general functions (Ar-667; Wikipedia: General Leibniz rule). Note
s〈0〉 = s not 1.

b) For this part, the preamble is long, the answer is short—have patience.
The zero-over-zero case can (but not necessarily will) occur when we have

(f ′)p = g(f) or, equivalently, f ′ = eiφg(f)1/p

where eiφ is a phase factor (and we only consider its pure real values) and where g(f) does
not itself lead to the zero-over-zero case. The zero-over-zero case will when

g1/p−(n−1)(f ′)(n− 1) = Q 6= 0 ,

where Q is a constant and n > 2 and [1/p−(n−1)] and (n−1) are powers, NOT derivative
orders. Note that when n = 1, we have

f ′ = eiφg1/p = eiφQ

which means f = at+ b which has no stationary points and is not zero-over-zero case.
To prove the exception, we differentiate the differential equation In− 1 times to get

f 〈In〉 = Ag1/p−(n−1)(f ′)(n− 1)f 〈I−1〉 +Bg1/p−(n−2)(f ′)(n− 2)f 〈(I−1)n+1〉 + . . . ,
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where A andB are constants whose values are of no interest and {(I−1)n+1} is a derivative
order. Note that every term must have the sum of derivative orders equal to In− 1: e.g.,
(n−1)+(I−1)n = In−1 and (n−2)+(I−1)n+1 = In−1. an INHOMOGENEOUS 1st
order differential equation does not have to obey the rule stated in the preamble. HINT:
Find a trivial counterexample. Think trigonometry.

b) Prove that a homogenous 1st order differential equation can have a stationary point at
±∞. HINT: Find a trivial example.

c) Prove the rule given in the preamble and discuss why exceptions can occur. HINT: Use
proof by induction to show that if x(t) has a stationary point where x′ = f(x) are infinitely
differentiable that the function is constant at that point: i.e., all orders of derivatives of x
are zero a that point.

d) Prove that a solution can be nonmonotonic if there is point t where x′ = f(x)) is not
infinitely differentiable. HINT: Find a simple example of a 1st order differential equation
such a solution. Yours truly suggests differential equation with solution x = 1/t.

e) Prove that a solution can have a stationary point at a point t where x′ = f(x)) is not
infinitely differentiable. HINT: Find a simple example of a 1st order differential equation
such a solution. Yours truly suggests differential equation with solution x = |t|3.

002 qfull 00620 1 3 0 easy math: 1st order DE rule II (better version?)

Extra keywords: This version may be completely obsolete due to the 640 version

15. First order (ordinary) differential equations that are autonomous (meaning they have no explicit
dependence on the independent variable) can only have stationary points at infinity (i.e., plus
or minus infinity) and each such stationary point corresponds to a static solution. Hereafter for
brevity, we call such differential equations 1st order DEs and the rule they obey the 1st order
DE rule. The form of these 1st order DEs is

x′ = f(x) ,

where x is the dependent variable and t is the independent variable and we assume f(x) is
infinitely differentiable and contains no fractional roots. There are exceptions to the 1st order
DE rule. The ones known to yours truly are of the form

x′ = ±[g(x)]P ,

where P = (1−1/n) with n ∈ [2,∞) and we assume g(x) is infinitely differentiable with respect
to x. Note g(x) may go negative as a function of x, but we assume it does not negative as
function of t at stationary points. The most obvious and most important exception is for n = 2
(i.e., P = 1/2) which gives

x′ = ±[g(x)]1/2 ,

which is exampled by the Friedmann equation. In fact for n ≥ 3, yours truly know of no
interesting cases at all. There may other exceptions to the 1st order DE rule yours truly knows
not of. In this problem, we only treat the cases that obey the 1st order DE rule.

NOTE: There are parts a,b,c,d.

a) Given xi (or in the time variable ti) is a stationary point of x′ = f(x) (i.e., x′(xi) = f(xi) =
f [x(ti)] = 0), prove without words that x′′(xi) = 0.

b) The part (a) answer gives the base case (or 1st step) for a proof by induction that all orders
of derivative of x with respect to t at xi (or in the time variable ti) are zero. The proof
follows by inspection if your math intuition is good enough. However, do a formal proof
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by induction. HINT: For the proof, you do NOT, in fact, need the full general Leibniz
rule for the derivative of a product (Ar-558)

dm(fg)

dxm
=

m
∑

k=0

(

m

k

)

dkf

dxk

dm−kg

dxm−k
.

Using it actually makes the proof a bit more tricky to follow. But you do need to know
that the nth order derivative of x (i.e., x(n)) is obtained by applying the general Leibniz
rule for m = n− 2 to the result of the part (a) answer and that highest derivative of x on
the right-hand side of that application is x(n−1). Note that f(x) is general to the degree
specified in the preamble, and so the proof is unchanged if any order of derivative f(x)
with respect to x is zero at xi.

c) Given the part (b) result, give an argument for why the stationary point ti must be all
points (i.e., is actually a static solution) or at time equals infinity.

d) A 1st order DE system given a small perturbation from a static solution either
asymptotically goes back to it (i.e., is asymptotic to it at positive infinity, and so is called
stable) or grows away from it (i.e., is asymptotic to it at negative infinity, and so is called
unstable). Assuming the df/dx is nonzero at xi, prove without words that a 1st order DE
system given a small perturbation (i.e., a perturbation ∆x0 which requires only 1st order
expansion of f(x) in small ∆x = x− xi) varies exponentially and determine the condition
for stability.

002 qfull 00630 1 3 0 easy math: main exception to the 1st order DE rule
Extra keywords: This version may be completely obsolete due o 640 version

16. First order (ordinary) differential equations that are autonomous (meaning they have no explicit
dependence on the independent variable) can only have stationary points at infinity (i.e., plus
or minus infinity) and each such stationary point corresponds to a static solution. Hereafter for
brevity, we call such differential equations 1st order DEs and the rule they obey the 1st order
DE rule. The form of these 1st order DEs is

x′ = f(x) ,

where x is the dependent variable and t is the independent variable and we assume f(x) is
infinitely differentiable. There are exceptions to the 1st order DE rule. The ones known to
yours truly are of the form

x′ = ±[g(x)]P ,

where P = (1−1/n) with n ∈ [2,∞) and we assume g(x) is infinitely differentiable with respect
to x. Note g(x) may go negative as a function of x, but we assume it does not negative as
function of t at stationary points. The most obvious and most important exception is for n = 2
(i.e., P = 1/2) which gives

x′ = ±
√

g(x) ,

which is exampled by the Friedmann equation. In fact for n ≥ 3, yours truly know of no
interesting cases at all. There may other exceptions to the 1st order DE rule yours truly knows
not of. In this problem, we only treat the cases that obey the 1st order DE rule.

NOTE: There are parts a,b,c,d,e.

a) Given xi (or in the time variable ti) is a stationary point of x′ = ±
√

g(x) (i.e.,

x′(xi) = ±
√

g(xi) = ±
√

g[x(ti)] = 0), prove without words that x′′(xi) 6= 0 for g(xi) 6= 0.

b) What does the part (a) answer imply about xi? What does the part (a) answer imply
about xi given the sign of dg/dx(xi)?
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c) Given (dg/dx)(xi) = 0, prove by induction that for general n ∈ [1∞] that x(n)(xi) = 0.
HINT: Consider x(4)(xi) = 0 as step 1 (i.e., the base case) of the proof. Note that the
right-hand side of the expressions in the proof will always have a derivative of x two orders
lower than the left-hand side.

d) Given (dg/dx)(xi) = 0, what does the part (c) answer imply about xi?

e) Given (dg/dx)(xi) = 0, and therefore there is a static solution x = xi for all time t, we can
consider what the lowest order solution is for a small perturbation from the static solution.
The expansion of the differential equation in small ∆x = x− xi is

d∆x

dt
= ±

√

√

√

√

∞
∑

k=ℓ

∆xk

[

dkg

dxk
(xi)

]

,

where ℓ is the lowest power for which there is a nonzero coefficient (dℓg/dxℓ)(xi). What
possible signs can ∆x when ℓ is even and (dℓg/dxℓ)(xi) > 0? What possible signs can ∆x
when ℓ is even and (dℓg/dxℓ)(xi) < 0? What possible signs can ∆x when ℓ is odd?

002 qfull 00640 1 3 0 easy math: 1st order autonomous DE and stationary points, definitive version
Extra keywords: This is the definitive version as of 2025mar09

17. First order autonomous ordinary differential equations (FAODEs), linear or nonlinear, only have
solutions with stationary points at infinity (SPIs), (except for special cases which are not all that
rare) and constant solutions. Actually, each SPI corresponds to a constant solution which could
also be viewed as a continuum of stationary points. Note an autononous differential equation
depends only on functions of the dependent variable, and so has no explicit dependence on the
independent variable.

To investigate the SPI behavior of FAODEs consider the (somewhat general) FAODE

x(1) = [f(x)]
1/k

,

where t (not necessarily time) is the independent variable, the superscript (1) means 1st
derivative with respect to t, f(x) is an infinitely differentiable function with zeros at set of
values {xi}, and k > 0. We limit k to being greater than zero to avoid uninteresting generality.
Since f(x) is infinitely differentiable at (general) xi, we can expand f(x) about xi with some
radius of convergence: i.e.,

f(∆x) =

∞
∑

j=ℓ

∆xjfj = ∆xℓfℓ + . . . ,

where ∆x = x− xi, the fj are expansion constants, and ℓ > 0 is the lowest (nonzero) order in
the expansion. Note ℓ 6= 0 since we have assumed xi is a zero of f(x): i.e., f(xi) = 0.

We will primarily be examining the lowest order solutions in ∆x, and so we will be dealing

with ∆xℓ/kf
1/k
ℓ and related expressions. Mathematically, if ℓ/k is not an integer, complex

numbers can arise in these expressions. However, we are only interested FAODEs and their
solutions corresponding to physical systems involving real numbers. In these systems, the
solutions just never evolve into the complex number realm. So we are not going to concern
ourselves with question what happens mathematically if some our expressions can give rise to
complex numbers. They never give rise to complex numbers physically.

NOTE: There are parts a,b,c,d,e,f,g,h,i,j,k. On exams, do ONLY parts i,j.

a) What is the behavior of x as a function of t between the points in the set {xi}.
b) In this question we are only interested in the SPI behavior and constant solution behavoir,

and so we are only interested in the behavior of x(t) when it is arbitrarily close to xi where
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SPI and constant solutions occur. Therefore expand the FAODE about xi with dependent
variable ∆x to lowest order in the exponent.

c) Determine the formula p(n) for the exponent of ∆x in the n derivative of ∆x (for the lowest
order of the FAODE) with respect to t. HINT: Drop all constants that turn up in the
differentiations.

d) What is behavior of the t derivatives of ∆x when x = xi for ℓ/k ≥ 1? What solutions x(t)
are implied by ℓ/k ≥ 1?

e) What is behavior of the t derivatives of ∆x for f(xi) for ℓ/k < 1 assuming the formula
p(n) never equals zero? What solution x(t) behavior is implied by ℓ/k < 1 in this case?
Only a short answer is expected to the last question.

f) If ℓ/k < 1 and the formula p(n) goes to zero for a stopping nst, what is the formula for
ℓ/k as a function of nst and what are the values of ℓ/k for the set nst = 1, 2, 3, . . . ,∞ and
what do the nst = 1 and nst = ∞ cases mean? What is the formula nst as a function of
ℓ/k? What is this formula good for?

g) What is implied by a stopping nst ∈ [2,∞) (i.e., an actual integer nst in this range)?
Give the solution for small ∆x(t) with with initial condition ∆x(t = 0) = 0. Describe the
function behavior at ∆x(t = 0) = 0: i.e., maximum or minimum stationary point or rising
or falling inflection point.

h) What would you expect the two likeliest values for ℓ to be for physically relevant FAODEs?
What would you expect the two likeliest value for k 6= 1 to be for physically relevant
FAODEs?

i) Now we intuited for the case of ℓ/k ≥ 1 that the stationary point would be a stationary
point at infinity (i.e., an SPI), but we did not prove this directly. To prove directly, we
need to show that the small ∆x (meaning small in absolute value) solutions of

∆x(1) = ∆xℓ/kf
1/k
ℓ

that go to zero only do so as t → ∞. Solutions that go to zero are convergent solutions.
This means that the constant solutions they correspond to are stable solutions: small
perturbations from the constant solutions damp out. Those that do not go to zero are
divergent solutions. This means that the constant solutions they correspond to are unstable
solutions: small perturbations from the constant solutions cause non-stopping divergence
from the constant solutions.

Here consider the ℓ/k = 1 case and the solutions for ∆x(t) starting from t = t0 and
∆x = ∆x0 as initial conditions. Determine the solutions and under what conditions they
are convergent/divergent. Does the convergent solution, in fact, have a SPI? HINT: Let
y = ±∆x where the upper/lower case is for positive/negative ∆x0.

j) Repeat part (i) for the case of ℓ/k > 1.

k) An optional continuation of the discussion of the part (h) answer.

002 qfull 00650 1 3 0 easy math: a FAODE with a stationary point that is not a SPI
18. In this problem, we will get some more insight into first order autonomous ordinary differential

equations (FAODEs) with stationary points that are not stationary points at infinity (SPIs) by
examining a solution beyond solution to lowest (nonzero) order around the stationary points.
Consider the FAODE

x(1) = f(x) ,

where f(xi) = 0 (i.e., x = xi gives a stationary point of some kind) and the independent variable
is t (not necessarily time). However,

x(2) =
df

dx
x(1) =

df

dx
f(x) 6= 0
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for x = xi. This means the stationary point is not a SPI.
NOTE: There are parts a,b,c,d. On exams, do ONLY parts a,b,c.

a) Let

g(x) =
df

dx
f(x)

and determine a formal solution for f(x).

b) Assume x(t) has maximum and minimum at, respectively, xi and −xi. Now invent the
simplest f(x) you can starting from the part (a) answer, except it has a general constant
coefficient so as to give a general scale to the derivative x(1).

c) Now solve for x(t) given the part (b) answer. HINT: You could do this by integrating
x(t), but differentiating x(t) lead to solution by inspection.

d) Say a FAODE is given by

x(1) = [f(x)]
1/k

,

where t is the independent variable (not necessarily time), k > 0, f(x) is infinitely
differentiable, and f(x) = ∆xℓfℓ + . . . is the expansion of f(x) around the stationary
point xi with ∆x = x − xi starting with the lowest nonzero order. Then the lowest order
FAODE is

∆x(1) = xℓ/kf
1/k
ℓ ,

In order for a solution of the FAODE to have stationary point that is not a SPI, there must
be a stopping (derivative order) nst given the formula

nst =
1

1 − ℓ/k

where an actual stopping nst must be an integer. If the formula gives a non-integer value,
then there is a singularity in the behavior of some order of derivative of x(t) at x = xi

and that behavior takes some analysis to determine. An actual stopping nst gives the only
nonzero derivative order of x(t) at x = xi. What are the ℓ and k values for the FAODE
used in the part (c) and are they consistent with a nonzero derivative order n = 2 which is
what we imposed in the preamble?

002 qfull 00850 1 3 0 easy math: iteration equation solution convergence: On exams, only do
parts f,g,h.
19. Say you need to find a root to equation

g(y) = 0

and no analytic solution is available. The equation my be transcendental: i.e., no finite number
operations results in a solution. There are many sophisticated of doing this (e.g., Pr-340ff), but
a simple one is by an iteration function suitable if you can constrain the root you are looking
for to some interval y ∈ [a, b]. First reaarange the equation as iteration equation

y = f(y)

and then iterate by feeding the output of function f(y) back into function f(y) as an argument
or input. The iteration starts with an initial estimate solution y0 and proceeds via iterates y1,
y2, . . ., yi−1, yi, etc. using equation

yi = f(yi−1) .

But how do you know you will get convergence and not divergence or just wandering. We will
investigate convergence in this question.
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Note the iteration equation approach (assuming it converges) may be very slow both in
computer time and iterations especially if you are trying to converge to high machine precision
and, of course, for transcendental equations you will never find exact numerical solution. Faster
methods are available (e.g., the Brent method (Pr-352) and Newton-Raphson method (Pr-355)),
but if you are just solving a simple one-off problem, the iteration equation method may be
fine. In vast multiple variable problems like astrophysical atmosphere problems, a multivariable
iteration “equation” may be all you have.

HINT: Drawing diagrams as needed helps.
NOTE: There are parts a,b,c,d,e,f,g,h,i. On exams, do ONLY parts f,g,h.

a) First, without loss of generality adjust the variables such that root is zero. Of course,
course you cannot do this in an actual problem unless you already know the answer, but
for the proof you can assume you do know the answer. Define two functions

y = ±x and y = f(x) .

The first function divides the Cartesian plane into 4 quadrants. Show that if f(x) is confined
to the side quadrants and never tounches the lines defined by y = ±x in interval [−a, a]
(except at the origin itself which is in the interval [−a, a]) that convergence is guaranteed
for zeroth iterate y0 ∈ [−a, a].

b) In a real problem the interval surrounding the root may not be symmetric about the root.
This can lead to divergence with some easily imagined bad behavior in the side-quadrant-
confined iteration function f(x). How is divergence easily prevented?

c) In terms of sufficient and necessary conditions for convergence how would you describe the
side-quadrant-confined iteration function f(x) condition?

d) What is a simple sufficient, but not necessary, condition side-quadrant-confined iteration
function f(x) to give convergence?

e) How would iterates behave if side-quadrant-confined iteration function f(x) were
monotonically increasing/decreasing?

f) What makes an iteration function to solve for a root (AKA a zero) better thinking in the
simplest sense? Think of the ideal limit.

g) Consider the transcendental equation

1

2
= (x+ 1)e−x .

Find an iteration function to solve for a that is probably divergent at a first guess. Note
this is a real problem, and so the solution is not the origin.

h) For the transcendental equation of part (g)

1

2
= (x + 1)e−x

find an iteration function guaranteed to converge for some interval about the solution. Find
the interval of convergence and prove convergence in the interval.

i) Try to solve your convergent iteration equation from part (h) by series expansion in small
x. You may have to consult Wikipedia (Wikipedia: Natural logarithm) to see where the
series expansion is covergent and where a truncated version is a valid approximation. Then
just use the Wikipedia plot to estimate the solution: i.e., the point where y = x and the y
value from the iteration function.
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j) If you know how to code, iterate to function you found in part (h) to convergence to within
machine precision and give the number iteration needed and the result.

002 qfull 00900 1 3 0 easy math: Monte Carlo sampling
20. In a Monte Carlo simulation, you want want to sample a random variable x drawn from a

probability density function (pdf) ρ(x). The trick is to set another random variable

y = P (x) =

∫ x

0

ρ(x′) dx′

where P(x) is the cumulative probability distribution function (cdf). You then generate y values
from a computer random number generator that gives them with uniform probability over the
range (0, 1). You then obtain the sample random variables x from

x = P−1(y)

where P−1 is the inverse function of P . The probability of y values in general range ∆y is
exactly the probability of x values in the corresponding range ∆x since

∆y = ∆P =

∫

∆x

ρ(x′) dx′ .

An odd point is that random number generators generate y values completely
deterministically. So the y values are deterministic relative to source, but, for a good random
number generators such as those discussed by Pr-191ff, the y values are random to all useful
statistical tests relative to receiver. This fact invites the philosophical question: Is there any
fundamental difference between a deterministic universe that mimics some amount of intrinsic
randomness to all detection and one that has some intrinsic randomness as quantum mechanics
as ordinarily discussed posits?
In any case, let’s investigate how to do Monte Carlo sampling for photons for a couple of
interesting cases.

There are parts a,b.

a) A stream of photons in a certain direction is scattered out that direction obeying

dN = −N dτ

where N is the number of photons traveling in the direction and τ is the optical depth.
What is the cdf for photon being scattered by general τ if it started at τ = 0? What is the
pdf?

b)

002 qfull 01010 1 3 0 easy math: variational calculus and Euler’s equation
21. To determine geodesics (stationary paths through spaces) one needs to apply variational calculus

in general which in the end amounts to solving a differential equation. The most famous
variational calculus differential equation is Euler’s equation (or Euler’s equations if the plural
is needed). Euler’s equation can be used to find geodesics and it can be specialized to the
Euler-Lagrange equations of classical mechanics whose use is justified by Hamilton’s principle.
We will derive Euler’s equation now.

You have integral

I =

∫ b

a

f(xi, ẋi, t) dt

where the set of coordinate functions xi = xi(t) constitute a path through space with path
parameter t and f is general function for its arguments. We want to determine the path xi(t)
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that makes the integral stationary for fixed endpoints x(a) and x(b). Note that following a
general relativity convention, the subscript i means that xi is one of set of coordinates and that
it stands for all of them if that is what the context means.

We define
xi(t, α) = xi(t) + αηi(t) ,

where xi(t) is the stationary path, xi(t, α) is the varied path, α is a variational parameter, and
ηi is a general function of t except that it vanishes at the endpoints of the integral. It is helpful
to think of ηi as any little blip deviation from the stationary path you care to think of. Since ηi

is general it and is derivative η̇i can be varied independently, and thus xi and ẋi can be treated
as independent in the variation. We now determine the condition on the stationary path as
follows:

0 =
dI

dα
=

∫ b

a

(

∂f

∂xi
ηi +

∂f

∂ẋi
η̇i

)

dt

=

∫ b

a

[

∂f

∂xi
− d

dt

(

∂f

∂ẋi

)]

ηi dt+
∂f

∂ẋi
ηi

∣

∣

∣

∣

b

a

=

∫ b

a

[

∂f

∂xi
− d

dt

(

∂f

∂ẋi

)]

ηi dt

0 =
∂f

∂xi
− d

dt

(

∂f

∂ẋi

)

where repeated indices in a product means summed over all index values (which is Einstein’s
summation rule), where we have used integration by parts, and the last line follows since the
only way the integral (including all the Einstein summed terms) can be zero in general for
general ηi is if the bracketed expression in the second to last line vanishes everywhere. Euler’s
equations (regarding subscript i as indicating a set of equations) are, in fact,

∂f

∂xi
− d

dt

(

∂f

∂ẋi

)

= 0 .

There are certain special cases. First is the case when f has no dependence on a particular
xk (which does not stand for the set of coordinate functions xi). In this case, Euler’s equation
for xk reduce to

∂f

∂ẋk
= Ck ,

where Ck is a constant of integration. Second is the case when f has no dependence on a
particular ẋk. In this case, Euler’s equations reduce to

∂f

∂xk
= 0

which implies that f is independent of the particular xk. This result may have a profound
significance that altogether escapes yours truly.

Third is the case when f has no intrinsic dependence on t: i.e., f is just f(xi, ẋi), and
so ∂f/∂t = 0. To progress, we invoke the Einstein-when-off-track-contract rule and contract
Euler’s equation with the clairvoyantly chosen ẋi (i.e., multiply by ẋi and Einstein sum on i):

0 = ẋi
∂f

∂xi
− ẋi

d

dt

(

∂f

∂ẋi

)

0 =
df

dt
− ẍi

∂f

∂ẋi
− ∂f

∂t
−
[

d

dt

(

ẋi
∂f

∂ẋi

)

− ẍi
∂f

∂ẋi

]

0 = −∂f
∂t

+
d

dt

(

f − ẋi
∂f

∂ẋi

)

.
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The last equation is the single-alternative Euler’s equation. Because of the sum on i it can only
replace one of the set of Euler’s equations for xi. But if there is only one coordinate function
xi, then the single-alternative Euler’s equation can be useful. The single-alternative Euler’s
equation is mostly likely to be useful (no matter how many function coordinates xi there are)
when f has no intrinsic dependence on t (i.e., when ∂f/∂t = 0) which is the case we have been
working toward in this paragraph. So when ∂f/∂t = 0, we obtain

f − ẋi
∂f

∂ẋi
= C ,

where C is a constant of integration. Now if, in fact, there is only one coordinate function xi,
the last equation is likely to be very useful.

There are parts a,b.

a) The metric for a Euclidean space is

ds2 =
∑

j

dx2
j ,

where we have not used Einstein summation—we turn it on and off as convenient. Using
Euler’s equation, prove that the stationary path between any two points is a straight line.
HINT: First, find what the function f is in this case.

b) What kind of a stationary path is the answer from part (a): global minimum, local
minimum, global maximum, local maximum, inflection? Explain your answer.

c) The metric for the surface of sphere of radius R is

ds2 = R2(dθ2 + sin2 θdφ2) .

Using Euler’s equations, prove that the stationary path between any two points is a great
circle (i.e., a circle that cuts the sphere in half). HINT: First, find what the function f is
in this case. Second, without loss of generality you can choose one endpoint to be the pole
(i.e., the place where θ = 0). Third, find the Euler equation result for φ first and check its
behavior at pole.

d) What kind of a stationary path is the answer from part (c)? Note there are two cases.
Explain your answer.

002 qfull 01110 1 3 0 easy math: law of reflection/refraction from Fermat’s principle I
22. The laws of reflection and refraction can be proven from the modern version Fermat’s principle

(HZ-69; Wikipedia: Fermat’s principle)—which yours truly for some reason keeps thinking of as
Fermat’s last principle. Fermat’s principle states that a light ray traveling between two points
follows a path that is stationary in optical path length which is defined by the differential ds/λ,
where ds is differential physical length and λ is local wavelength. In the wave theory of light,
Fermat’s principle follows from the idea that along stationary paths multiple coherent wave
fronts are in phase to 1st order, and so an add constructively: along other paths the multiple
coherent wave fronts cancel out by destructive interference virtually totally.

There are parts a,b.

a) Write down the laws of reflection and refraction.

b) Give an argument why the stationary optical path must be in a perpendicular plane to
the interface of reflection/transmission for the two laws. This plane is called the plane of
incidence (AKA incidence plane) in optics jargon.

c) Draw a diagram in of incidence plane with a reflection/transmission interface. Mark point
1, a source, at (x1, y1), and point 2, a receiver, at (x2, y2). For niceness, x1 is measured to



22 Chapt. 3 Miscellaneous Problems

the left from the origin at the point of reflection/transmission, x2 is measured to the right
from the origin at the point of reflection/transmission, and y2 can be on either side of the
interface and is positive either way.

d) Continuing with the part (c) setup, consider the source and receiver points as fixed, but
the origin as free to vary along the interface in the incidence plane. Now write down the
formula for h which is the optical path length between source and receiver for reflection
and transmission plus a Lagrange multiplier term.

e) Solve for the stationary point of the formula of part (d) and show that it is a minimum.

f) Now complete the proof of the laws of reflection and refraction.

002 qfull 01120 1 3 0 easy math: law of reflection/refraction from Fermat’s principle II
23. The first variational principle in physics was discovered by Hero of Alexandria (10?–70? CE)

(Wikipedia: Hero of Alexandria: Inventions). He noted that the law of reflection followed from
the idea that a light ray traveled the shortest path of light from source to receiver during a
reflection of a planar surface. In equation form the law of reflection is

θ1 = θ2 ,

where θ1 is the angle of incidence and θ2 is the angle of reflection both measured in the plane
of incidence (i.e., the plane defined by the source and the normal to the surface). Pierre de
Fermat (1607–1665) generalized the Hero’s idea by saying a light ray traveled the shortest time
between source to receiver and from this idea was able to prove the law of refraction as well as
the law of reflection. In modern form, the law of refraction is

n1 sin θ1 = n2 sin θ2 ,

where θ1 is the angle of incidence and θ2 is the angle of transmission both measured from the
normal to the surface between the media, the ni = c/vi are the refractive indices of the media
vi is the light speed in the media, and angles are both in the plane of incidence.

Fermat’s idea in modern form is called Fermat’s principle and states that a light ray moves
along a stationary path in optical path length (i.e., length divided by wavelength). Fermat’s
principle and the earlier notions of Hero and Fermat himself are variational principles in that
variations from the stationary path are used to find it. In fact, a key law of classical mechanics is
a variational principle: the principle of least action—more accurately, the principle of stationary
action. The classical principal of least action is actually derivable from quantum mechanics.
Particles propagate as waves and phase variation tend to cause destructive interference, except
for the stationary path for action which is the wave phase itself (Ba-69ff). In the macroscopic
limit, the destructive interference causes virtually complete cancellation of propagation, except
along the stationary path. Actually, Fermat’s principle is, we can now see, the special case for
light of the principle of least action.

There are parts a,b.

a) Draw a diagram with a source P1 a distance y away from a planar surface and a general
receiver P2 that is y above the surface for reflection and y below for refraction. The
separation along the direction parallel the planar surface is ℓ. A light ray from the source
hits the surface at the origin 0. Draw a normal to the surface at origin 0. The incident
angle is θ1 and the reflection/refraction angle is θ2. The incident wavelength is λ1 and the
reflection/refraction is λ2.

b) What is the ray optical path length s from P1 to P2 expressed in terms of y, θ1, θ2 λ1, and
λ2?

c) The elegant way to prove the laws of reflection and refraction is to use Lagrange multipliers.
The general form is

L = f + αg ,
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where L is called the Lagrangian function, f is the function whose contrained stationary
point you want find, α is the Lagrange multiplier, and g is the contraint function: i.e.,
g = constant when the constraint is imposed. Write down the Lagrangian function for the
optical path length case. Find the formula for θi that makes s stationary consistent with
the constraint.

d) From the results of part (c), prove the laws of reflection and refraction.

e) Why can’t the stationary path be outside of the planet of incidence?

002 qfull 01130 1 3 0 easy math: Euler-Lagrange equations
24. The Euler equations (Ar-928) (AKA the Euler-Lagrange equations: Go45) are

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0

where t is a general independent variable (but we are already thinking of specializing it to time),
i the representative index for a set of indices j, qj is set of unknown functions that one solves
Euler equations for (but we are already thinking of them as being generalized coordinates in
classical mechanics), q̇j are the t partial derivatives of the qj , and L = L(qj , q̇j , t) is a known
function.
Now whence the Euler equations and what for their solutions. The solutions of Euler equations,

are the functions that make the functional (i.e., function of functions)

S(qj) =

∫ t2

t1

L(qj , q̇j , t)

stationary with respect to general small varitions in qi: i.e., unchanging to 1st order in a variational
parameter that actually never needs to be specified. The Euler equations themselves are obtained
by variational calculus on S. Note we are already thinking of specializing S to the action in physics
jargon in which case L is the Lagrangian for a system (which is a function of the generalized
coordinates qj) and the Euler-Lagrange equations become the Lagrange equations of motion for the
system (Go-45). That stationarized S yields the equations of motions is a variational principle called
the principle of least action (though more precisely of stationary action). The specific version of the
principle of least action that yields the Lagrange equations is formally called Hamilton’s principle
(Go-34), but I think most people refer to it just by generic name principle of least action.

There are parts a,b.

a)

b)
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Multiple-Choice Problems

003 qmult 00100 1 4 5 easy deducto-memory: Friedmann equation derivation
25. “Let’s play Jeopardy! For $100, the answer is: It was derived from general relativity in 1922

with the assumptions of a homogeneous and isotropic universe and that all mass-energy in the
universe could be modeled by a perfect fluid. A Newtonian derivation (which required extra
natural hypotheses) was given in 1934.

What is the , Alex?

a) Einstein equation b) Milne-McCrea equation c) Synge equation
d) Bondi equation e) Friedmann equation

003 qmult 00110 1 4 3 easy deducto-memory: Why Newtonian derivation of FE not found
Extra keywords: in the 19th century.

26. A Newtonian derivation of the Friedmann equation (with extra natural hypotheses) could easily
have been done in the 19th century, but it wasn’t. There were probably 3 reasons why 19th
century astronomers did not think of such a derivation. First, many were still thinking of a
universe that was static on average even though dynamic equilibrium seemed hard to arrange,
even though the universe was obviously not in thermodynamic equilibrium (and so why should
be in dynamic equalibrium), and even though idea existed that the Milky was held up by rotation
around its center of mass located somewhere. Second, they did not know that other galaxies
existed though some believed this and they had not observed the general redshifts of the objects
they thought might be other galaxies. Third, they thought in terms of Newton’s absolute space
(i.e., a single fundamental inertial frame) and did not think of the alternative idea completely
compatible with their data that all unrotating with respect to the observable
universe were elementary inertial frames (i.e., frames with respect to which Newtonian physics
and all other known physics could be referenced to). The elementary inertia frames could be
incorporated into more general inertial frames (e.g., center-of-mass inertial frames) and the
whole observable universe could organized into the more general inertial frames. Going beyond
what 19th century astronomers probably could have thought of, there is whole hierarchy of
general inertial frames that tops out with the comoving frames of the expanding universe.

What is the , Alex?

a) star frames b) planet frames c) free-fall frames d) thermodynamics frames
e) gravity frames

003 qmult 00250 1 1 2 easy memory: shell theorem to point masses interaction
27. “Let’s play Jeopardy! For $100, the answer is: This theorem (originally proven by Newton by

primitive means) allows one to show by means of a COROLLARY that spherically symmetric
masses should interact gravitationally as though they are point masses as long as they are do
not interpenetrate.

What is the , Alex?

a) Newton theorem b) shell theorem c) point-mass theorem d) sphere theorem
e) waste book theorem

24
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003 qmult 00410 1 4 5 easy deducto-memory: Bertrand’s theorem, the inverse-square and linear
forces

Extra keywords: (Go3-92)
28. “Let’s play Jeopardy! For $100, the answer is: The theorem that states that the only attractive

central forces that give closed orbits for all bound orbits are the inverse-square law force and
the attractive linear force (AKA Hooke’s law force or the radial harmonic oscillator force). All
attractive central forces give closed CIRCULAR orbits, of course.”

What is , Alex?

a) the virial theorem b) Euler’s theogonic proof c) the brachistochrone problem
d) Schubert’s unfinished symphony e) Bertrand’s theorem

003 qmult 00420 1 4 4 easy deducto-memory: linear force Gauss’s law shell theorem
Extra keywords: (Go3-92)

29. “Let’s play Jeopardy! Bertrand’s theorem implies a symmetry between the inverse-square law
force and the linear force. Another symmetry is that the linear force gives a Gauss’ law analogue
and the analogue of this important theorem that Newton needed to derive in order to show that
spherically symmetric bodies interact through gravity like point masses.

What is , Alex?

a) the virial theorem b) Euler’s theorem c) Turchin’s theorem
d) the shell theorem e) the clam theorem

003 qmult 00750 1 4 5 easy deducto-memory: Hubble parameter
30. “Let’s play Jeopardy! For $100, the answer is: Characteristic time time and length scales can

be derived from this parameter of the Friedmann equation models for the universe.”

What is the parameter, Alex?

a) Lemâıtre b) de Sitter c) Einstein d) Eddington e) Hubble

003 qmult 00950 1 1 3 easy memory: age of universe for single density component solutions
31. The single density component (power-law) solutions to the Friedmann equation are

a = a0

[

√

Ωp,0

(p

2

)

H0t
]2/p

= a0

[(p

2

)

H0t
]2/p

= a0

[

t

(2/p)H−1
0

]2/p

,

where 0 indicates cosmic present, a0 is the cosmic present scale factor (conventionally set to
1), H0 is the Hubble constant, Ωp,0 = 1 for a single density component solution, and −p is the
single power of the a that occurs on the right-hand side of the Friedmann equation which in a
scaled form is

(

ȧ

a

)2

=
∑

p

Ωp,0

(a0

a

)p

.

What is the age of the universe for a single density component solution?

a) (p/2)H0. b) (2/p)H0. c) (2/p)H−1
0 . d) (p/2)H−1

0 e) H0/p.

003 qmult 01100 1 1 1 easy memory: cosmological and Hubble quantities
32. The solutions of the Friedmann equation have characteristic cosmological quantities some of

which are called Hubble quantities since the Hubble constant is one of their ingredients. The
table below displays some the cosmological quantities. Since the currently determined values of
the quantities always fluctuate a bit depending on whose analysis is used, we have written the
quantities as fiducial values with correction factors that are 1 to within a few percent: h70 is the
Hubble constant divided by 70 (km/s)/Mpc (i.e., H0/(70 (km/s)/Mpc)), ωm,0 = Ωm,0/0.3, and
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ωΛ = ΩΛ/0.7. The asymptotic Hubble quantities are those that will be the Hubble quantities
as cosmic time goes to infinity if the Λ-CDM model is correct.

Table: Cosmological Quantities

Cosmic scale factor for the present cosmic time a0 = 1 by convention
Hubble constant H0 = 70h70 (km/s)/Mpc
Hubble time tH = 1/H0 = (13.968 . . .)/h70 Gyr
Hubble length ℓH = c/H0 = (13.968 . . .)/h70 Gly = (4.2827 . . .)/h70 Gpc
Critical density ρcritical = [3H2

0/(8πG)] = (9.2039 × 10−27)h2
70 kg/m3

= (1.3599× 1011)h2
70 M⊙/Mpc3

AKA Hubble density (i.e., the density implied by the Hubble constant at cosmic present)
Cosmological constant matter density parameter Ωm,0 = 0.3ωm,0

Cosmological constant Λ density parameter ΩΛ = 0.7ωΛ

Asymptotic Λ Hubble parameter HΛ = H0

√
ΩΛ =

√

Λ/3 = (58.566 . . .)h70
√
ωΛ (km/s)/Mpc

Asymptotic Λ Hubble time tHΛ
= (16.6955 . . .)/(h70

√
ωΛ) Gyr

Given that the Λ-CDM model is correct, to 1st order, the observable universe is already
expanding like a cosmological-constant universe with a = a0 exp(∆t/tHΛ

) (where ∆t = t − t0)
and this formula becomes more correct as time advances. On what time scale ∆t will the matter
mass-energy density of the observable universe fall to of order 2 % of the total mass-energy?
Note you have to solve for a/a0 from

Ωm = Ωm,0

(a0

a

)3

≈ 0.02ΩΛ

and then solve for ∆t.

a) tHΛ
. b) 2tHΛ

c) 3tHΛ
. d) 4tHΛ

. e) 5tHΛ
.

Full-Answer Problems

003 qfull 00210 1 3 0 easy math: Gauss’ law derivation
33. In this problem, we will derive the generic Gauss’ law in its integral form and then specialize

to the gravity and Coulomb force cases.
NOTE: There are parts a,b,c,d. Some of the parts can be done independently, and so do

not stop if you cannot do a part.

a) Consider the generic inverse-square law central force

~f =
q

r2
r̂ ,

where q is a generic charge for the force located at the origin (which is the center of
force), r is the distance to a point where the force is evaluated, and r̂ is the direction to

that point. Now consider a (SINGLE) differential surface area vector d ~A = dA n̂ for a
CLOSED surface. The unit vector n̂ is normal to the differential surface and points in
outward direction. The differential solid angle subtended by the differential surface area is
dΩ. Prove

~f · d ~A = q(± dΩ) ,
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where the upper/lower cases are for the solid angle cone going outward/inward through
the differential surface area. Note the charge could be inside or outside the closed surface.
HINT: This is easy, but a few words of explanation and a diagram are needed.

b) Consider a differentally small cone extending from the origin. It intersects the closed surface
n times. Note that closed surface is finite, and so the cone must exit the closed surface for
good at some point. We form the sum

n
∑

i=1

~f · d ~Ai ,

where sum is over all intersections. What is the sum equal to in terms of solid angle for all
cases? HINT: A few words of explanation and a diagram are needed.

c) Say you had multiple charges qi with total charge Q and total charge Qenclosed inside a
closed surface. Evaluate

∮

~f · d ~A .

The result is the generic Gauss’ law in its integral form. Specialize the result for the cases
of gravity and the Coulomb force.

d) What is the necessary condition for a force to obey Gauss’ law?

003 qfull 00250 1 3 0 easy math: linear-force Gauss’s law and shell theorem
34. Remarkably the linear force obeys analogues to Gauss’s law and shell theorem for the inverse-

square law force. Let the linear-force field (force per unit charge) for a point charge be

~f = kqrr̂ ,

where k is a constant which could be positive or negative, q is the charge (of some unspecified
kind), and r is the distance from the point charge. We assume Newtonian physics, and so to
maintain Newton’s 3rd law, we require

~F1,2 = kq1q2r1,2r̂1,2 ,

where ~F1,2 is the force of point charge 1 on point charge 2.
There are parts a,b,c,d,f. Some of the parts can be done independently, and so do not stop

if you cannot do a part. Omit part (f) during exams.

a) Without words, for a close surface derive the linear-force Gauss’ law

∮

~f · d ~A = kQ ,

where ~f is the field due to the entire charge distribution, the integral is over the whole
close surface, and Q is the total charge of the charge distribution wherever it is in space.
HINT: Recall the divergence theorem (AKA Gauss’ theorem)

∮

~Y · d ~A =

∫

∇ · ~Y dV ,

where Y is a general vector field and the volume integral is over all volume V inclosed by
the closed surface (Wikipedia: Divergence theorem). Recall also the divergence operator
for spherically symmetric system in spherical coordinates obeys

∇ · ~Z =
1

r2
∂(r2Zr)

∂r
,
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where Z is spherically symmetric, but otherwise general, and Zr is the radial component
of ~Z (Arfken-104).

b) For what symmetries can the linear-force field be easily solved for directly from the linear-
force Gauss’ law?

c) Without words, solve for the linear-force field for a spherically symmetric charge
distribution. What simple charge distribution would give an equivalent linear-force field
for all radius r? What can this result be called? How is this equivalent linear-force field
different from the analogue result with the inverse-square-law force?

d) Without words, show for a general charge distribution 1 and a spherical symmetric charge
distribution 2 that the force of distribution 1 on distribution 2 is exactly the same as when
distribution 2 is replaced point-charge 2. If charge distribution 1 were also spherically
symmetric, what be the force between them be equal to and what would it be if their
centers coincided exaclty?

e) Say you had a charge distribution that maintained spherically symmetry no matter what,
that had its center of mass at its center, and the only external forces that acted on it were
external linear forces. How would described its motion? Recall Newton’s 2nd law:

~Fnet external = m~acm ,

where ~Fnet external is the net external force on a body of mass m and acm is the center of
mass of the body. Given the result of part (d) Without words, show for two spherically
symmetric distribution charges that the force of distribution 1 on distribution 2 is exactly
the same HINT: Recall the part (d) answer.

f) Is the linear force for spherically symmetric mass distribution with mass as its charge
consistent with linear force that occurs in the Newtonian derivation of the Friedmann
equation:

~F =
Λ

3
mrr̂ ,

where m is a test particle mass. There is no right answer. This is a discussion question.

003 qfull 00260 1 3 0 easy math: the linear force or cosmological force in cosmology
35. The (Newtonian) cosmological constant force PER UNIT MASS is given by

~f =
Λ

3
~r ,

where Λ is the cosmological constant, the 1/3 factor is for consistency with cosmological constant
as it appears in the Einstein field equations, and ~r is the displacement vector from any point
in space. In an extra Newtonian hypothesis, one can hypothesize that Λ is set somehow by
a universal force charge density that is constant in space and time and the Newtonian-3rd-
law equal-and-opposite force caused by the cosmological constant force on a particular mass is
exterted by the particular mass on on this charge throughout the universe. But this may be a
useless hypothesis.

Consider a system of point masses mi at displacements ~ri relative to an external origin.
The total mass of the system is m =

∑

i mi. The center of mass of the system is ~rcm and the
relative displacements are ∆~ri = ~ri − ~rcm.

NOTE: There are parts a,b,c.

a) Write down the cosmological constant force ~Fi on point mass mi relative to the ORIGIN
both in terms of ~ri and ∆~ri. HINT: This is easy.

b) Determine the net cosmological constant force ~F =
∑

i
~Fi on the system and simplify as

much as possible. HINT: Recall the definition of center of mass.
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c) What simplifying conclusion can you draw from the part (b) answer?

003 qfull 00700 1 3 0 easy math: Friedmann equation and Hubble law derivations
36. The Friedmann equation of general relativity (GR) cosmology in its most standard form (e.g.,

Wikipedia: Friedmann equations: Equations) is

H2 =

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
,

where H is the Hubble parameter (which at current cosmic time is the Hubble constant H0

and has fiducial value 70 (km/s)/Mpc), a is the cosmic scale factor, ȧ is the time derivative
of the cosmic scale factor with respect to cosmic time t, G = 6.67430(15) × 10−11 J m/kg2 is
the gravitational constant, ρ is the density of a uniform perfect fluid (in old-fashioned jargon
AKA the cosmological substratum: Bo-75–76) which is used to model the universal mass
distribution, k is called the curvature (Li-24,28) k/(c2a2) is called Gaussian curvature (CL-
12,29), c = 2.99792458× 108 m/s is the vacuum light speed as usual. and Λ is the cosmological
constant which is the simplest form of the dark energy even though is only a from of energy in
one interpretation. Note k is often defined with an unabsorbed c2: i.e., the shown k is replaced
by kc2.

There are parts a,b,c. Some of the parts can be done independently, and so do not stop if
you cannot do a part. During exams do ONLY parts a,b,c,d.

a) Without words prove the Friedmann equation starting from the work-energy theorem

Emechanical =
1

2
mv2 − GMm

r
− 1

2

Λ

3
mr2 ,

where m is the mass of a test particle.

b) Without words prove the general Hubble law v = Hr, where v is recession velocity (i.e., the
velocity between comoving frames) and r is proper distance (i.e., the distance measurable
in with a ruler at one instant in cosmic time).

c) What is the asymptotic Hubble law (i.e., Hubble law valid in the limit z → 0)?

003 qfull 00820 1 3 0 easy math: 1-component solutions to the scaled Friedmann equation
37. The scaled Friedmann equation for multi-component (power-law) density components is

h2 =

(

ẋ

x

)2

=
∑

p

Ωp,0x
−p ,

where 0 indicates the fiducial time which may be cosmic present, h = H/H0 is the scaled Hubble
parameter withH0 being the Hubble constant, x = a/a0 is the scaled cosmic scale factor, x0 = 1,
ẋ = dx/dτ is the rate of change of the scaled cosmic scale factor, τ = H0t = t/tH0

is the scaled
time with tH0

being the Hubble time, the Ωp,0 are the density parameters for the density
components at the fiducial time with their sum being 1, and p are the powers of the power-law
density components.
NOTE: There are parts a,b,c,d,e,f,g. On exams, do ONLY parts a,b,c,d.

a) Without words, derive the general asymptotic solution τ(x) and its inverse x(τ) for the
leading density component as τ → 0 (i.e., the density component with highest p). As a
shorthand, this solution can be called the early universe solution. Assume p > 0. To avoid
pointless generality, assume x(τ = 0) = 0 (i.e., there is a point origin at time zero).

b) Without words, derive early universe formula for Ωp(τ) = Ωp[x(τ)] for p > 0.

c) Without words, derive the special case early universe solutions for p = 1, 2, 3, 4.
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d) Without words, derive the Hubble parameter h = ẋ/x and the deceleration parameter
q = −ẍx/(ẋ)2 = −ẍ/(xh2) for the general early universe with p > 0. Simplify the latter as
much as possible. For what p values is the universe in positive/zero/negative acceleration?

e) We now assume the universe has only one density component with power p > 0. Without
words, derive the generic age of the universe formula (which we assume to the fiducial time
where x = 1) for τ and t and give the fiducial value version for t with the Hubble time
tH0

= (13.968 . . .Gyr)/h70, where h70 = H0/[70 (km/s)/Mpc]. special case solutions for
p = 1, 2, 3, 4. Note the fi

f) We assume the universe has only one density component with power p = 0. Without words,
derive x(τ) and x(t) assuming x(0) = 1. Note this universe is the de Sitter universe and
the Hubble constant H0 =

√

Λ/3.

g) Students are now welcome to view a table in the answer to this part that presents the single
density component solutions plus relevant features for powers p = 4, 3, 2, 1, 0. Note that if
we assume that the dependence of the density components on the scale factor is due to a
perfect fluid pressure obeying the equation of state ppressure = wρc2 where w is a constant
parameter (with no special name), then power

p = 3(1 + w) .

The w values are included in the table.

003 qfull 01130 1 3 0 easy math: perfect fluid solutions
38. The differential equation (DE) for the perfect fluid of Friedmann equation cosmology is

ρ̇ = −3
ȧ

a

(

ρ+
p

c2

)

,

where ρ is mass-energy in the comoving frames of Friedmann equation cosmology and p is
isotropic pressure in those frames (in some sense) (Liddle 26). The perfect fluid DE can be
derived rigorously from general relativity (Carroll 333–334) and, perhaps somewhat fudgily, from
classical thermodynamics and special relativity. Remarkably, this equation does not guarantee
conservation of energy in the ordinary sense of classical physics: it does embody the general
relativity feature that the covariant derivative of the energy-momentum tensor is zero (Carroll
117,120): i.e., the energy-momentum conservation equation. General relativity may or may not
in some sense conserve energy for cosmology, but certainly gravitating mass-energy is allowed
to appear and disappear by the perfect fluid DE.

Multiple perfect fluids can exist and if they are assumed to act independently (which is the
usual cosmological assumption), then they all obey there own perfect fluid DE: i.e., for perfect
fluid i,

ρ̇i = −3
ȧ

a

(

ρi +
pi

c2

)

.

In current standard cosmology (i.e., the ΛCDM model or simple variations thereof), it is
assumed that the perfect fluid equation of state (EOS) is of the form

p = wρc2 ,

where w is a constant parameter that seems to have no special name. Most standard/interesing
values of w are given by

w =



















































0 for nonrelativistic (NR) mass-energy (AKA “matter”
or “dust”: Liddle-40);

1/3 for extreme relativistic (ER) mass-energy: most obviously photons,
but also the ER neutrinos of the Big Bang era
and to some later time not perfectly known cosmic time;

−1 for cosmological constant or equivalently (constant) dark energy;
−1/3 for zero-acceleration (or constant ȧ) universes such as

Fulvio Melia’s Rh = ct universe or a universe with cosmic scale
determined only by negative curvature k.
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Solve for the formula for ρ(a) for general w and the 4 special cases of w listed above. Assume
a0 and ρ0 for cosmic present values.

003 qfull 01150 1 3 0 easy math: Friedmann equation solutions for general EdS universes: redundant
to 00820

Extra keywords: Look over and see if anything to salvage in this question
39. The Friedmann equation and acceleration equation are, respectively,

H2 =

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
= H2

0

ρ

ρC
− k

a2
+

Λ

3

and
ä

a
= −4πG

3

(

ρ+
3ppressure

c2

)

+
Λ

3
= −1

2
H2

0

ρ

ρC
(1 + 3w) +

Λ

3
,

where following a usual convention c2 has been absorbed into k and Λ (Li-55) and we have
assumed a single equation of state for the second version of the acceleration equation. A
standard set of solutions follows for perfect fluids with equation of state ppressure = wρc2 (with
w constant) for the cases with k = 0 and Λ = 0 and density ρ obeying an inverse-power law
of a. Following CL-36, we will call these solutions Einstein-de-Sitter universes (EdS universes)
although originally only the w = 0 case was called an EdS universe. Note EdS universes do not
the include the Einstein universe (which is a static, positive curvature universe), but do include
the flat de Sitter universe with k = 0. The original de Sitter universe had positive curvature
(O’Raifearty et al., 2017, p. 38). Explicitly, density as an inverse-power law of a is

ρ = ρ0

(a0

a

)p

with p = 3(1 + w) and γ = 2/p ,

where p is a power and not pressure ppressure.
There are parts a,b.

a) For the EdS universes, determine the general solutions for a(t) (assuming a(0)=0, except
for w = −1), t0, q0, and ρ(t) in terms of a0, t, H0, w (or any convenient combination of w,
p, and γ), and ρ0 which equals

ρC =
3H2

0

8πG

for Euclidean universes (i.e., flat universes). Note the subscript 0 means present cosmic
time and the w = −1 cases require special treatment. Recall the deceleration parameter
formula

q = − ä
a

1

H2

(Li-53).

b) Specialize the results of part (a) for w values 0 (“matter”), 1/3 (“radiation”), −1 (de Sitter
universe: cosmological constant, constant dark energy, or steady-state universe), and −1/3
(zero acceleration universe). Organize the results in a table for easy understanding.

003 qfull 01250 2 5 0 moderate thinking: the Friedmann equation: long derivation: rework?
Extra keywords: This problem needs reworking and probably cannot be used for students
ever

40. The Friedmann equation of general relativity (GR) cosmology in standard form (e.g., Wikipedia:
Friedmann equations: Equations) is

H2 =

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
,
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where H is the Hubble parameter (which at current cosmic time is the Hubble constant H0

and has fiducial value 70 (km/s)/Mpc), a is the cosmic scale factor, ȧ is the time derivative of
the cosmic scale factor with respect to cosmic time t, G = 6.67430(15)× 10−11 J m/kg2 is the
gravitational constant, ρ is the density of a uniform perfect fluid (in old-fashioned jargon AKA
the cosmological substratum: Bo-75–76) which is used to model the universal mass distribution,
k is called the curvature (Li-24,28) k/(c2a2) is called Gaussian curvature (CL-12,29), and
c = 2.99792458 × 108 m/s is the vacuum light speed as usual. Note k is often defined with
an unabsorbed c2: i.e., the shown k is replaced by kc2.

The Friedmann equation is, as one can see, a 1st order nonlinear ordinary differential
equation. The fact that is nonlinear means that linear combinations of solutions are not
in general solutions though they may be in special cases or approximately. The Friedmann
equation is also a homogeneous differential equation at least in the sense that it can be written
ȧ = g(a). The form ȧ = g(a) implies that a must be strictly increasing or decreasing except
possibly at ±∞ and possibly at points where the some order of derivative of g have infinities.
Both exceptions do occur for some solutions of the Friedmann equation. For example, the
latter exception occurs for the closed universe model (with only matter). The closed universe
model solution is closely related to throwing a ball into the air: the maximum size of the closed
universe model corresponds to the maximum height of the ball.

The Friedmann equation actually has an interesting nature in that its independent variable
is cosmic time t, but the solution the cosmic scale factor a(t) is the factor by which all distances
scale with time in expanding universe models.

Let’s derive the Friedmann equation from Newtonian physics with extra natural hypotheses
as needed. A priori, it not clear that the Newtonian derivation must yield the Friedmann
equation with the extra natural hypotheses. But it can be shown that it should (C.G. Wells 2014,
ArXiv:1405.1656). Note that the Newtonian derivation can say nothing about the curvature of
space and assumes any curvature does not affect the derivation. We will do a long preamble
wherein, with any luck, the extra hyptheses are shown to be natural.

First, just as in the GR derivation, we assume for our universe model the cosmological
principle which states that the universe has a homogeneous, isotropic mass-energy distribution
when averaged on a sufficiently large scale. The cosmological principle is what allows us
to approximate the observable universe in our model with a perfect fluid. Observationally,
the cosmological principle has been verified to a degree, but some tension remains. The
observational scale for the validity of the cosmological principle is 100 Mpc or maybe a factor
of a few times that larger (Wikipedia: Cosmological principle: Observations). Note that well
beyond the observable universe, the cosmological principle may well fail, but, just as in the GR
derivation, we assume this has negligible effect for the observable universe.

As to the perfect fluid of our model, it has uniform rest-frame mass-energy density ρ
(uniform in space, not in time). The mass-energy gravitating mass-energy, of course. The
perfect fluid has no viscosity and has an isotropic pressure p in its own rest frame (Ca-34).
The perfect fluid equation of state (EOS) is p = p(ρ). Actually, the perfect fluid can have
internal energy (i.e., thermal energy), but that is counted as part of ρ as follows from E = mc2.
Also note that we said “rest-frame mass-energy” which can be the energy of massless particles.
In fact, a photon gas is a good realization of the perfect fluid. The actual cosmic background
radiation since the recombination era approximates a perfect fluid to high accuracy. Its photons
do pass through gravitational wells, scatter off free electrons, and sometime hit planets, etc.,
but to good approximation the photons act as if they never interacted with anything except
gravitationally.

Next, we note a corollory of Birkhoff’s theorem (a theorem in GR): a spherical cavity at the
center of spherical symmetric mass-energy distribution (static or not, finite or infinite) is a flat
Minkowski spacetime (CL-24; We-337–338, 474). The spherical symmetric mass distribution can
be, in fact, an unbounded homogeneous, isotropic mass-energy distribution: it can be infinite
or finite. Note that if the spherical symmetric mass distribution is finite, it must have positive
curvature and be a closed universe model. We assume, just as in the GR derivation, that
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Birkhoff’s theorem applies to good approximation even if the cosmological principle fails well
beyond the observable universe. Inside the cavity, we can put mass-energy and it should behave
exactly as superimposed on a universe of flat Minkowski spacetime (CL-24; We-337–338, 474)
as long as it does not break spherical symmetry significantly, which would cause a significant
perturbation of the spherical symmetry of the surroundings. The mass-energy we put in the
cavity used for our derivation does not break spherical symmetry.

The situation for the Birkhoff-theorem cavity is analogous to a cavity in spherically
symmetric mass distribution in Newtonian physics. Inside the Newtonian cavity, the
gravitational field is zero: this is a corollory of the shell theorem first proven by Newton himself.
However, what happens if the mass distribution is infinite is not defined by pure Newtonian
physics. Analogous to the GR case, inside the cavity, we can put mass-energy and it should
behave exactly as superimposed a region where there is no external gravitational field as long as
it does not break spherical symmetry significantly which would cause a significant perturbation
of the spherical symmetry of the surroundings.

Now consider general relativistic space infinite or finite and unbounded (which would be
positive curvature space: Li-33). The space is filled with the aforementioned uniform perfect
fluid. The fluid density ρ is a function of cosmic time t in general. The fluid’s motions are
determined only by gravity (i.e., the geometry of spacetime) and initial conditions, and so
each element of the fluid moves along a geodesic in a GR interpretation and in free fall in the
Newtonian physics interpretation. Since we demand homogeneity and isotropy, we can only have
uniform expansion/contraction of the whole model. Note the fluid can have pressure (positive
or negative), but uniformity means the pressure force cancels out everywhere locally. The fluid
can also have a formal pressure that does not have to push/pull on anything. However, formal
pressure does have a global effect as we will show below.

Now consider a Birkhoff-theorem cavity of radius r for our model which is also filled with
the perfect fluid with density ρ. Everything inside the cavity behaves just as everything outside,
and so the cosmological principle is maintained. The cavity fluid has total mass M . We assume
that gravitational field due to the cavity fluid is asymmptotically Newtonian. This requires

RSch

r
=

2GM/c2

r
=

8π

3

Gρ

c2
r2 << 1 ,

where RSch = 2GM/c2 is the Schwarzschild radius (Wikipedia: Schwarzschild radius). So we
just assume r is small enough. Note that Newtonian gravitational field is actually the classical
limit of the left-hand side of the Einstein field equations (i.e., the spacetime geometry structure
side: We-152), and so it does not itself contribute mass-energy (which comes from the right-
hand side of the Einstein field equations and is described by the energy-momentum tensor).
So we do not have to worry about the mass-energy contribution of the gravitational field to
gravitating mass-energy since it does not contribute.

We also have to assume that r is small enough that the gravitational effects propagate with
negligible time delay. Really, they propagate at the vacuum light speed relative to their local
inertial frame.

We also have to assume that all relative velocities v of the fluid elements inside the
cavity satisfy v/c << 1 so that we can employ Newtonian physics. This assumption is also
asymptotically valid for small enough cavity radius r since the relative velocities between fluid
elements are proportional to their separation distances as shown by Hubble’s law which we
derive nonrigorously below.

Recall all fluid elements in the perfect fluid are in free fall as aforesaid. This raises an
interesting point. Special relativity gives the vacuum light speed c as the highest speed relative
to inertial frames, but not between inertial frames. And the strong equivalence principle of
GR shows that free-fall frames with uniform external gravity are exact inertial frames. The
strong equivalence principle has been verified to very high accuracy (Archibald et al. 2018,
arXiv:1807.02059). So the free-fall frames (which we will call comoving frames) of our model
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can grow apart at faster than c. In fact, Hubble’s law shows that they must for large enough
separation distances. Note that a light signal between comoving frames can only propagate at
the vacuum speed light relative to the comoving frames it propagates through. So the fact that
space can grow faster than the vacuum light speed does not imply there is faster-than-light
signaling.

To summarize our assumptions for the Newtonian derivation, we require Birkhoff’s theorem
and that r be sufficiently small so that all relativistic and time-delay effects are small. If the
aforesiad effects vanish in the differential limit as r →, then the Newtonian derivation should
be valid. Recall the Friedmann equation holds at every point in the universe model according
to the GR derivation. Perhaps, there is some way that the Newtonian proof is still invalid, but
it would have to be a very odd way.

Now we are ready to tear into the derivation of the Friedmann equation. We put a test
particle of mass m at the surface of our cavity (i.e., at radius r). Given our setup, we have
conservation of mechanical energy E:

E =
1

2
mv2 − GMm

r
=

1

2
mv2 − 4πG

3
ρr2m ,

where the first term to the right of the equal signs is the kinetic energy of our test particle
and the second is its gravitational potential energy which is also its gravitational field energy
in Newtonian physics which as discussed above does not itself contribute to gravitating mass-
energy. We now write

r = ar0 ,

where a is the dimensionless cosmic scale factor and r0 is a time-independent covoming distance.
By usual convention the scale factor for the current cosmic time t0 is defined to be 1: i.e.,
a0 = a(t0) = 1. This means that the r0 are the proper distances for the current cosmic time:
i.e., distances that you could measure with a ruler at current instant in cosmic time. Note
v = ȧr0. Now defining the Hubble parameter H = ȧ/a, we get

v = Hr

which is the general-time Hubble’s law. The current cosmic time Hubble’s law (with the current
Hubble parameter being Hubble’s constant) is

v0 = H0r0 ,

The validity of this derivation of Hubble’s law follows from the Friedmann equation itself, and
so is valid insofar as our Newtonian derivation of the Friedmann equation is valid. A rigorous
GR derivation is given by CL-13–14.

Re Hubble’s law: it is an exact law for recession velocities (which are velocities between
comoving frames: i.e., free-fall frames that are exact inertial frames) and proper distances (which
are true physical distances that can be measured at one instant in cosmic time with a ruler).
In fact, neither recession velocities nor proper distances are observables, except asymptotically
as r → 0. The exception allows Hubble’s constant to be measured from cosmologically nearby
galaxies.

We divide the conservation of mechanical energy equation by −mr20/2 to get

− 2E

mr20
= −ȧ2 +

8πG

3
ρa2 .

The right-hand side of the second to last equation is independent of E, m, and r0 and depends
only on universal quantities of the universe model, and therefore the constant on the left-hand
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side must be a universal constant independent of the peculiarities of the test particle: i.e., E,
m, and r0. We use the symbol k for this universal constant: thus,

k = − 2E

mr20
.

The constant k is called the curvature since GR tells us it describes the curvature of space which
we cannot know from Newtonian physics (Li-24, CL-12–13). Note k > 0 gives positive curvature
(hyperspherical geometry), k < 0 gives negative curvature (hyperbolical geometry), and k = 0
gives zero curvature (flat or Euclidean geometry): see Wikipedia: Shape of the universe. (As
noted above, k is often defined with an unabsorbed c2: i.e., kc2 = −2E/mr20.) Rearranging the
second to last equation gives us the Friedmann equation itself:

H2 =

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
= H2

0

[

Ω + Ωk

(a0

a

)2
]

,

(Li-24), where we have defined

Ω =
ρ

ρc
, ρc =

3H2
0

8πG
, Ωk = − k

a2
0H

2
0

.

(Li-51,56). Note Ω is the density parameter (Li-51), ρc = 3H2
0/(8πG) is the critical density

(Li-51), and Ωk is the curvature density parameter (Li-56). If Ω = 1 at the current cosmic time
(or any other cosmic time defined as current cosmic time), one has

H2
0 = H2

0 (1 + Ωk)

implying Ωk = 0. So a universe model that is exactly flat at any cosmic time is exactly flat at
all times.

There are several interesting points to be made about the Friedmann equation. First, we
demanded r be small enough so that we could neglect relativistic and time travel effects. But
we would derive the same Friedmann equation no matter what r we choose. So actually, all the
effects we have neglected must cancel out for any r due to the conditions we imposed on the
universe model: the cosmological principle and the perfect fluid.

A second interesting point is that Friedmann equation allows for mass-energy to appear or
disappear as function of a. To explicate, mass-energy that is conserved (which called matter in
cosmology jargon) has ρm ∝ 1/a3. We show this below, but is in fact it is somewhat obvious: if
the volume of a fluid element scales of up as a3 and mass-energy is conserved, then density must
decrease as 1/a3. But we allow other kinds of mass-energy dependence on a. For one example
of mass-energy appearance/disappearance is that the cosmic background radiation and cosmic
neutrino background (which in cosmology jargon is collectively called radiation) has ρr ∝ 1/a4.
The extra power of a is due to the cosmological redshift of extreme relativistic mass-energy
which just causes radiation mass-energy to vanish from universe—it’s just gone as gravitating
mass-energy. Note general relativity cosmology does not have ordinary conservation of mass-
energy: it just has the energy-momentum conservation equation ∇µTµµ = 0 (Carroll-120).
Another point is that Noether’s theorem that gives energy conservation when time invariance
applies does not apply in an evolving universe model that does not have time invariance (Carroll-
120). Another example of mass-energy appearance/disappearance is that constant dark energy
(which is equivalent to the cosmological constant Λ in effect in the Friedmann equation if
not otherwise) has ρΛ constant. The appearing/disappearing mass-energy contributes both
gravitational field energy and, by the conservation of mechanical energy, the kinetic energy of
the comoving frames which is sort of energy of expansion. (The disappearance of radiation also
removes the kinetic energy of the comoving frames). To make more obvious the way mass-energy
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appearance/disappearance balances the gravitational field energy and the kinetic energy of the
comoving frames , consider the Friedmann equation version

ȧ2 =
8πG

3
ρa2 − k .

Holding a and k fixed, and increasing ρ (mass-energy) proportionally increases ȧ2 (kinetic
energy of comoving frames). This balanced contribution of gravitational field energy and kinetic
energy for appearing/disappearing mass-energy arises only from starting our derivation from
the conservation of mechanical energy equation. If we had started from Newton’s 2nd law, we
would have had no obvious path to include appearing/disappearing mass-energy.

You might ask what if k is a function of time or appearing/disappearing mass-energy is
an explicit function of time not merely a function of a which is a function time. We have no
guiding theory for these cases, and so far no observational or theoretical need for them.

We will now derive the fluid equation as it is called in cosmology jargon: i.e., the equation
for ρ̇. We assume that the perfect fluid obeys the 1st law of thermodynamices (which is actually
implicit in the energy-momentum tensor for a perfect fluid: C.G. Wells 2014, ArXiv:1405.1656,
p. 4). The 1st law is

dE = T dS − p dV + µdN ,

where here E is total mass-energy and not mechanical energy as above, T is temperature, S is
entropy, p is pressure, V is volume, µ is chemical potential, and N is number of particles. The
perfect fluid is adiabatic (i.e., dS = 0) and so the 1st law reduces to

dE = −p dV + µdN ,

For simplicity, we allow change in number of particles only to a species that is spontaneously
created in such a way that N stays proportional to volume V . This means that N = nV where
n is the constant density of the spontaneously created particles. The spontaneously created
particles are created at rest in the comoving frames, and so their chemical potential is just their
rest-mass mass-energy. Given a volume V ∝ a3 for an amount of perfect fluid, we have

E = ρc2V

Ė = (ρ̇V + ρV̇ )c2 = −pV̇ + µnV̇

ρ̇ = − V̇
V

(

ρ+
p

c2
− µn

c2

)

and using
V̇

V
=

3a2ȧ

a3
= 3

ȧ

a

ρ̇ = −3
ȧ

a

(

ρ+
p

c2
− µn

c2

)

(Li-26). At the expense of clutter, we can explicitly allow for different species in the fluid
equation:

ρ̇ = −3
ȧ

a

∑

i

(

ρi +
pi

c2
− µini

c2

)

,

where µi = 0 for those species which are not the spontaneously created particles we allowed for.
We note that in cosmology the equation of state is often parameterized thusly

p =


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








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


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





wρc2 where w is constant parameter just called w;

0 for matter where w = 0;
1

3
ρc2 for radiation where w = 1/3;

−ρc2 for constant dark energy where w = −1;

−1

3
ρc2 for a non-accelerating universe where w = −1/3.
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One might well ask what the heck is the negative pressure of constant dark energy. Well
for a hypothetical laboratory gas, its something with suction. So expanding it, requires adding
internal energy. But the constant dark energy negative pressure may be just formal. There is
no reason to require it to couple to anything except maybe itself, and so maybe nothing feels
negative pressure, except maybe dark energy itself. In any case, the dark energy is uniform, and
so there are no pressure gradients. Where does the mass-energy come from to keep dark energy
constant as the universe expands? Well in simplest theory, it just appears as a fundamental
fact. However, there are quantum field theory reasons for believing there could be dark energy,
but quantum field theory in its simplest prediction gets the size of constant dark energy too big
by more than 100 orders of magnitude. So maybe quantum field theory does not know what its
talking about.

Why do we allow for constant dark energy? The universal expansion is positively
accelerating and constant dark energy supplies a cause. Of course, constant dark energy insofar
as it affects Friedmann equation (but perhaps not otherwise) can be replaced by Einstein’s
cosmological constant Λ with the appropriate positive value. The cosmological constant (if it
exists) is a fundamental aspect of gravity and not mass-energy form at all.

The negative pressure for the non-accelerating universe is just a fix to get a non-accelerating
universe which has been argued for by some (e.g., Melia 2015, arXiv:1411.5771). So it’s just a
formal pressure.

Why did we allow for spontaneously created particles? They represent an alternative idea
to constant dark energy and the cosmological constant. In the Friedmann equation, they have
the same effect as constant dark energy and the cosmological constant Λ with the appropriate
positive value. What could such particles be? Very speculatively, dark matter particles,
nonrelativistic neutrinos (which can exist even if we have never detected them), and/or baryonic
matter (pairs of protons and electrons). All of these would have other effects than just giving
a positively accelerating universe. They could clump eventually and affect large-scale structure
evolution, and in the case of baryonic matter lead to new star formation. The particles, by
the way, certainly have only positive pressure, but to first approximation that is negligible
compared to their mass-energy contribution. The case of spontaneous creation of baryonic
matter leads to the unlikely hypothesis that the observable universe started with a Big Bang,
but is now evolving to the steady-state universe as hypothesized by Bondi, Gold, and Hoyle in
1948. Actually, Einstein anticipated the steady-state universe in unpublished work in 1931.

Now for some problems.

a) Derive the acceleration equation (AKA the 2nd Friedmann equation)

ä

a
= −4πG

3

(

ρ+
3p

c2
− 3µn

c2

)

.

HINT: Start by mulitpying the Friedmann equation through by a2.

b) The deceleration parameter q is a dimensionless measure of the acceleration of the universal
expansion. It is defined

q = − äa
ȧ2

= − ä

aH2

(Li-53), where the negative sign was included to get a positive value when people expected
the acceleration to be negative. Some simple analytic solutions for a(t) have only two
unknown parameters and the observational determination of H0 and q0 determine those.
This is why Allan Sandage (1926–2010) once, with admitted vast simplification, called the
cosmology the search for two numbers: i.e., H0 and q0. Write q for general time in terms
of general-time Ω, ρc, p, and µn.

c) As discussed in the preamble, the cosmological constant is the alternative to constant
dark energy insofar as the Friedmann equation alone is considered. One can derive it



38 Chapt. 4 The Friedmann Equations

from the given standard form of the Friedmann equation by replacing ρ by ρ+ ρΛ, where
ρΛ ≡ Λ/(8πG) (Li-56). Make this replacement in the Friedmann equation and then reverse
engineer the derivation of the Friedmann equation to find the Newtonian potential energy
UΛ and the Newtonian force FΛ implied by the cosmological constant.

d) What is peculiar about the Newtonian force FΛ? HINT: The short answer is expected.

e) Write down the Friedmann equation and the acceleration equation with the explicit
cosmological constant term. Set µn = 0 for simplicity. HINT: This is easy given
ρΛ ≡ Λ/(8πG), but you have to remember ρΛ has a formal pressure if it is attributed
to constant dark energy as follows from the fluid equation for ρ̇Λ = 0.

f) The de Sitter solution of the Friedmann equation—which is grandly called the de Sitter
universe—is obtained for the case where ρ = 0, k = 0, and Λ > 0. Find this solution
in terms of current cosmic time t0 and find the expressions for the Hubble parameter, the
Hubble constant, and the deceleration parameter in general and for the current cosmic time.
By the by, the de Sitter solution with the cosmological constant interpreted as constant
density of ordinary matter is the steady-state universe.

003 qfull 01260 1 3 0 easy math: quick derivation Friedmann, fluid, and acceleration equations
41. Here we do the quick derivations of the Friedmann equation, the fluid equation, the Friedmann

acceleration equation, and some other results.
NOTE: There are parts a,b,c,d,e,f,g. On exams, do ONLY parts a,b,c,d,e. Some of the

parts can be done independently, and so do not stop if you cannot do a part.

a) Without words, derive the Friedmann equation in standard form (with the cosmological
constant force FΛ = (Λ/3)mr included) from classical physics with the hypotheses that all
free-fall frames are elementary inertial frames (as told to us by general relativity) and that
the shell theorem for a spherically symmetric mass distribution can be extended to infinite
distance (which is validated by Birkhoff’s theorem from general relativity). The derivation
makes use of the classical conservation of mechanical energy. You should end up with a
−k/a2 term among other things. You can a draw diagram if you like. HINT: Start with
the conservation of mechanical energy of a test particle of mass m:

E =
1

2
mv2 − GMm

r
−
(

1

2

)

Λ

3
mr2 .

b) Without words and starting from the 1st law of thermodynamics

dE = T dS − p dV + µdN ,

derive the cosmological fluid equation in standard form (which means with dS = 0 and
dN = 0) and in a form with ρ̇a/ȧ equal to something for use in part (d). Recall the
rest-frame energy is E = ρc2V .

c) Specialize the fluid equation to the special case where the equation of state is p = wρc2

where w is the equation-of-state constant (which seems to have no special name). Determine
the explicit solution ρ(a) for the special case where ρ0 = ρ(a0). HINT: You will have to
eliminate the time derivative.

d) Without words, derive the acceleration equation (or Friedmann acceleration equation) in
standard form using parts (a) and (b). A subtle point is that you have to assume that
the gravitational potential energy formula continues to be valid (though perhaps with a
different meaning) for cases where mass is not conserved. There is an argument why it
should, but that is beyond the scope of this question.

e) Without words, derive from the Friedmann equation the de Sitter universe solution which
has ρ = 0 and k = 0, but Λ 6= 0.
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f) Without words, derive the scaled Friedmann equation

h2 =

(

ẋ

x

)2

= Ωnon-k,Λ + Ωk + ΩΛ

with the scalings x = a/a0, τ = H0t, h = H/H0, ka = k/a2
0, and ρc = 3H2

0/(8πG). Note
the subscript 0 indicates fiducial time t0 which is often cosmic present and is not in general
the Hubble time. Implicitly show expressions for ρk, and ρΛ and the density parameters
in the derivation. What is the curvature equation at the fiducial time: i.e., the formula for
Ωk,0. What does it mean if Ωk,0 = 0 exactly.

g) Without words, derive the scaled accelertion equation using the same scalings and
expressions as in part (f) and p = wρc2.
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Multiple-Choice Problems

004 qmult 00100 1 4 1 easy deducto-memory: geometry of the universe curvature k
42. “Let’s play Jeopardy! For $100, the answer is: This quantity according to general relativity and

the Robertson-Walker metric determines the geometry of the universe: hyperspherical, flat, or
hyperbolical.”

What is curvature , Alex?

a) k b) n c) a d) v e) e

004 qmult 00120 1 4 1 easy deducto-memory: factoring the curvature term
43. The Friedmann equation written in terms of density parameter components with some

specializations is

H2 =

(

ȧ

a

)2

= H2
0 (Ω + Ωk + ΩΛ)

where H is the Hubble parameter, H0 is the Hubble constant, Ω is the sum of all density
parameter components (excluding the curvature and Λ components),

Ωk = − kc2

H2
0a

2

is the curvature density parameter component, and

ΩΛ =
Λ

3H2
0

=
Λ/(8πG)

3H2
0/(8πG)

=
ρΛ

ρcrit,0

is the Λ density parameter component (i.e., the cosmological constant component). At the
fiducial cosmic present,

Ωk,0 = − kc2

H2
0a

2
0

and we are free to factorize k/a2
0 as we like. In fact, the Robertson-Walker metric choice is

to make k = 0 for flat space (i.e., Euclidean space), k = 1 for positive curvature space (i.e.,
hyperspherical space with Ωk,0 < 0), and k = −1 for negative curvature space (i.e., hyperbolical
space with Ωk,0 > 0). For non-flat space, this implies a definite physical scale for a0:

a0 =
c/H0
√

|Ωk|
=

(4.2827 . . .Gpc)/h70
√

|Ωk|
=

(13.968 . . .Gly)/h70
√

|Ωk|

(where h70 = H0/[70 (km/s)/Mpc]) which can be called the curvature radius of the universe.
Note formally the Gaussian curvature radius is defined

RG =
a0√
k

40
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which is imaginary for k = −1 (CL-12).
The Friedmann equation as written has 3 free parameters for cosmic present which we

can choose to be H0, Ω0, and ΩΛ. This means we have the constraint Ω0 + Ωk,0 + ΩΛ = 1,
and so Ωk,0 = 1 − Ω0 − ΩΛ, and so Ωk,0 follows if all other density parameters are known by
assumption or a fit to data. Tristram et al. (2023) give Ωk,0 = −0.012(10) consistent with 0,
and so consistent with flat space.

Assuming Ωk = −0.01, what is the approximate curvature radius and how does that
compare with the radius of the observable universe according to the Λ-CDM model 14.25 Gpc
which must be approximately true whatever the correct universe model is (Wikipedia:
Observable universe).

a) 43 Gpc; large. b) 430 Gpc; large. c) 43 Gpc; small. d) 430 Gpc; small.
e) 0.043 Gpc; small.

004 qmult 00150 1 1 2 easy memory: proper distance to the antipodal point
44. For a positive curvature space (i.e., k = 1 space), the proper distance to the antipodal point

according to the Robertson-Walker metric formulation at cosmic present is

a) a0. b) πa0. c) 2πa0. d) a0/2. e) a0/4.

004 qmult 00180 1 1 4 easy memory: geodesic is a stationary path

45. A geodesic is a between two points in a general geometry. It is not in general
a global minimum path nor a global maximum . However, a sufficiently small
segment is always the shortest distance between points in that segment.

a) non-stationary path b) straight line c) great circle d) stationary path
e) small circle

004 qmult 00182 1 1 3 easy memory: great circle geodesic
46. A geodesic on a sphere (i.e., an ordinary 2-sphere) is:

a) longitude. b) small circle. c) great circle. d) semicircle. e) meridian.

004 qmult 00200 1 1 3 easy memory: general metric
47. The spacetime interval (which in relativity is also called the metric) in general is

ds2 = gµν dx
µ dxµ

where gµν is the or sometimes just the metric in another meaning of the term.
Note Einstein summation on repeated indices is used.

a) Minkowski tensor b) geodesic c) metric tensor d) gravity tensor
e) stress-energy tensor

004 qmult 00210 1 1 3 easy memory: Minkowski metric tensor tests
48. The is

ηµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







(CL-24). Some authors define with an overall negative sign compared to the
definition above.

a) Robertson Walker metric tensor b) geodesic tensor c) Minkowski metric tensor
d) gravity tensor e) stress-energy tensor

004 qmult 00220 1 4 5 easy deducto-memory: Robertson-Walker metric identified
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49. “Let’s play Jeopardy! For $100, the answer is:

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

.

What is the metric, Alex?

a) Einstein-Hilbert b) de-Sitter-Schwarzschild c) Eddington-Lemâıtre
d) Milne-McCrea e) Robertson-Walker

001 qmult 00240 1 1 3 easy memory: radial and transverse proper distances
50. The Robertson-Walker metric is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

,

where ds2 = dτ2 is the spacetime interval (CL-10) and also the squared proper time differential
in the convention adopted here (CL-10). The a(t) is the physical curvature radius and r is
the conventional dimensionless comoving coordinate and t is cosmic time. The r coordinate
is proportional to tangential proper distance at any time. The alternative conventional
dimensionless comoving coordinate is χ though this symbol may just be the particular choice
of CL-11. The χ is proportional to the radial proper distance at any time. Note

r =







sin(χ) for k = 1 (positive curvature);
χ for k = 0 (flat space);
sinh(χ) for k = −1 (negative curvature)

and

dr =















cos(χ) dχ =

√

1 − sin2(χ) dχ =
√

1 − r2 dχ for k = 1 (positive curvature);

dχ for k = 0 (flat space);

cosh(χ) dχ =

√

1 + sinh2(χ) dχ =
√

1 + r2 dχ for k = −1 (negative curvature),

where we have used the hyperbolic identity cosh2 − sinh2 = 1 (Wikipedia: Hyperbolic functions:
Useful relations). We now find

dχ =
dr√

1 − kr2
.

The differential radial proper distance is

dDproper,radial = a(t)

(

dr√
1 − kr2

)

= a(t) dχ .

The differential transverse proper distance dDproper,transverse is:

a) 4π[a(t)r]2. b) a(t)r. c) a(t)r

√

dθ2 + sin2 θ dφ2. d) πa(t). e) 2πa(t).

Full-Answer Problems

004 qfull 00350 1 3 0 easy math: some of the geometry of Robertson-Walker metric
51. The Robertson-Walker metric in standard form is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

,
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where ds is the (differential) spacetime interval (also equal to dτ the proper time in the present
convention: CL-10), dt is the differential cosmic time interval, the coordinates are for an
arbitrary origin in the homogeneous and isotropic spacetime of the Robertson-Walker metric, θ
and φ are the ordinary polar coordinates, r a dimensionless (i.e., unitless) comoving coordinate
for the tangential direction, t is cosmic time, a(t) is the cosmic scale factor with dimensions
of length, and k = 0 for Euclidean space (i.e., flat space), k = 1 for hyperspherical space (i.e.,
positive curvature space with the geometry of the surface of a 3-sphere which is sphere in 4-
dimensional Euclidean space: see Wikipedia: n-sphere) and k = −1 for hyperbolical space (i.e.,
negative curvature space). Note an ordinary sphere is a 2-sphere in math jargon. For ds2 > 0
/ ds2 = 0 / ds2 < 0, the interval is timelike / lightlike (or null) / spacelike (CL-10; Carroll-9).

For non-flat space, the Robertson implies a definite physical scale for a0:

a0 =
c/H0
√

|Ωk|
=

(4.2827 . . .Gpc)/h70
√

|Ωk|
=

(13.968 . . .Gly)/h70
√

|Ωk|

(where h70 = H0/[70 (km/s)/Mpc]) which can be called the curvature radius of the universe.
Note formally the Gaussian curvature radius is defined

RG =
a0√
k

which is imaginary for k = −1 (CL-12).
The Friedmann equation as written has 3 free parameters for cosmic present which we

can choose to be H0, Ω0, and ΩΛ. This means we have the constraint Ω0 + Ωk,0 + ΩΛ = 1,
and so Ωk,0 = 1 − Ω0 − ΩΛ, and so Ωk,0 follows if all other density parameters are known by
assumption or a fit to data. Tristram et al. (2023) give Ωk,0 = −0.012(10) consistent with 0,
and so consistent with flat space. For k = 0, there is no physically determined a0 value and
one can set it for convenience: e.g., a0 = 1 Gpc or a0 = c/H0 = [4.2827 . . .)/h70] Gpc which is
the Hubble length. However, for flat universe models, one usually makes a(t) dimensionless and
sets a0 = 1. In these models, the comoving coordinates are dimensioned and given units (e.g.,
Gpc).

The r coordinate is the tangential comoving coordinate since it is proportional to tangential
proper distance at any time. The alternative conventional dimensionless comoving coordinate
is χ though this symbol may just be the particular choice of CL-11. The χ is proportional to
the radial proper distance at any time.

The radial proper distance DP,radial is given by

DP,radial = a(t)











χ for k = 1 with χ ∈ [0, π];

χ for k = 0 with χ ∈ [0,∞];

χ for k = −1 with χ ∈ [0,∞],

The r coordinate is related to the χ by

r =







sin(χ) for k = 1 (positive curvature);
χ for k = 0 (flat space);
sinh(χ) for k = −1 (negative curvature)

and

dr =















cos(χ) dχ =

√

1 − sin2(χ) dχ =
√

1 − r2 dχ for k = 1 (positive curvature);

dχ for k = 0 (flat space);

cosh(χ) dχ =

√

1 + sinh2(χ) dχ =
√

1 + r2 dχ for k = −1 (negative curvature),
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where we have used the hyperbolic identity cosh2 − sinh2 = 1 (Wikipedia: Hyperbolic functions:
Useful relations). We now find

dχ =
dr√

1 − kr2
.

The transverse proper distance DP,transverse is given by

DP,transverse = a(t)r

√

dθ2 + sin2 θ dφ2 .

The general differential the proper distance DP formula is

dD2
P = a(t)2

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

= a(t)2
[

dχ2 + sin2(χ)(dθ2 + sin2 θ dφ2)
]

.

NOTE: There are parts a,b,c,d. On exams, do ONLY parts a,b,c. The parts can be done
independently, and so do not stop if you cannot do a part.

a) For the k = 1 case, what directions from the origin do radial geodesics lead to the antipodal
point (i.e., the antipode)? How far in proper distance is it from the origin to the antipodal
point along a radial geodesic? How far in proper distance to make the geodesic round trip
from origin to origin?

b) What is the general formula for circumference C in proper distance for a circle at r in terms
of r and χ? Sketch a plot of C as a function of χ for all cases of k.

c) Integrate over all solid angle to find the proper surface area A of the curved-space 2-
sphere surrounding the origin at comoving coordinate r. This area is analogous to the
circumference of a small circle on a ordinary sphere at polar angle θ. Sketch a plot of A as
a function of χ for all cases of k. HINT: The integration is really easy and dθ2 +sin2 θ dφ2

is a differential path distance created using the differential Pythagorean theorem and not
a differential piece of solid angle.

d) The differential volume for the sphere is dV = A(χ)a dχ. For all k, determine explicit
formulae for V (χ) small χ and then for general χ. What is the maximum value of
V (χ) for k = 1? HINT: You will need the identities sin2(x) = (1/2)[1 − cos(2x)] and
sinh2(x) = (1/2)[cosh(2x) − 1].

004 qfull 00400 1 3 0 easy math: prove Hubble’s law from the RW metric
52. The Robertson-Walker metric in standard form is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

.

Note that r is the radial comoving coordinate chosen so that r is proportional to proper distance
in the transverse direction (i.e., perpendicular to the radial direction).

Prove Hubble’s law in general form from the Robertson-Walker metric: i.e., prove

vR = HDP ,

where vR = ḊP is the recession velocity, H = ȧ/a is the Hubble parameter, and DP is proper
(radial) distance. Note proper distance is distance that can be measured at one instant in
cosmic time using a ruler: i.e., with dt = 0, it is

DP =

∫

√

−ds2 .
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The general form of Hubble’s law is an exact result, but alas containing two quantities that
are not direct observables, vR and DP, except asymptotically as z → 0 or, in other words, in
the limit where the 1st-order-in-small-z formulae can be treated as exact. The observational
Hubble’s law is

vred = H0DP,1st ,

where vred = zc is redshift velocity (a direct observable) and DP,1st is proper distance to 1st
order in small z as measured from luminosity distance or angular diameter distance (which are
direct observables). The observational Hubble’s law is very plausible a priori, but a formal proof
is left to a later problem.

004 qfull 00500 1 3 0 easy math: cosmological time dilation and cosmological redshift
53. The Robertson-Walker metric in standard form is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

.

Note that r is the radial comoving coordinate chosen so that r is proportional to proper distance
in the transverse direction (i.e., perpendicular to the radial direction).

NOTE: There are parts a,b,c,d. The parts can be done independently, so don’t stop if
you can’t do one.

a) For a lightlike interval ds2 = 0 for a light source at comoving coordinate r distant from an
observer, prove that

∫ r

0

dr′√
1 − kr′2

= f(r) = F (t0) − F (t) =

∫ t0

t

c dt′

a(t′)
,

where f(r) is just r integral and F (t) is the antiderivative (or indefinite integral) of c/a(t).
The right-hand side integral is the conformal time for light to travel from the light source
at comoving coordinate r to the observer. What does the proven result imply about the
conformal time in this case?

b) For light signals coming from comoving coordinate r to the observer, prove with few words
the cosmological time-dilation effect (CL-16,19):

dt0
a0

=
dt

a(t)
or

dt0
dt

=
a0

a(t)
,

where t is the cosmic time of emission, t0 is the cosmic time of observation (i.e., the cosmic
present), a0 = a(t0), dt is the differential time between two emitted light signals, and dt0
is the differential time between the corresponding two observed signals.

c) Prove without words the cosmological redshift formula 1 + z = a0/a(t). HINT: You
will have to use the part (b) answer to relate frequency/wavelength of emission to
frequency/wavelength of reception.

d) The cosmological redshift formula is a very useful connecting the direct observable
cosmological redshift z and the scaling up of the universe since a light signal was emitted
a0/a(t). Why can’t it be used to directly determining the function a(t)?

004 qfull 00610 1 3 0 easy math: Robertson-Walker metric and observables
54. The basic Λ-CDM model has its cosmic scale factor a(t) fully specified via the Friedmann

equation (FE) by the Hubble constantH0 and three density parameters: i.e., ΩR,0 (”radiation”),
Ωm,0 (”matter”), and ΩΛ (cosmological constant or constant dark energy). Obtaining the
parameters is a major observational goal. In principle, only 3 are independent, but observational
uncertainties make obtaining all 4 somewhat independently useful goal.



46 Chapt. 5 The Geometry of the Universe

If the FE model is not flat, the Friedmann equation (in its derivation from general relativity)
plus Robertson-Walker metric tells us that the physical scale of the FE models at cosmic present
t0 is given by

a0 =
c/H0

√

|Ω0 − 1|
=

c/H0
√

|Ωk,0|
=

(4.2827 . . .Gpc)/h70
√

|Ωk,0|
=

(13.968 . . .Gly)/h70
√

|Ωk,0|
,

where Ω0 is the sum of all density parameters, except Ωk,0, and h70 = H0/[70 (km/s)/Mpc] is
the reduced Hubble constant which must be 1 to within a few percent. If the FE model is flat,
there is no physical scale for the model and a0 can be chosen arbitrarily or set to dimensionless 1
in which case the comoving distances r have length units and are equal to the proper distances
of the cosmic present. In all cases with a0 set to a dimensioned physical scale, the proper
distance to an object at comoving distance r is

DP = a0

∫ r

0

dr√
1 − kr2

= a0f(r) ,

where r is comoving coordinate independent of time and k = 1 for hyperspherical space, k = 0
for Euclidean space (i.e., flat space in which case f(r) = r), and k = −1 for hyperbolical space.
The variable k is called the curvature (Li-24).

One way to test a FE model or fit it to observations is to plot some observable cosmic
distance measures DC for objects versus their cosmological redshifts z (which are the only easily
obtained direct observables) and then compare to the theoretical cosmic distance measure DC

plotted as a function of z. The two best known observable cosmic distance measures (other
than cosmological redshift z itself) are the luminosity distance DL and the angular diameter
distanceDA both of which have explicit dependence on z, but also depend on z via the comoving
coordinate r(z) whose z dependence is an observational constraint, not an intrinsic dependence.

NOTE: There are parts a,b,c,d. On exams, omit part d. Use minimal words. Some of the
parts can be done independently, and so not stop if you cannot do one.

a) Recall the Robertson-Walker metric in standard form is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

.

For a light signal traveling from a source at comoving coordinate r, time t, and cosmological
redshift z to the origin (i.e., us) at time t0 along a radial path, derive an equation from
the Robertson-Walker metric relating spatial integral f(r) to time integral χ(t) (which is
actually an alternative comoving coordinate though the symbol χ used by CL-11 may not
a standard for it). The left-hand side should depend only on parameters r and k and the
right-hand side only on t and t0. Do NOT use any words: just the expressions. HINT:
The interval is lightlike for a light signal: i.e., ds = 0.

b) Formal expressions for r, t, and lookback time tLB for a light signal are, respectively,

r = f−1 [χ(t)] = f−1 [χ(a)] = f−1

[

χ

(

a0

1 + z

)]

= f−1 [χ(z)] , t = t(a) = t

(

a0

1 + z

)

= t(z) ,

and
tLB = −∆t = −[t(a) − t0] ,

where we have used the cosmological redshift formula

1 + z =
a0

a(t)
.
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Note that f(r) = r and f−1(r) = r if curvature k = 0.
In order to obtain the proper distance DP = a0f(r) = a0χ(z) explicitly, from the

foregoing formulae, we need to specify an FE model. In general, only numerical results
can be obtained. However, the de-Sitter universe (with k general) allows explicit simple
formulae for some cosmological distance measures. For the de-Sitter universe,

a(t) = a0e
H0∆t ,

where in this case the Hubble constant H0 =
√

Λ/3 is time-independent and ∆t is the time
relative to cosmic present.

For the de-Sitter universe, determine in order the explicit formulae for ∆t(z), tLB(z),
χ(z), radial proper distance DP(z), and recession velocity vR(z).

What is odd about lookback time tLB as z → ∞ relative to the case of a cosmological
model with a point origin (AKA Big Bang singularity)?

c) What is the explicit expression for the deceleration parameter q0 = −ä0a0/ȧ
2
0 for the

de Sitter universe?

d) The formal expressions for the standard cosmological distance measures (expressed in
observational form if it exists and is distinct from theoretical forms and then in the
theoretical forms) are as follows:

Cosmological redshift: z =
λ0 − λ

λ
=

a0

a(t)
− 1

Lookback time: tLB = t0 − t(a) = −∆t

Comoving coordinate r: r = f−1 [χ(z)] = f−1 [χ(t)]

Comoving coordinate χ: χ(z) = χ(t) =

∫ t0

t

c dt′

a(t′)

Radial proper distance: DP = a0χ(z) = a0χ(t) = a0f(r)

Recessional velocity: vR = H0DP

Redshift velocity: vred = zc

Luminosity distance: DL =

√

L

4πf
= a0r(1 + z)

Angular diameter distance: DA =
Druler

θ
=

a0r

(1 + z)

Distance-duality relation:
DL

DA
= (1 + z)2 ,

where the distance-duality relation is also called the Etherington reciprocity relation.
Determine special case expressions (if they exist) for the cosmological distance

measures above as a functions of z for the de Sitter universe. Note that some were already
determined in part (b) and some already functions of z. What is odd about DA as z goes
to infinity in the case of k = 0?

004 qfull 00650 1 3 0 easy math: conformal time and cosmological redshift
55. The alternative comoving coordinate

χ =

∫ t0

t

c dt

a(t)

is also what is called conformal time.
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NOTE: There are parts a,b,c,d,f.

a) Starting from the scaled Friedmann equation form

(

ȧ

a

)2

= H2
0

(

∑

p

Ωp,0x
−p

)

(where x = a/a0) derive without words an integral formula for χ(x).

b) Now change the integral formula so that we have χ(z).

c) In what limit would χ(z) have an analytic formula?

d) Assuming there is only a single density component with p > 0, derive the exact solution
for χ(z).

e) Assuming there is only a single density component with p = 0, derive the exact solution
for χ(z).

f) Give the formula for radial proper distance DP with χ(z) expanded into the integral form.
Does DP depend on a0? Give the formula for a0r for all cases of k with χ(z) unexpanded.
Does a0r depend on a0?

004 qfull 00700 1 3 0 easy math: deceleration parameter
56. The theoretical cosmological distance measures to 2nd order in small cosmological redshift z

are conventionally written in terms of the Hubble constant H0 = ȧ0/a0 and the deceleration
parameter q0 = −ä0a0/ȧ

2
0 (which is unitless or rather has natural units). In fact in the 1970s,

cosmology was sometimes comically oversimplified as a search for two numbers: H0 and q0 (see
A.R. Sandage, 1970, Physics Today, 23, 34, Cosmology: A search for two numbers). Nowadays,
q0 has lost some of its glamor. It is now not regarded as a basic parameter of cosmological
models, but just one of the derived parameters and its peculiar definition just a historical
convention. The fact that the universal expansion is accelerating makes the deceleration
parameter negative which is an incongruity.

There are parts a,b.

a) Taylor expand a(t) in small ∆t = t− t0 to 2nd order and rewrite the coefficients in terms
of H0 and q0. The rewritten expansion should begin a(t) = a0[1 + . . ..

b) Recalling the cosmological redshift formaula 1 + z = a0/a, rewrite the formula from the
part (a) answer as an expansion for z to 2nd order small ∆t. HINT: You will need the
geometric series:

1

1 − x
=

∞
∑

ℓ=0

xℓ ,

which converges for |x| < 0 (Ar-279).

c) Now we need to invert the power series for z to find lookback time tLB = t0 − t = −∆t to
2nd order in small z. We will need the power series inversion cofficients. Given

∆y =
∞
∑

ℓ=1

aℓ∆x
ℓ and ∆x =

∞
∑

ℓ=1

bℓ∆y
ℓ ,

where the inversion coefficients bi run b1 = 1/a1, b2 = −a2/a
3
1, . . . (Ar-316–317).

d) The Friedmann acceleration equation can be used to get a useful expression for the
deceleration parameter q0. Behold:

ä

a
= −4πG

3

(

ρ+ 3
p

c2

)

+
Λ

3
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äa

ȧ2
H2 = −4πG

3

(

ρ+ 3
p

c2
+ ρΛ + 3

pΛ

c2

)

−qH2 = −4πG

3
[ρ(1 + 3w) + ρΛ(1 + 3wΛ))

q =
4πG

3H2
[ρ(1 + 3w) + ρΛ(1 + 3wΛ))

q =
1

2

1

ρcritical
[ρ(1 + 3w) + ρΛ(1 + 3wΛ))

q =
1

2
[ΩM(1 + 3w) + ΩΛ(1 + 3wΛ)]

q =
1

2
[ΩM − 2ΩΛ] =

ΩM

2
− ΩΛ with w = 0 and wΛ = −1 as per usual

q =
1

2
[0.3αM − 2 × (0.7αΛ)] =

1

2
[0.3αM − 1.4αΛ] = 0.15αM − 0.7αΛ ,

where αM = ΩM/0.3 (0.3 being a modern fiducial value) and αΛ = ΩΛ/0.7 (0.7 being a
modern fiducial value). Wit the modern fiducial values, one obtains a fidicial modern value
q0 = −0.55. Before 1998, people mostly thought ΩΛ = 0 which with ΩM = 0.3 (which was
what it seemed then as well as now) gives q0 = 0.15. However, some people then hoped
that ΩM = 1 which would give q0 = 1/2 which many thought was the great good value.
Why?

004 qfull 00710 1 3 0 easy math: small z expressions for the cosmological distance measures
57. To get the small cosmological redshift z formulae for cosmological distance measures one

expands a(t) around current time t0 to 2nd order in ∆t = t − t0, parameterizes the first
expansion coefficients with the Hubble constant H0 = ȧ0/a0 and the deceleration parameter
q0 = −ä0a0/ȧ

2
0, substitutes for a(t) with z (and thereby assuming t is the start time for a light

signal coming from z), and inverts the power series to get lookback time tLB to 2nd order in
small z:

tLB =
z

H0

[

1 −
(

1 +
1

2
q0

)

z + . . .

]

.

One then uses the tLB formula with the Robertson-Walker metric applied to the light signal to
get the comoving coordinate r to 2nd order in z:

r =
zc

a0H0

[

1 − 1

2
(1 + q0)z + . . .

]

.

There are parts a,b,c,d. The parts can be done be at least semi-independently, so don’t
stop necessarily if you can’t do a part.

a) Use the 2nd-order-in-z formulae given in the preamble to get the 2nd-order-in-z formulae
(simplified so that there is only one second order term appearing) and 1st-order-in-
z formulae (expressed just one term appearing) for the following standard cosmological
distance measures (expressed in observational form if it exists and then theoretical form),
except for expression for z itself included for completeness:

Cosmological redshift: z =
λ0 − λe

λe
=

a0

a(t)
− 1 1 + z =

a0

a(t)

Lookback time: tLB = t0 − t(a)

Comoving coordinate r: r = f−1

{

A

[

t0, t

(

a0

1 + z

)]}
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Proper distance: DP = a0f(r)

Recessional velocity: vR = H0DP

Redshift velocity: vred = zc

Luminosity distance: DL =

√

L

4πf
= a0r(1 + z)

Angular diameter distance: DA =
Druler

θ
=

a0r

(1 + z)
.

b) Under what conditions are the cosmological distances measures direct observables to 1st
and 2nd order given that one can measure z?

c) Prove that all the standard cosmological distance measures are the same to 1st order
in small z aside from constants. Show what they are in terms of quantity zc/H0,
where c/H0 = (13.968 . . . Gly)/h70 = (4.2827 . . . Gpc)/h70 is the Hubble length with
h70 = H0/[70 (km/s)/Mpc].

d) Prove the observational Hubble’s law:

vred = H0DP-1st ,

where DP-1st is proper distance to 1st order in small z as measured from luminosity
distance or angular diameter distance.

e) Given that |q0| <∼ 1, at what z values would one expect the standard cosmological distance
measures (with constants applied as needed to make them all all equal to 1st order in z)
to diverge by of order or less than 1 %, 10 %, 30 %, 50 %, and 100 %.
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Multiple-Choice Problems

Full-Answer Problems

005 qfull 00110 1 3 0 easy math: radiation-matter universe somewhat completely
58. The Friedmann equation for the radiation-matter universe (which applies to the observable

universe from cosmic time zero to of order cosmic time 10 Gyr) in general scaled form is

(

ẋ

x

)2

= Ω4,0x
−4 + Ω3,0x

−3

where x is the cosmic scale factor with x0 = 1 for cosmic present, τ = H0t is the scaled cosmic
time with t being cosmic time in standard time units and H0 being the Hubble constant, Ω4,0

is the radiation density parameter for cosmic present, and Ω3,0 is the matter density parameter
for cosmic present.

NOTE: There are parts a,b,c,d,e,f,g. On exams, do ONLY parts a,b,c. The parts a,b,c
can be done independently, and so don’t stop if you can’t do one.

a) Determine the radiation-matter equality scale factor xeq: i.e., the x value that makes the
radiation and matter mass-energy equal.

b) Defining y = x/xeq, rewrite the Friedmann equation into a nice integrable form dw =
f(y) dy (i.e., a special case scaled form), where w = τ/τsc is rescaled time and the form has
no constants. What is τsc in terms of the density parameters?

c) Solve the Friedmann equation form found in part (b) for w(y) with w(y = 0) = 0. You will
need the table integral

∫

y dy√
1 + y

=
2

3
(y − 2)

√

1 + y .

d) For w(y), write out the special cases w(y = 0) w(y) to 2nd order in small y, w(y = 1) (at
the radiation-matter equality) w(y = 2) (at 2 times the radition-matter equality) w(y = 3)
(at 3 times the radition-matter equality which is where the exact y(w) formula changes
form), and w(y >> 1) (the large y asymptotic limit).

d) Solve for the asymptotic limiting small w and large w forms of y(w).

f) Transform the limiting forms found in part (d) into the general scaled forms: i.e., into x(τ)
forms.

g) This a challenging part if you have some time. Yours truly has probably spent more
time than it is worth trying to find good analytic approximate for solutions x(τ) for cases
where no exact solution exists or the exact solution exists, but is too complex for easy
understanding. In fact, the V model solutions (Jeffery 2025) provide understandable exact
solutions which are analogues to the standard traditional, but non-exact, solutions for the

51
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Friedmann equation found by Alexander Alexandrovich Friedmann (1888–1925), Georges
Lemaitre (1894–1966), Willem de Sitter (1872–1934), and others long ago. There may be no
better way in general to understand those standard traditional, but non-exact, solutions
than using those V model solution analogues. However, in special cases, there may be.
One special case, is the radiaton-matter universe. In fact, an exact solution for y(w) exists
with two mathematically equivalent formulae that look rather different (Jeffery 2026). But
both formulae are too complex for easy understanding. However, a fairly accurate, easy-to-
understand interpolation formula does exist that agrees asymptotically with the symptotic
limiting small w and large w forms of y(w) found in part (d). See if you can find it. HINT:
The formula uses arctan[ysmall(w)] and it takes some playing around to find it.

005 qfull 00310 1 3 0 easy math: two-power-law models, two-inverse-power-law models
Extra keywords: This question needs reworking a bit

59. There are, in fact, some cases where there exist simple exact analytic solutions t(a) for the
Friedmann equation for a combination of two inverse-power-law dependences on the cosmic
scale factor a. In this problem, we investigate these solutions.

NOTE: There are parts a,b,c,d,e,f,g. Part groups d,e and f,g are independent, and so do
not stop if you cannot to one of those groups.

a) The Friedmann equation for a combination of two inverse-power-law dependences is

1

x

dx

dτ
= (bx−p + x−q)1/2

where x = a/a0, dτ =
√

Ωq,0H0 dt, and b = Ωp,0/Ωq,0. The Friedmann equation can be
rewritten in the form

xr dx

(b+ x)1/2
= dτ

and solved simply by integration by parts if r is integer greater than or equal to zero,
and p and q have allowd values. What must q equal as a function of r for this rewrite?
What must p equal as a function of r for this rewrite? What case of the above Friedmann
equation is important in actual cosmology and what r is needed in that case?

b) Solve the equation in part (a) for τ (with initial condition x = 0 when τ = 0) for one
integration-by-parts step. Note r stays general: i.e., r stays an integer greater than or
equal to zero. After the one integration-by-parts step, there is an integrated part and an
integral to do, and the if you knew what r was, you could in further steps get an explicit
solution without integrals.

c) Specialize the solution in part (b) for the case of early universe where radiation and matter
are the only significant mass-energy forms. Do the integration to get the explicit exact
solution τ(x).

d) The solution obtained in part (c) is the analytically exact solution. However, it has a
complex appearance and also it becomes numerically inaccurate as x → 0. Expand the
solution in small y = x/b to the first two nonzero terms.

e) The solution obtained in part (d) is the small x asymptotic solution to the radiation-
matter solution. From that obtain the pure radiation solution τ(a) that is asymptotic to
the radiation-matter solution. Also obtain the radiation solution a(τ). HINT: This is
easy.

f) Now expand the exact analytic solution obtained in part (c) in small b/x for the first four
leading terms in b/x. This is the asymptotic solution for large x.

g) From the part (f) solution obtain the pure matter solution τ(a) that is asymptotic to the
radiation-matter solution. with the optimum start time for x = 0 which is not τ = 0. Also
obtain the matter solution a(τ). HINT: This is easy.
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005 qfull 00480 1 3 0 easy math: exact age of the universe formula for the Lambda-CDM model
60. The exact solution t(a) in scaled parameters for matter-Λ universe (which is the Λ-CDM universe

not counting the comparatively brief radiation era) is

w = ln
(

z +
√

z2 + 1
)

,

where the scalings are

w =
3

2

√

ΩΛ,0H0t and z =

[

a/a0

(Ωm,0/ΩΛ,0)1/3

]3/2

,

where 0 indicates cosmic present, a0 is the cosmic present scale factor (conventionally set to
1), Ωm,0 is the cosmic present matter density parameter (fiducial value 0.3), ΩΛ,0 is the cosmic
present Λ density parameter or constant dark energy density parameter (fiducial value 0.7), and
H0 is the Hubble constant (fiducial value 70 (km/s)/Mpc).

NOTE: There are parts a,b,c,d,e,f. The parts (c) and (f) can be done independently of
part (a), but the other parts cannot.

a) Undo the scalings, replace Ωm,0 by (1−x), ΩΛ,0 by x, set a = a0, and scale time to τ using
τ = H0t for a simplified age of the universe formula. Simplify the formula as much as you
reasonably can.

b) Starting from the part (a) result, derive the Taylor expansion formula for τ to all orders
small x HINT: You will need the Taylor expansion

ln(1 + x) =
∞
∑

k=1

(−1)k+1x
k

k
.

The Taylor expansion formula for τ is remarkably simple.

c) Why might you want a small-x Taylor expansion even if you have the exact formula?

d) Write a pseudocode fragment to sum the Taylor expansion of part (b) to the Kth term.
Make it numerically accurate (by adding from smallest terms up) and efficient.

e) Derive the 2-term asymptotic formula for τ as x→ 1.

f) The exact formula for τ can be replaced by an interpolation formula accurate to within
3 % for all x ≤ 0.99 and also at x = 1:

τinterp = −1

3

[

ln(1 − x) +

2
∑

k=1

xk

k

]

+
2

3

[

2
∑

k=0

xk

2k + 1

]

.

Why in general might one want a simple interpolation formula to complement a complex
exact formula or procedure of evaluation?

005 qfull 00490 1 3 0 easy math: exact age of the universe formula for the Lambda-CDM model 2
61. The exact cosmic scale factor for the matter-Λ universe (which is the Λ-CDM universe not

counting the comparatively brief radiation era) is

a = a0

(

Ωm,0

ΩΛ,0

)1/3

sinh2/3

(

3

2

√

ΩΛ,0H0t

)

,

where 0 indicates cosmic present, a0 is the cosmic present scale factor (conventionally set to
1), Ωm,0 is the cosmic present matter density parameter (fiducial value 0.3), ΩΛ,0 is the cosmic
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present Λ or constant dark energy density parameter (fiducial value 0.7), and H0 is the Hubble
constant (fiducial value 70 (km/s)/Mpc).

There are parts a,b,c,d,e,f. The part groups (a,b,c), (d), and (e,f) can be done
independently. So don’t stop if you can’t start one of these part groups.

a) Derive the inverse formula w(z) in terms of

w =
3

2

√

ΩΛ,0H0t and z =

[

a/a0

(Ωm,0/ΩΛ,0)1/3

]3/2

given

arcsinh(x) = ln
(

x+
√

x2 + 1
)

.

b) Derive 1st-order-in-small-z formula for w(z). HINT: You will need to remember how to
Taylor expand.

c) Derive large-z-asymptotic formula for w(z).

d) Directly from the exact formula for a(t) (or by other means) derive the 1st-order-in-small-t
formula for a(t). What universe model does the resulting formula give?

e) Directly from the exact formula for a(t) (or by other means) derive the large-t-asymptotic
formula for a(t). What universe model does the resulting formula give?

f) From the part (e) result, determine the fiducial value of the asymptotic or Λ Hubble
parameter.

005 qfull 00630 1 3 0 easy math: Einstein universe, einstein universe

62. The Einstein universe (proposed by Einstein in 1917) was the first cosmological model derived
consistently from a physical theory (i.e., general relativity) and was the beginning of modern
cosmology. Einstein assumed the cosmological principle (i.e., a homogeneous, isotropic universe)
and represented the mass-energy by a pressureless perfect fluid where the density scaled as a−3.
In modern cosmology jargon, this kind of perfect fluid is called “matter” and approximates
ordinary baryonic matter and dark matter For cosmological purposes, matter has approximately
zero kinetic energy relative its local comoving frame.

Einstein believing in 1917 that the universe was one of stars (which seemed on average at
rest) and not galaxies wanted a static model, but found that impossible with his field equations
as originally formulated (O’Raifeartaigh et al. 2017). So he added the cosmological constant
term Λ to the field equations which was the simplest possible modification and had no significant
effect on smaller-than-cosmological-scale phenomena. The Einstein universe he obtained is a
finite, boundless, positively curved universe or hyperspherical universe. It is geometrically the
3-dimensional surface of the a 3-sphere (which is actually a 4-dimensional sphere in Euclidean
or flat space). The distance to return to the same point along a geodesic is 2πa0, where a0 is the
Gaussian curvature radius a hyperspherical universe. (CL-11–12). For considering the Einstein
universe, a0 is not the conventional dimensionless quantity but a physical proper distance with
units of length.

Einstein in 1931 abandoned the Einstein universe since observations showed an expanding
universe and because the Einstein universe had been shown to be unstable by Eddington in
1930 (O’Raifeartaigh et al. 2017 p. 36, 41).

Note that Einstein did not have the Friedmann equation and acceleration equation when
he derived the Einstein universe. He used a general relativity directly and followed a “rough
and winding road” (O’Raifeartaigh et al. 2017, p. 18).

In this problem, we investigate the Einstein universe. There are parts a,b,c,d,e,f,g,h. In
exam environments, do ONLY parts a,b,c,d.
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a) The Friedmann equation and acceleration equation in forms appropriate for solving for the
Einstein universe and investigating its stability are

H2 =

(

ẋ

x

)2

=
8πGρ

3
− kc2

a2
0x

2
+

Λ

3
=

8πGρ0

3

[

ΩMx
−3 + Ωkx

−2 + ΩΛ

]

and
ẍ

x
= −4πGρ

3
+

Λ

3
= −4πGρ0

3

[

ΩMx
−3 − 2ΩΛ

]

(Li-55 mutatis mutandis), where x = a/a0, a0 is the Gaussian curvature radius of the
Einstein universe (as aforesaid), ρ0 is the density of Einstein universe, k = 1 for a positive
curvature universe,

ΩM = 1 , Ωk = − kc2

a2
0(8πGρ0/3)

, and ΩΛ =
Λ

8πGρ0
.

Note we cannot use the Hubble parameterH in defining the density parameter Ωi quantities
since H = 0 for the Einstein universe.

The Einstein universe has x = 1, ẋ = 0, ẍ = 0 and ρ = ρ0. Given the Einstein-universe
values, determine formula for Λ from the first form of the acceleration equation and the
numerical value of ΩΛ from the second form.

b) Given the Einstein-universe values, determine the formula for a0 as function of ρ0 and then
the formula for a0 as a function of Λ. HINT: Start from the second form of the Friedmann
equation and recall the given formula for Ωk.

c) Given G = 6.67430(15) × 10−11 MKS, vacuum light speed c = 2.99792458 × 108 m/s,
ρ0 = 0.85 × 10−26 kg/m3 (which is suggest value of the critical density circa 2021), and
1 Gpc = (3.085677581 . . .) × 1025 m, calculate the Gaussian curvature radius a0 in units of
gigaparsecs (Gpc). You can use your phone for the calculations—but only for those.

d) Now write the Friedmann equation in the dimensionless form

dx

dτ
= ±

√

f(x) ,

where the dimensionless time τ is given by

τ = t

√

8πGρ0

3
.

Sketch a plot the radicand f(x) for x ≥ 0 going left from x = 1 to x = 0 and right from
x = 1 to x = ∞. Using the first two derivatives of f(x) as a function of x (not τ) prove
that the Einstein universe (i.e., the x = 1 case) is a unique static universe for x ≥ 0.

e) For the initial condition x1 greater/less than 1 at τ1 and the positive/negative case for
x′ = ±

√

f(x), describe the evolution of x with τ increasing and in particular what happens
if x → 0. Explain the evolutions and describe the stability of the Einstein universe to
perturbations in these cases. HINT: It might help to draw a figure of the evolutions.

f) For the initial condition x1 greater/less than 1 at τ1 and the negative/positive case for
x′ = ∓

√

f(x), describe the probable evolution of x with τ → ∞. Prove these evolutions
and describe the stability of the Einstein universe to perturbations in these cases. HINT:
The proof requires that you show that all orders of derivative of x are zero when x is
stationary. You will need to determine the x′′, x′′′, and x(4), notice some things about
these orders of derivative, and add some explanatory words. Also, it might help to draw a
figure of the evolutions.
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g) From parts (d) and (e), what is the stability of the Einstein universe to general
perturbations of a? Note a solution is unstable to general perturbations if it is unstable to
any kind of perturbations.

h) Given all the answers to the other parts, discuss how an Einstein universe filled with real
gas (including dark matter gas) and/or stars might evolve.

005 qfull 00710 1 3 0 easy math: crude asymptotic fit to the Lemaitre-Eddington universe
Extra keywords: Needs to be completed.

63. Lemâıtre (1925) gave a solution for the Friedmann equation which started from a small positive
perturbation ∆x0 in scaled cosmic scale factor from the Einstein universe (with scaled cosmic
scale factor x = 1 that initially and asymptotically grew exponentially, but with different e-
folding constants. The initial growth could be made as small as you like Lemâıtre himself lost
interest in this model, but Eddington favored it and it had a vogue up to 1935 (e.g., Bondi 1960,
p. 84–85, 117–121, 159, 175, 180). It is now called the Lemâıtre-Eddington universe (which is not
the Lemâıtre universe). Apparently, Eddington favored the Lemâıtre-Eddington universe since
was an expanding universe model (which agreed with observational expansion of the universe
discovered 1929), it could have a slow an initial growth phase as you liked (which thus allowed
one to avoid the age problem of circa 1930), and it avoided dealing with the primeval universe
that set the initial condition. Lemâıtre, however, wanted to deal with the primeval universe
and so came to favor his Lemâıtre universe with his primeval atom which can be called a cold
big bang theory.

Recall the scale Friedmann equation for the Einstein universe:

ẋ = ±
√

x−1 − 3

2
+

1

2
x2 ,

where the first term is the matter component, the second the positive curvature component,
and the third is the cosmological constant (i.e., Λ) component. Note the scaled time is τ .

NOTE: There are parts a,b.

a) Keeping only the leading term in large x of the Friedmann equation, solve for the the
positive case asymptotic solution for x = 1 + ∆x given the asymptotic initial condition
xa = 1 + ∆xa Note the asymptotic initial condition xa = 1 + ∆xa is not the true initial
condition x0 = 1 + ∆x0, but is the initial condition that allows the asymptotic solution to
track into the exact solution as τ → ∞. Given only what you now know, what is the best
estimate of xa?

b) Keeping only the two leading term in large x of the Friedmann equation for the positive
case, gives

ẋ =

√

1

2
x2 − 3

2
=

√

1

2
x

√

1 − 3

x2
.

Substitute for the 1/x2 from the solution obtained in part (a) to create a correction
term, expand the square root factor to 1st order for small correction term, and solve
the Friedmann equation for an improved asymptotic solution.

005 qfull 00950 1 3 0 easy math: The matter-positive-curvature universe
Extra keywords: Need to rewrite in scaled form throughout, but no time 2023nov26.

64. The Friedmann equation is

H2 =

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3

(Li-55). Let’s consider the matter-positive-curvature universe (i.e., a universe with ρ ∝ 1/a3,
k > 0, Λ = 0). The geometry of this universe is the surface of hypersphere (specifically a
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3-sphere) which is finite, but unbounded. Here, however, we are only interested in the solution
for cosmic scale factor a, not in the geometry.

There are parts a,b,c,d,e.

a) Rewrite the Friedmann the form ȧ = f(a) with Λ = 0, ρ = ρM(aM/a)
3. We define aM to

be the a value for the minimum density ρM that is allowed by the differential equation.
Determine the value for k in terms of the minimum density ρM. What is aM in the solution
a(t)?

b) Given that the Friedmann equation is of the form f ′ = ±
√

g(f) and that for small a we
must have the Einstein-de-Sitter universe behavior (a ∝ t2/3 assuming a(t = 0) = 0),
describe what the solution must look like qualitatively.

c) Rewrite the Friedmann equation in natural units:
√
k t→ t and a/aM → a.

d) An approximate simple analytic solution for the Friedmann equation (in natural units)
suggested by part (b) is

a = sin2/3

(

π

2

t

tM

)

,

where tM is the location of the maximum. This approximate solution is an interpolation
formula since it gives the right behavior at the endpoints and the maximum. But tM has
to be determined. What are natural guesses for tM? Now use a 1-step Euler method to
obtain a reasonable estimate of a good value for the approximate solution.

e) Actually, an exact analytic solution can be obtained to the differential equation in terms
of a new independent variable η. One needs a trick:

ȧ =
da

dη
η̇ =

da

dη

1

a
with requirement η̇ =

1

a
.

The trick gets rid of an a in a denominator, but in the way that clairvoyance says is the Tao.
Using the trick solve for a(η) using a table integral and with the constant of integration
chosen so that a(η = 0) = 0. Then find t(η). What the limits of η? Why can we write an
analytic formula for a(t)? but it has no analytic form
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Multiple-Choice Problems

006 qmult 00110 1 1 3 easy memory: logarithmic representation of specific intensity
65. The logarithmic representation of specific intensity satisfies equation:

a) IE = Iν = Iλ.
b) IE/E = Iν/ν = Iλ/λ.
c) EIE = νIν = λIλ.
d) IE = Iν = 1/Iλ.
e) IE = 1/Iν = 1/Iλ.

Full-Answer Problems

006 qfull 00110 1 3 0 easy math: nu,lambda,log representions: On exams, omit part d,e
66. Specific intensity and related quantities (e.g., energy density per unit wavelength) are

conventionally given in three representations: photon energy representation IE , frequency
representation Iν , and wavelength representation Iλ. These representations are related by
differential expression

IE dE = Iν dν = Iλ (−dλ) ,

where the minus sign is occasionally omitted if one knows what one means—which is that
a differential increase in photon energy/frequency corresponds to a differential decrease in
wavelength.

There are parts a,b,c,d,e. On exams, omit parts d,e and use mimimal words. Parts a,b,c
can done independently, and so do not stop if you can’t do a part.

a) As well as the three conventional representations, there is a logarithmic representation

EIE = νIν = λIλ

which has the same value whichever of E, ν, or λ is used as the independent variable.
Prove the logarithmic representation equality. HINT: You will have to use differentials of
the logarithm of the independent variables (e.g., d[ln(E)]) and make use of the de Broglie
relations E = hν = hc/λ.

b) Planck’s law (AKA the blackbody specific intensity spectrum) in the frequency
representation is

Bν =
2hv3

c2
1

ex − 1
, where x =

hν

kT
=

hc

kTλ
.

Derive the explicit energy representation BE , wavelength representation Bλ, and
logarithmic representation EBE = νBν = λBλ in all three of the E, ν and λ forms.

58
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c) Write the Planck’s law in the dimensionless frequency representation expression Bx dx and
derive for Bx dx the Rayleigh-Jeans law form (small x) and the Wien approximation form
(large x).

d) Suggest one or two reasons why people might want to use the logarithmic representation
for plots.

e) Derive the Rayleigh-Jeans law (small x, small E, small ν, large λ approximation) and the
Wien approximation (large x, large E, large ν, small λ approximation) for BE , Bν , and
Bλ HINT: This pretty easy albeit tedious.

006 qfull 00220 1 3 0 easy math: Debye function and blackbody radiation results

67. The total Debye function (i.e., the sum of the first and second Debye functions) is

Dz =

∫ ∞

0

xz

ex − 1
dx = z!ζ(z + 1) ,

(e.g., Wolfram Mathworld: Debye functions; Wikipedia: Debye function) where the factorial
function

z! =



































∫∞

0 xze−x dx = z(z − 1)! for z not a negative integer and also
z 6= 0 for the second form (Ar-543);

n! for integer n ≥ 0;
√
π for z = −1/2 (Ar-543,544);

(2z)!!

2(z+1/2)

√
π for half-integer z ≥ −1/2 with (−1)!! = 1;
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and Riemann zeta function (without anayltic continuation considered)

ζ(s) =


























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




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
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
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


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
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


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
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






















































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
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
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










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


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
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































∞
∑

ℓ=1

1

ℓs
in general;

ζ(1) =

∞
∑

ℓ=1

1

ℓ
= 1 +

1

2
+

1

3
+ . . . the divergent

harmonic series
(Ar-279);

ζ(2) =
π2

6
=

π2

2 · 3 = 1.644934066848226436472415166646 . . .

ζ(3) = 1.2020569031595942853997381615114 . . .

ζ(4) =
π4

90
=

π4

2 · 32 · 5 = 1.082323233711138191516003696541 . . .

ζ(5) = 1.036927755143369926331365486457 . . .

ζ(6) =
π6

945
=

π6

33 · 5 · 7 = 1.0173430619844491397145179297909 . . .

ζ(7) = 1.008349277381922826839797549849 . . .

ζ(8) =
π8

9450
=

π8

2 · 33 · 52 · 7 = 1.004077356197944339378685238508 . . .

ζ(9) = 1.002008392826082214417852769232 . . .

≈
k−1
∑

ℓ=1

1

ℓs
+

∫ ∞

k−1/2

1

xs
dx =

k−1
∑

ℓ=1

1

ℓs
+

1/(k − 1/2)s−1

s− 1
integral

approximation
for s > 1;

1 +
1

2s
2nd simplest

asymptotic form
as s→ ∞;

1 asymptotic form as
s→ ∞

(e.g., Wikipedia: Riemann zeta function; OEIS: Riemann zeta function).
There are parts a,b,c,d,e,f. On exams, do ONLY parts a,b,c. Parts a,b,c can be done

independently, so don’t stop if you can’t do one.

a) Prove Dz = z!ζ(z + 1).

b) Determine the general moment formula Mn (where n is the moment power) for the
distribution f(x) = Axz/(ex − 1), where A is the normalization constant which you must
determine too. Specialize for n = 0 (the normalization), n = 1 (the mean), and n = 2.
Determine the general formula for the variance σ2.

c) From the Planck’s law specific intensity,

Bν =
2hv3

c2
1

ex − 1
, where x =

hν

kT
=

hc

kTλ
,

show the total energy density of a blackbody radiation field is

ǫ = aRT
4 ,

where the radiation constant

aR =
8π5k4

15h3c3
= (7.56573325028000 . . .)×10−16 J/m3/K4 = 1 J/m3×

(

1

6029.61649612301 . . . K

)4
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and T = 6029.61649612301 is the temperature that gives 1 J/m3. The numerical values are
NOT required for the answer. HINT: Remember to change an isotropic specific intensity
into a density you must multiply by 4π/c.

d) Show that the mean photon energy of blackbody radiation field is

E =
ζ(4)

ζ(3)
(3kT ) = (2.70117803291906 . . .) × kT

= 2.327695131004933× 10−4 eV × T = 1 eV ×
(

T

4296.09525182222 . . . K

)

,

where k = (0.8617333262 . . .)× 104 eV/K. The numerical values are NOT required for the
answer.

e) Prove by induction that

z! =
(2z)!!

2(z+1/2)

√
π

for half-integer z ≥ −1/2 with (−1)!! = 1.

f) For s > 1 and k ≥ 2,

ζ(s) =
∞
∑

ℓ=1

1

ℓs
≈

k−1
∑

ℓ=1

1

ℓs
+

∫ ∞

k−1/2

1

xs
dx =

k−1
∑

ℓ=1

1

ℓs
+

1/(k − 1/2)s−1

s− 1
,

where the summation-to-integral approximation is just the reverse of the Riemann integral-
to-midpoint-summation rule which remarkably is more accurate than the trapezoid rule
(Wikipedia: Riemann sum: Midpoint rule). The series truncated at term k is always a
lower limit on the Riemann zeta function since all the terms are positive. Prove that the
integral approximation is always larger (except in the limit that s → ∞) than the term k
which means the integral approximation never underestimates the Riemann zeta function.
HINT: You will need to use L’Hôpital’s rule.

006 qfull 00240 1 3 0 easy math: radiation distribution function: complete for forget
68. In blackbody radiation distributions, the function

f(x) =
xz

ex − 1
where x = hν/(kT ) .

The power z is 2 for photon number, 3 for photon energy analyzed by frequency, 5 for photon
energy analyzed by wavelength, and 4 for photon energy analyzed by ln(ν) or ln(λ). In this
question, we will analyze this function generally, but leave its integration to a later question.

There are parts a,b.

a) Analyze f(x) in the limit of x → 0 for the qualitatively possibilities for z: z < 1, z = 1,
z ∈ (1, 2), z = 2, and z > 2. Find the limiting, non-constant form of the f(x) and
determine whether it is a stationary point, a minimum/maximum for the x range [0,∞],
or a singularity.

b)

006 qfull 00320 1 3 0 easy math: The cosmic evolution of the primordial photon gas/CMB.
69. The primordial photon gas (which is conventionly called the cosmic microwave background

(CMB) even before it redshifts into the microwave band) after recombination does not
signficantly interact with itself, matter, or anything again and photon number in any box
scaling with the expansion of the universe is conserved to excellent approximation.
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There are parts a,b,c,d. On exams, do ONLY parts a,b,c. Parts a,b,c can be done
independently, so don’t stop if you can’t do one.

a) Prove that the energy density of the CMB obeys

ǫ = ǫ0

(a0

a

)4

,

where 0 refers to a fiducial cosmic time which could be cosmic present and a is the cosmic
scale factor. Note we are not assuming the specific intensity has any particular distribution.

b) Planck’s law (AKA the blackbody specific intensity spectrum) in the frequency
representation is

Bν =
2hv3

c2
1

ex − 1
, where x =

hν

kT
=

hc

kTλ
.

Show that the CMB obeys this law at any general time t provided it obeys it at the fiducial
time t0 where a = a0 and temperature is T0. HINT: The photons in a frequency bin
dν = (a0/a) dν0 stay in that frequency bin as the universe evolves, and so obey the same
energy scaling as the overall CMB. Thus at general time t, we have

Iν dν =
(a0

a

)4

Bν0
dν0 ,

where we have assumed the specific intensity at the fiducial time obeys Planck’s law. The
proof requires showing that Iν dν = Bν dν using a temperature parameter T that obeys a
simple formula depending on the cosmic scale factor a. Why is this temperature parameter
T the actual temperature at general time t?

c) Given that the CMB specific intensity obeys Planck’s law, its energy density is

ǫ = aRT
4 ,

where aR is the radiation density constant (usually symbolized by a) and T is the
temperature. Using the part (b) answer find the energy density at general time t in terms of
the energy density ǫ0 at fiducial time t0. Is the result consistent with the part (a) answer?

d) It is quite possible to have a radiation field with a Planck’s law shape, but not size. Say
for example, say you have blackbody radiator sphere of radius R and you are a distance
r ≥ R from the sphere center. The emitted specific intensity beams all have Bν , and so the
shape of the spectrum at r obeys Planck’s law, but its size is smaller. The effect is called
geometrical dilution. Determine the geometrical dilution factor W (µ) (where radial cosine
µ = cos(θ)) from the integral for mean specfic intensity Jν at r

Jν =
1

4π

∫ θ

0

∫ 2π

0

Bν sin(θ′) dθ′ dφ = WBν .

HINT: Transform the θ integral to a µ integral and draw a diagram.

006 qfull 00410 1 3 0 easy math: recombination studied
70. Let’s consider the recombination of the cosmic radiation field: i.e., recombination.

There are parts a,b.

a) Consider the differential equation

dNe

dt
= −CN2

e + CNI(NH −Ne) .
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This is very simplified equation for recombination assuming a pure hydrogen gas with
number density NH and ionizing photon density NI: both we assume to be constant over
the short time scales. The Ne is the electron density which is also the hydrogen ion density
by charge conservation. The two C’s are rate coefficients which are equal by a detailed
balancing argument that yours truly is none too certain of. The products of the densities
arise since the reactions are fluxes of one kind of particle on density of another. Find the
steady-state solution in terms of X = Ne/NH and R = NI/NH and argue why it must be
asymptotically approached as time goes to infinity.

Actually, the idea is that the steady-state solution is really a quasistatic process: “a
thermodynamic process that happens slowly enough for the system to remain in internal
equilibrium.” We are crudely/vaguely attempting to understand recombination in this
question. But we don’t get too far.

b) Find the limiting forms of solution X for R → 0 (to 1st order in small R), R = 1, and
R → ∞ to first order in small 1/R). What is special about X(R = 1) from a number point
of view?

c) For the nonce, let’s define the recombination temperature of the cosmic radiation field by
R(T ) = 1. Let N be the photon density, we have

1 = R =
NI

NH
=

NI/N

NH/N
=

1

η
fI =

1

η

D
(2)
2 (x)

Dn
≈ 1

η

e−xx2

2ζ(3)
,

where we have approximated the second Debye function by leading term which is valid
for x >> 1 and where x = ER/(kT ) where E = 13.605693009(84) eV is the Rydberg
energy (i.e., the ionization energy of hydrogen) and T is the recombination temperature
that we are solving for. The baryon-to-photon ratio η = 6 × 10−10 for a fiducial value,
ζ(3) = 1.2020569031595942853997381615114 . . ., and k = 0.86173303× 10−4 eV.

Solve for x by iteration and then determine T . Remember a iteration formula tends
to converge/diverge when its slope is low/high relative to 1. You could write a small
computer program to do the solution. HINT: In a test mise en scène, just do the zeroth
order solution: i.e., no iteration.
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Multiple-Choice Problems

007 qmult 00210 1 1 3 easy memory: marginalization
71. The Bayesian analysis iteration formula for iteration ℓ is

P (Ti|Kℓ) =
P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)

∑

j P (Dℓ|TjKℓ−1)P (Tj |Kℓ−1)
,

where {Ti} is an exhaustive set of possible theories about some aspect of reality, Kℓ is
background knowledge after iteration ℓ, Dℓ is data acquired in iteration ℓ, P (Ti|Kℓ) is the
posterior probabiltity of theory Ti to your knowledge for iteration ℓ, P (Dℓ|TiKℓ−1) is the
probability of Dℓ given theory Ti and background knowledge Kℓ−1, and P (Ti|Kℓ−1) is the
prior probabiltity of theory Ti to your knowledge for iteration ℓ. That the iteration formula
exists in principle is vital since it proves that the ideal Bayesian analysis leads to true theories.
That the ideal Bayesian analysis can be approached in practice is also vital since that means
it is a useful path to true theories. In toy cases, one can actually do ideal Bayesian analysis.
But in toy cases, you know the true theory is included in the set of the set of possible theories
which is exhaustive by definition.

However, in practice, you usually only do iteraion 1 formally. Initial background knowledge
K0 implicitly contains vague Bayesian analysis iterations going back to vaguely negative infinity.
Also, you usually do not have and are not interested in having an exhaustive set of theories {Ti}.
You usually just have interest in a set of interesting theories {Ti}: i.e., a set of theories that
seem likely a priori. You usually just assign the theories equal priors following the principle of
indifference, unless you has some other guidance. Evaluating the denominator of the iteration
formula is useless in this practical Bayesian analysis, and so is seldom done explicitly. What
you do do is evaluate the Bayesian odds ratio for any two of theories to compare them. The
Bayesian odds ratio for theories Ti and Tj is

P (Ti|Kℓ)

P (Tj|Kℓ)
=
P (Dℓ|TiKℓ−1)

P (Dℓ|TjKℓ−1)

P (Ti|Kℓ−1)

P (Tj|Kℓ−1)
= kB

P (Ti|Kℓ−1)

P (Tj |Kℓ−1)
,

where

kB =
P (Dℓ|TiKℓ−1)

P (Dℓ|TjKℓ−1)

is the Bayesian k factor or Bayesian evidence. If you have made used the principle of indifference,
all you have is the Bayesian evidence to compare the theories by. But most theories have free
parameters. How are they accounted for? You expand P (Dℓ|TiKℓ−1) in the terms of the free
parameters: i.e.,

P (Dℓ|TiKℓ−1) =

∫

P (Dℓ|Ti(θ)Kℓ−1)ρ(θ) dθ ,

where θ stands symbollically for all free parameters, ρ(θ) is the probability density for all free
parameters, the integration is over all free parameter space, and P (Dℓ|Ti(θ)Kℓ−1) is, in fact,

64
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the likelihood or likelihood function. The hard part of Bayesian analysis is usually choosing
ρ(θ) which is really the hard prior to evaluate. Usually, you just assign a flat prior ρ(θ): i.e.,

ρ(θ) =







1

∆θrange
for θ in the range ∆θrange;

0 for θ not in the range ∆θrange.

The hard part is thus reduced to determining ∆θrange. Independent Bayesian analyses can find
very different Bayesian evidences depending on how the researchers choose ∆θrange. This is why
Bayesian evidence is usually not considered decisive if kB is of order a few or even of order 10.
If kB is order 100 or 1000, then that may be decisive depending on who is judging.

Note maximizing the likelihood gives you the best set of free parameters assuming a theory
is true. Using a theory with maximum likelihood parameters biases in favor of the theory in
Bayesian analysis since the theory is not assumed to be true or usually even more likely than
other interesting theories. In fact, eliminating the free parameters by the integration above
implements Occam’s razor: “Numquam ponenda est pluralitas sine necessitate” (“Plurality must
never be posited without necessity”). You eliminate unnecessary and misleading hypotheses
about the free parameters. This elimination process is called:

a) Occamization. b) dithering. c) marginalization. d) buffering.
e) obscuration.

Full Answer Problems

007 qfull 00100 1 3 0 easy math: dice problem

72. You are in Las Vegas, right? So you know dice (singular die). Let’s see if we can predict the
odds for a throw of two dice.

There are parts a,b.

a) Let’s start being general, but not too general. You have two identical dice. They each
have I faces with dot count running i = 1, 2, . . . , I. The probability of any face (i.e., any
face landing facing up) is Pi. What is the probability for a dice throw yielding faces i and
i? What is the probability for a throw yielding first face i and then face j where i 6= j.
What is the probability for a dice throw yielding faces i and j where i 6= j and you do not
distinguish the order or, in other words, you sum over the probabilities for the different
orders.

b) Let the sum of the face dots yielded by a throw be k = i+ j. What is the run of possible
k values (i.e., the ordered sequence of possible k values) and how many values are there?
Is there always a middle value? Why? What is the middle value and how many values are
above and below it?

c) Now what we really want to know is what is the probability Pk of the summation of face
dots being k = i + j: i.e., the probability distribution for a throw of two dice which is
our random variable. Determine the two summation formulae needed and the number of
terms in each summation. HINT The two formulae can be adjusted to look the same,
except for their limits. The real hard part is determining limits. Draw an outcome square
for the throw results with row index i and column index j. The squares to include in the
summation are on the diagonals with i+ j = k with k constant.

d) Specialize the Pk formulae to the case of equal face probability: i.e., all Pi = 1/I. Conflate
the two formulae into one with transformation k = k′ + (I + 1), and show that Pk′ is an
even function of k′, find the limits on k′, and find the maximum P ′

k value.
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e) Specialize the Pk and Pk′ formulae to the case of ordinary dice with I = 6 and Pi = 1/6.
Tabulate the probability distributions Pk and Pk′ for the random variables k and k′.

007 qfull 00120 1 3 0 easy math: multinomial probability distribution
73. The multinomial theorem (from which the multinomial probability distribution is derived) is

generated by the generating function (using that expression loosely)

FN = FN
1 =

(

I
∑

i=1

Pi

)N

=
∑

i,j,...

PiPj . . . ,

where N is the number of factors in a sequence of factors, F1 is the multinomial theorem for
sequences of length 1, I is the number of variables and the order of the multinomial theorem
(e.g., I = 2 for the binomial theorem), Pi is factor i (which for the multinomial probability
distribution becomes probability of event i), the sequence of factors PiPj . . . are the terms
in the multinomial expansion resulting from a straightforward branching multiplication before
collecting terms into multinomial terms,

∑

i,j,... is the sum over the sequences (i.e., uncollected

terms), and the total number of sequences is IN . Note that all possible sequences of factors Pi

must occur uniquely in the
∑

i,j,... since the branching pattern of all possibilities is exhaustive
and there can be no duplications since obviously the first factor in each sequence is different.

There are parts a,b.

a) There are, as aforesaid, IN sequences of factors. But what is the count of sequences for
each combination: i.e., for each set of sequences have the same sets of factors Pi without
distinguishing order. Such a count of sequences is called a multinomial coefficient. Note
that sequences differing by undistinguishable factors are the same sequence in the branching
multiplication that creates the whole set of sequences.

Let the multinomial coefficient for each combination be C(N, {ni}), where {ni} stands
for the set of factors Pi in the sequences. To be explicit, every distinct combination has
a unique set {ni} otherwise it would not be a distinct combination. Note

∑I
i=1 = N , of

course. Derive the formula for C(N, {ni}) in terms of N and {ni}. HINT: You will need
factorials. Also, note the odd fact that you have consider permutations of the same factor
Pi in a sequence even though these permutations just give the same sequence as it would
occur in actually creating the sequences by the branching multiplication.

b) The individual distinct sequences are usually not of interest. What one usually wants is
collect all the sequences corresponding to each unique combination since they all have the
same numerical value, and so in the probability distribution all have the same probability.
The collections are the multinomial terms for the multinomial theorem. Using the result
of part (a), derive the formula for a multinomial term

P̃ (N, {ni}) ,

and the formula for multinomial theorem itself in terms of multinomial terms. Just use
∑

{ni}
for the summation of the multinomial terms since there is no simple way in general

to explicitly order them in a summation.

c) If the factors Pi are identified as probabilities of events i, then we require

I
∑

i=1

Pi = 1 .

What is value of FN in this case and what does this value mean? What is the probability
of obtaining the combination of events {ni}?
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d) The multinomial term P̃ (N, {ni}) is the multinomial probability distribution itself. We
can easily obtain some ancillary formulae about the multinomial probability distribution.
For example, the mean number of events j for the multinomial probability distribution is

µj = 〈nj〉 =
∑

{ni}

njP̃ (N, {ni, Pi}) ,

where j is just a representative index. Derive the explicit formula for µj for the multinomial
probability distribution. HINT: The trick is treat the Pi as variables in the multinomial
theorem in both the forms

FN =
∑

{ni}

P̃ (N, {ni, Pi})

and

FN = FN
1 =

(

I
∑

i=1

Pi

)N

.

You then apply operator Pj(∂/∂Pj) to both of forms and afterward impose the constraint
that the constraint F1 =

∑

i Pi = 1.

e) The variance/covariance of a multinomial probability distribution is given by

σ2
jk = 〈(nj − µj)(nk − µk)〉 = 〈njnk〉 − µjµk .

Derive the explicit formula for σ2
jk for the multinomial probability distribution. Explain

the striking feature of covariance case (i.e., the case when j 6= k). HINT: The trick is used
in part (d) still works mutatis mutandis.

e) Specialize the results of parts (a), (b), and (c) of the binomial theorem: i.e., the case where
I = 2. For best understanding, let n1 = k and n2 = N − k, where k ∈ [0, N ] is a usual
parameter for specify all the sets {ni}.

007 qfull 00150 1 3 0 easy math: Poisson distribution
74. The Poisson (probability) distribution is

P =
µx

x!
e−µ ,

where µ is the mean of integer random variable x, σ =
√
µ, and there is no upper limit on x.

The Poisson distribution is appropriate for analyzing two kinds counting observations which
not completely distinct. The first kind of counting observation is where the events occur
randomly in time (or some similar variable), but there is a mean number of events per unit time
µ and the time of each event is zero or approximately that. In this case, the Poisson distribution
is exact if the time of an event is zero. An obvious example of this kind of observation is counting
the radioactive decays from a long-lived radioactive sample.

The second kind of counting observation is where the random variable x (the count of
events) obeys an extreme binomial distribution where p the probability of x on an individual
trial is very small (i.e., p << 1) and consequently µ << n, where n is the number of trials.
If you actually do know n and p, you could just use the binomial distribution itself, but the
Poisson distribution may be an adequate approximation. Note for the binomial distribution
µ = np and σ =

√

np(1 − p) ≈ √
np = sqrtµ.

In both cases, you may often just have one count x, and not know µ nor σ. However, you
can estimate µ ≈ x, and thus σ ≈ √

x and this is often done.
There are parts a,b.
NOTE: This question has MULTIPLE PAGES on an exam.
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a) Derive a cute formal general formula for the moments

〈xℓ〉 = e−µ
∞
∑

x=0

xℓµ
x

x!

of the Poisson distribution, where ℓ runs 0, 1, 2, . . . . Use the formula to solve moments
for ℓ = 0, 1, 2 and for the formulae for µ and σ. HINT: Operating with the operator
[µ(∂/∂µ)]ℓ is the trick.

b) The derivation of the Poisson distribution for the first kind of counting observation mention
in the preamble is straightforward. Say τ is the average rate of random events. The
probability of observing no events in time t (starting from time t = 0) obeys the differential
equation

dP (x = 0, t) = −P (x = 0, t)
dt

τ
,

where P (x = 0, t) is the probability of having no events to t and dt/τ is the differential
probability of an event in dt. The solution for P (x = 0, t) is clearly

P (x = 0, t) = e−t/τ .

The differential formula for x events in t is

dP (x, t) = e−t/τ
x
∏

i=1

dti
τ

,

where we assume the events are instantaneous. Simple integration of all dti gives the
Poisson distribution plus accounting for overcounting with events pass each other on the
time line. Complete the proof of the Poisson distribution. Give the explicit µ and σ
formulae for this case.

c) Prove the Poisson distribution by taking the limit of the binomial distribution

P (x, n, p) =
n!

x!(n− x)!
px(1 − p)n−x

where n → ∞, p → 0, np → µ (which is a finite nonzero value), and x is fixed. HINT:
You will need to expand (1 − p)n = (1 − µ/n)n in a binomial theorem expression.

007 qfull 00200 1 3 0 easy math: Bayes’ Theorem and Bayesian analysis
75. Bayes’ theorem in symmetric form is

P (AB) = P (A|B)P (B) = P (B|A)P (A) ,

where P is probability, A and B are events, P (A) is the probability of A, P (B) is the probability
of B, P (AB) is the probability of A and B, P (A|B) is the conditional probability of A given B,
and P (B|A) is the conditional probability of B given A. In unsymmetric form,

P (A|B) =
P (B|A)P (A)

P (B)
or equivalently P (B|A) =

P (A|B)P (B)

P (A)
.

Note that in the notation we are using, AB is not the product of A and B, but the union of A
and B: i.e., AB is A and B.

There are parts a,b.

a) Prove the expansion rule
P (AB) = P (A|B)P (B)
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and Bayes’ theorem from frequentist definition of probability. Frequentist definition states
given population of events N , the probability of sampling events with property A is
P (A) = NA/N where NA is the number of events in the population with property A.

Yours truly believes that probability only has meaning from the frequentist definition.
You can do a lot of probability formalim without the definition, but it seems to have
no meaning without the definition. Maybe yours truly is just ignorant. However, the
limitation to the frequentist definition isn’t really a limitation in yours truly view since
frequentist definition always applies even if you can’t can’t calculate the probabilities with
high accuracy from it. Thus, Bayesian analysis can be applied generally.

b) Yours truly is not going to give a general description of Bayesian analysis procedure here,
but just a description of an ideal procedure that concerns itself with the theories in order
to find the true one. Say we have a system, the exhaustive finite set of all theories of
nonzero probability {Ti} that apply to the system {Ti} and inital knowledge K0 about
the system (which includes the set of theories, of course). Given that the set of theories
is exhaustive, their probabilities to our knowledge (i.e., K0) is normalizable: i.e., we have
∑

i P (Ti|K0) = 1.

Now how is it possible to assign a probability to a theory Ti? Well if we know the theory
is true, P (Ti|K0) = 1 and if we know it is false, P (Ti|K0) = 0. What if you don’t know
whether Ti is true or false? Well there are procedures of assigning numerical probabilities
to theories based background knowledge. After all people are always assessing theories
as probable, very probable, improbable, or very improbable based on their background
knowledge. This assessment must be based on some fuzzy frequentist analysis of the features
that make up a theory. Now the procedure of assigning (numerical) probabilities doesn’t
have to be perfect—and probably rarely is in practice—but the better it is, the faster in
all probability the Bayesian analysis will converge to the true theory. One procedure is the
principle of indifference: just assign equal probabilies to the theories. By the principle of
indifference, if there are I theories, P (Ti|K0) = 1/I for all i.

In fact, the completely fuzzy assignments of probability only happens prior to the
first iteration of Bayesian analysis when our background knowledge is K0. The zeroth
probabilities P (Ti|K0) are our zeroth prior probabilities (AKA zeroth priors). After
completing Bayesian analysis iteration (ℓ − 1) we have posterior probabilities (AKA
posteriors) P (Ti|Kℓ−1) relative to the (ℓ−1)th iteration; they are the priors for the iteration
ℓ.

In iteration ℓ, we acquire new data Dℓ which gives us updated knowledge Kℓ =
DℓKℓ−1, where DℓKℓ−1 recall is a union, not a product. To get the posteriors for the
ℓth iteration, we apply Bayes’ theorem:

P (Ti|Kℓ) = P (Ti|DℓKℓ−1) =
P (Dℓ|TiKℓ−1)P (TiKℓ−1)

P (DℓKℓ−1)

=
P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)P (Kℓ−1)

P (Dℓ|Kℓ−1)P (Kℓ−1)
=
P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)

P (Dℓ|Kℓ−1)
.

Note that P (Kℓ−1) has canceled out, and so the result is valid no matter what the value
of P (Kℓ−1) though if we are doing the Bayesian analysis correctly it should be 1.

Now if we actually have data Dℓ, then P (Dℓ) = 1. But P (Dℓ) is not what is in the
denominator of the result. We have P (Dℓ|Kℓ−1) which the probability of getting data Dℓ

given that we know Kℓ−1 which recall includes the knowledge that the set {Ti} exists. We
can, in fact, expand P (Dℓ|Kℓ−1) in the set {Ti}:

P (Dℓ|Kℓ−1) =
∑

j

P (Dℓ|TjKℓ−1)P (Tj |Kℓ−1) ,
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where the summation is over all the set {Ti}. Now we have the Bayesian analysis iteration
formula

P (Ti|Kℓ) =
P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)

∑

j P (Dℓ|TjKℓ−1)P (Tj |Kℓ−1)
.

We note that P (Dℓ|Kℓ−1) is the weighted mean of the P (Dℓ|TjKℓ−1)’s where the
P (Tj |Kℓ−1)’s are the weights.

The last equation is in fact the probability update formula. Those theories Ti whose
ℓth posteriors are greater/lesser/equal relative to their (ℓ− 1)th priors gain/lose/conserve
credence.

We now assume that there is enough potential knowledge KL for a decisive
determination: i.e.,

P (Ti|KL) =

{

1 if Ti is true;
0 if Ti is false.

This means that the Bayesian analysis converges to truth as ℓ→ L. Note that convergence
happens no matter how imperfect our method of assigning probabilities is provided we keep
iterating until we reach KL where only one viable theory remains. However, the amount of
KL actually varies depending on which data sets Dℓ we acquire and how accurate are our
probability assignments for P (Ti|K0) and P (Dℓ|TiKℓ−1). Obviously, if we make really good
choices for the data sets Dℓ and for probability assignments, convergence should be fast. If
we make really poor choices, we may be iterate to a very large KL and all the probabilities
calculated in the iteration may be wildly in accurate except that we can calculate the
P (Ti|KL)’s accurately and end the iteration. In this extreme case, the Bayesian analysis
wasn’t very useful, except as a tactic to keep going. We just accumulated data until we
had exhausted the possibilities and arrived at truth.

There’s a relevant aphorism attributed to Ernest Rutherford (1871–1937): “If you need
statistics, you are doing the wrong experiment.” In fact, all aphorisms are true and false
(including this one). Howsoever, the point of Rutherford’s aphorism is that you choose
data acquisitions as decivively as possible to speed the Bayesian analysis iteration (in a
formal or informal sense) to completion.

The Bayesian analysis procedure described above is an ideal one which is probably very
seldom fully carried out. Much less ideal procedures are usually used—and for darn good
reasons. But it is important that the ideal procedure exists: a procedure which guarantees
the arrival at truth. We could not trust Bayesian analysis if there were no ideal procedure
to approach. If there were no ideal procedure to approach, Bayesian analysis might fail in
some cases no matter how well we did it.

Does the foregoing seem OK to you? If not, why not?

c) From the Bayesian analysis iteration formula given in part (b) prove that the P (Ti|Kℓ)’s are
normalized even if the the P (Ti|Kℓ−1)’s are not. Why does this normalization inevitably
happen?

d) What does it mean if all P (Ti|Kℓ) are zero in Bayesian iteration step?

e) What does it mean if P (Ti|Kℓ) = 1, but your set of theories {Ti} was not actually
exhaustive.

f) What does it mean if P (Ti|Kℓ) = 1 and your set of theories {Ti} was actually exhaustive.



Chapt. 9 The Density of the Universe and Dark Matter

Multiple-Choice Problems

Full-Answer Problems

009 qfull 00410 1 3 0 easy math: Virial theorem derivation
76. The virial theorem was first derived by Rudolf Clausius (1822–1888) in 1870 (before going off

to serve in the Franco-Prussian War) in the context of thermodynamics. Various versions of
the virial theorem have been derived since including one for quantum mechanics version was
later dervived. Here we are only interested in the classical mechanics version for a system of
interacting particles that have arrived at a static (or if you prefer steady-state) distribution
in sense of having a constant time-averaged spherical rotational inertia 〈I〉 which will usually
imply a constant time-average position and momentum distribution. The system, of course,
conserves total mechanical energy. Such a system is called a virialized system. The general
form of the virial theorem (for classical mechanics) is

〈K〉 = −1

2

∑

i

〈~ri · ~Fi〉 = −1

2
Υ ,

where averaging is over time, K is the total kinetic energy

K =
∑

i

1

2
miv

2
i ,

the sum is over all particles i, ~ri is the particle position vector relative to a general origin,
~vi = ~̇ri is particle velocity, mi is particle mass, ~Fi is the net force on a particle, and

Υ =
∑

i

〈~ri · ~Fi〉

is the standard definition of the virial or virial of Clausius (see Wikipedia: Virial theorem;
Clayton 1983, p. 134). The word “virial” does not seem to have any use other than in the
context of the virial theorem itself.

If the only internal forces act and, except for ideal collision forces (i.e., ones that obey
Newton’s 3rd law and act a point), they are derivable from a single inverse power-law potential
energy with power p that just depends on inter-particle separation, the virial theorem specializes
to the inverse-power-law-potential-energy form

〈K〉 = −p
2
〈V 〉 ,

where V is the total potential energy. One can drop the angle brackets for the virial theorem if
one knows what one means. If the one has the super-important case of the inverse-square law,
p = 1 and the virial theorem specialized to

〈K〉 = −1

2
〈V 〉 .

71
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There are parts a,b,c,d,e,f,g. The parts can all be done independently. So don’t stop if you
can’t do a part.

a) Why is the virial theorem of interest? This is a discussion question, and so there is no
single right answer, just useful or interesting ones.

b) Clairvoyance tells us that the derivation of the virial theorem starts from the spherical
rotational inertia formula

I =
∑

i

mir
2
i ,

where the position vectors are relative to the system origin and NOT from and
perpendicular to an axis as for the ordinary scalar rotational inertia (see Clayton 1983,
p. 134). If the system has relaxed to a time-average static state, then based on general
trends for relaxed statistical systems (which are formally reached at time infinity), we
expect

〈

İ
〉

= 0 and
〈

Ï
〉

= 0 .

As a first step in the derivation, take the 2nd derivative of I/2 and substitute using
~pi = mivi, Newton’s 2nd law, and the kinetic energy formula. Then take the time average
assuming relaxation to get the general virial theorem.

c) Assume the system has only internal forces, where Fji is the force of paricle j on particle
i. Use some relabeling trickery and Newton’s 3rd law to obtain

∑

i

~ri · ~Fi =
1

2

∑

ij

~rji · ~Fji ,

where ~rji = ~ri−~rj . Determine the contribution of ideal collisions to the sum in the equation
above. Note ideal collisions obey Newton’s 3rd law and happen at a single point.

d) Assume all the internal forces can be derived from the same inverse-power-law potential
energy dependent only on inter-particle separation: i.e.,

~Fji = −∂Vji

∂rji
r̂ji with Vji ∝

1

rp
ji

.

Prove the inverse-power-law-potential-energy virial theorem. What changes to the theorem
if ideal collisions are included in the system? Prove that the theorem holds if p = 0.

e) Derive the inverse-power-law-potential-energy virial theorem for the special case of gravity
(i.e., the gravity virial theorem).

f) Prove that the gravity virial theorem holds for 2-body system where the interaction is only
gravitation, one body has infinite mass M and the other finite mass m, and the orbit is
circular with radius r.

g) Generalize the inverse-power-law-potential-energy virial theorem to the case of multiple
inverse-power-law potential energies Vp. Can kinetic energy be zero in this case for nonzero
potential energies? HINT: Proof by inspection is OK.

009 qfull 00420 1 3 0 easy math: spherical symmetrical system potential energy
77. The general differential equation for gravitational potential energy and the special case for a

spherically symmetric system are, respectively,

dU = V dm and dU = −Gm(r)

r
dm ,
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where V is gravitational potential and m(r) is the enclosed mass to radius r. In this problem, we
investigate the potential energy of spherical symmetric systems with power-law density profiles.

There are parts a,b.

a) Given

ρ = ρR

( r

R

)p

, derive m(r) =
4πR3ρR

p+ 3

( r

R

)p+3

,

where R is the maximum radius and m(R) = M the total mass. Write out the total mass
formula M = m(R) explicitly. When will it equal the constant-density total mass formula?
Under what condition will m(r) diverge?

b) Now derive the formula for the total potential energy

U = −
(

p+ 3

2p+ 5

)

GM2

R
.

Under what condition will U diverge? HINT: Write dm in terms of dr.

c) How does f(p) = (p+ 3)/(2p+ 5) behave as a function of p?

d) Determine the special cases of f(p) for p with values −5/2, −9/4, −2, −1, 0, 1, 2, and ∞.

009 qfull 00430 1 3 0 easy math: astrophysical virial theorem
78. The (most common) astrophysical virial theorem formula is

σ2 =
GM

R
,

where σ is the dispersion (i.e., standard deviation) of line-of-sight velocities of a gravitationally-
bound, virialized (i.e., evolved to time-averaged steady state) astronomical system (most
commonly a galaxy cluster) relative to its center of mass within the virial radius, R is the
virial radius defined to be where σ(R) is a maximum, and M is the virial mass which is
just a characteristic mass for the astronomical system. Virial mass is a simple characteristic
mass for comparison between astronomical systems. If one wants a better determination of an
astronomical system’s mass, one must do a more elaborate calculation. The astrophyical virial
theorem can be written in the fiducial-value form for galaxy clusters

M =
Rσ2

G
= 2.3251× 1014M⊙ ×

(

R

1 Mpc

)(

σ

1000 km/s

)2

,

where the fiducial values have been chosen to be typical for galaxy clusters: diameters of order
2 to 10 Mpc and velocituy dispersions of order 1000 km/s.

Given the gravitational virial theorem and the power-law gravitational potential energy
formula (with power p),

T = −1

2
U and U = −

(

p+ 3

2p+ 5

)

GM2

R
,

derive the astrophysical virial theorem formula making reasonable assumptions as needed.
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Chapt. 14 Cosmic Present Galaxies as a Benchmark for Evolutionary Studies

Multiple-Choice Problems

023 qmult 00110 1 4 5 easy deducto-memory: specific intensity and surface brightness
79. “Let’s play Jeopardy! For $100, the answer is: It and surface brightness are the same physical

quantities though in some conventions surface brightness has an extra factor of 4π. The name
used just depends on context.”

What is , Alex?

a) radiant flux b) absolute magnitude c) apparent magnitude
d) mean intensity e) specific intensity

023 qmult 00330 1 1 4 easy memory: elliptical radius and circularized radius
80. Many galaxies seen on projection on the sky have approximately elliptical isophotes

characterized by semi-major axis a and semi-minor axis b which are approximated as having
the same ratio for all isophotes with ellipticity defined ǫ = 1 − b/a which is not eccentricity
e =

√

1 − (b/a)2. One definition of projected radius used for labeling isophotes and in
calculating surface brightness behavior is just elliptical radius R = a and the other is the:

a) circularized radius R = (ab). b) ellipticized radius R = (ab).
c) ellipticized radius R = (ab)1/2. d) circularized radius R = (ab)1/2.
e) ellipticized radius R = (ab)1/4.

023 qmult 00420 1 4 2 easy deducto-memory: the Sérsic profile specified
81. “Let’s play Jeopardy! For $100, the answer is:

Iλ = Iλ,0 exp
(

bx1/n
)

= Iλ,e exp
[

b(x1/n − 1)
]

,

where Iλ is the surface brightess as a function x, x = R/Re is the radius (elliptical or circularized
radius) in units of the effective radius Re, Iλ,0 = Iλ(x = R/Re = 0), Iλ,e = Iλ(x = R/Re = 1),
n is an index parameter typically in the range [1, 2.5] for star forming galaxies (SFGs) and in
the range [2.5, 10] for early type galaxies (ETGs), and b is a function of n (i.e., b = b(n)).

What is the , Alex?

a) de Vaucouleurs profile b) Sérsic profile
c) Navarro-Frenk-White profile (NFW profile) d) Burkert profile
e) Brownstein profile

Full-Answer Problems

78
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Multiple-Choice Problems

024 qmult 00180 1 1 3 easy memory: Milk Way stellar mass and virial mass
82. In solar mass units, the Milky Way stellar mass (i.e., the mass in stars M∗) is ∼

M⊙ and its virial mass (Mvir: i.e., fiducial total mass which is mostly dark matter)
is ∼ M⊙. At least these values were standard circa 2023. However, a downward
revision may have become accepted just about that year.

a) 1012; 1010 b) 5 × 1010; 5 × 1010 c) 5 × 1010; 1012 d) 109; 5 × 1010

e) 109; 5 × 108

024 qmult 00230 1 4 2 easy deducto-memory: exponential profile for face-on spiral galaxies
83. “Let’s play Jeopardy! For $100, the answer is:

Iλ = Iλ,0e
−(R/Rd) ,

where Iλ is the surface brightness, Iλ,0 is the central surface brightness, R is the radius
coordinate, and Rd disk scale length (and not the effective or half-light radius).”

What is the standard surface brightness profile, Alex?

a) edge-on spiral disc b) face-on spiral disc c) elliptical d) dwarf irregular
e) general Sérsic

024 qmult 00400 1 1 3 easy memory: an inclined circle is an ellipse
84. An inclined circle (i.e., not seen face-on; inclination angle > 0◦) is in projection a/an:

a) square b) oval c) ellipse d) line segment e) invisible

024 qmult 00600 1 1 4 easy memory: two main classes of galaxy bulges
85. There are two main classes of galaxy bulges:

a) classical bulges and non-classical bulges b) big bulges and disc-like bulges
c) little bulges and disc-like bulges d) classical bulges and disc-like bulges
e) little bulges and big bulges

024 qmult 00620 1 4 2 easy deducto-memory: Schmidt-Kennicutt law
86. “Let’s play Jeopardy! For $100, the answer is:

ΣSFR = B

(

Σgas

1M⊙/pc2

)α

M⊙/yr/kpc2 ,

where SFR means star formation rate, ΣSFR is surface star formation rate in units of
M⊙/yr/kpc2, Σgas is gas surface density in units M⊙/pc2 (the denominator below Σgas makes
the overall factor dimensionless), B ≈ 10−4 is an empirical constant, and α = 1.40(15) is another
empirical constant with some theoretical understanding.

What is the , Alex?

79



80 Chapt. 15 Cosmic Present Star-Forming Galaxies (SFGs)

a) Press-Kennicutt law b) Schmidt-Kennicutt law c) Press-Schechter law
d) Martin-Schmidt law e) Martin-Schmidt-Kennicutt law

Full-Answer Problems

024 qfull 00100 1 3 0 easy math: inclined circle analyzed: On exams, do all parts with minimal
words.

87. An inclined circle (ideal disc galaxy is) is seen in projection as an ellipse.
NOTE: There are parts a,b. On exams, do all parts with minimal words.

a) The equation for a circle is written elaborately is

(x

a

)2

+
(y

a

)2

= 1 ,

where a is the radius. Find the explicit formula for y. The circle is rotated on its x-axis to
inclination angle i where inclination angle is measured from the direction to the observer
to a normal to the circle. What is the projected height of every y point (i.e., what is
the inclined yi)? Prove the inclined circle (i.e., projected circle) is an ellipse and find its
semi-minor axis b.

b) The area of an ellipse is A = πab and the circularized radius an ellipse created by inclination
is defined by

Ri =
√
ab = a

√

cos(i) .

Prove that the differential area of an inclined circle is

dA = 2πRi dRi .

024 qfull 01030 1 3 0 easy math: galaxy potential energy and escape velocity: On exams, do ONLY
parts a,b,c,d.

88. In this question, we consider escape velocities from galaxies. The path is long if one does not
gloss over tricky points like Ci-86–87.

NOTE: There are parts a,b,c,d,e,f. On exams, do ONLY parts a,b,c,d and answer with
minimal words.

a) From introductory physics, the change mechanical energy of particle is

∆E = ∆KE + ∆PE = Wnoncon ,

where KE is kinetic energy, PE is potential energy, and Wnoncon work done by
nonconservative forces. If there are no nonconservative forces, mechanical energy is
conserved and

1) ∆E = 0 2) ∆KE = −∆PE 3) E = KE + PE is constant.

The escape velocity from some point (with no nonconservative forces) can be found from
some point noting that KE = 0 at infinity where the gravitational potential Φ (which is
potential energy PE per unit mass) is defined to be zero. Find the general formula for
escape velocity vesc given that kinetic energy is initially KE and gravitational potential is
initially Φ.
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b) Assume a spherically symmetric mass distribution for a galaxy which seems to be often
approximately true since dark matter halos are often quite spherically symmetric it seems
though not always. Let the density profile be a power law

ρ = ρs

(

r

rs

)−α

= ρsx
−α ,

where ρs is a scale density, rs is a scale radius, x = r/rs is a dimensionless radius, and α is
the power. Determine the formula for interior mass M(r) (i.e., mass interior to radius r)
in terms of a scale Ms and x assuming α < 3.

c) Why can’t a galaxy have pure power law density profile from r = 0 to r = ∞, in fact?
HINT: Consider the divergence behavior of the interior mass formula.

d) There is a tricky point in considering potential change. When integrating up the potential
energy of a gravitating sphere, we use

PE(r) =

∫ r

0

[−GM(r)

r

]

4πr2ρ dr ,

where M(r) is the interior mass and Φ = −GM(r)/r is the gravitational potential r. This
is the right thing to do, but −GM(r)/r is not the potential at r in the fully assembled
gravitating sphere. Why not? Show what the potential at r is (relative to infinity which
is zero) for a gravitating sphere of total radius R. HINT: Getting the signs right for
potential is tricky. You have to do the sign on every step right—or chance of being right is
only 50 %.

e) Making use of the part (b) and the part (d) answers find the potential from x ≤ X for
α < 3. Show explicitly the cases for 1) α 6= 2, 2) α ∈ (2, 3) and x << X , 3) α < 2 and nd
x << X , and 4) α = 2.

f) From the part (e) answer from the escape velocity formula for the case of α ∈ (2, 3) and
x << X in terms of the circular velocity for scaled radius x = 1. What is the escape
velocity if circular velocity is 200 km/s and α = 9/8? Why are galactic outflows hard to
understand if α gets very close to 2? Having α close to 2 is what is implied by the flat
velocity curve ranges of observed disc galaxies.

024 qfull 01050 1 3 0 easy math: metallicity saturation in galaxies: On exams, do ONLY parts
a,b,d,e.
89. The metallicity of galaxies does not generally increase with cosmic time, but reaches an

(approximate) plateau due to gas inflow from the intergalactic/circumgalactic medium (which
if intergalactic is of nearly primordial gas: primordial cosmic gas fiducial mass fractions
X = 0.75 H, Y = 0.25 He, Z = 0.001 metallicity which is overwhelmingly deuterium counted
as a metal: Wikipedia: Big Bang: Abundance of primordial elements) and the outflow of
metal enriched gas from stellar evolution (i.e., stellar winds and supernovae) back to the
intergalactic/circumgalactic medium or into compact astro-bodies (compact remnants, long-
lived small mass stars, brown dwarts, planets, and smaller astro-bodies). The plateau phase
will probably not last forever since cosmological constant acceleration isolates all bound systems
not participating in the mean expansion of the universe from fresh primordial gas. So a slow
metallicity increase should occur despite gas inflow/outflows as the overall isolated bound system
gas gradually enriches. However, this enrichment seems very slow since cosmic time ∼ 5 Gyr
after the Big Bang (Weinberg 2016, arXiv:1604.07434) and will gradually turn off with the end
of the stelliferous era (theoretically cosmic time ∼ 0.15–105 Gyr: Wikipedia: Graphical timeline
of the Stelliferous Era; Wikipedia: Future of an expanding universe: The Stelliferous Era). In
this question, will do a simple modeling of the plateauing of galaxy metallicity.
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NOTE: There are parts a,b,c,d,e,f. On exams, do ONLY parts a,b,d,e and answer using
minimal words.

a) Write a (1st order ordinary autonomous) differential equation for galaxy gas density ρ
(assumed to be uniform) in terms of a constant inflow rate of gas F = (dρ/dt)inflow (not
necessarily primordial gas) and an outflow rate −κρ = −ρ/τ , where κ is the rate constant
and τ = 1/κ is the time constant. The outflow rate includes both outflow of gas back to
the intergalactic/circumgalactic medium and into compact objects.

b) Using an integrating factor solve the differential equation of part (a) with ρ0 as the initial
density at time zero (i.e., t = 0). Give the 1st-order-in-small-t solution and the asymptotic
solution as t → ∞ (which is also the constant solution of the differential equation). What
name can be given to the time constant τ?

c) Why do we get an asymptotic solution in part (b)?

d) Write a (1st order ordinary autonomous) differential equation for galaxy gas metal density
Zρ (assumed to be uniform) in terms of a constant inflow rate of metal-only gas ZinF =
Zin(dρ/dt)inflow, where Zin ∈ [0, 1]. Let the outflow rate be the same as in part (b): i.e.,
−κρ = −ρ/τ , where κ is the rate constant and τ = 1/κ is the time constant. There is also
a rate constant γ for the creation metal-only gas in the galaxy from zero-metallicity gas
with density (1 − Z)ρ.

e) The differential equation in part (c) can be solved for Z for general time t using the solution
of part (b), but it seems a bit tedious to get this solution. However, finding the asymptotic
solution Zasy as t → ∞ is easy. Find it. Check that Zasy is dimensionally correct and show
that it satisfies Zasy ∈ [0, 1] .

f) We can make a crude estimate of current cosmic Zasy. First, let

κ =
(dρ/dt)outflow

ρ
=

3 M⊙/yr

ρ
,

where 3 M⊙/yr is roughly the rate of star formation for a galaxy like the Milky Way
(Ci-383) and we assume this is of order the overall gas loss rate due gas outflow back to
the intergalactic/circumgalactic medium and locking up of gas in compact astro-bodies.
Second, let

γ =
[d(Zρ)/dt]metal creation

ρ
=

[5 SNe/(100 yr)] × (1 M⊙ metals/per SNe)

ρ
,

where 5 SNe/(100 yr) is roughly the rate of supernovae for a galaxy like the Milky Way
(Wikipedia: Supernova: Milky Way candidates) and we assume that this is of order the
metal creation given that each supernovae yields of order 1 M⊙ of metals. Let Zin = 0.001
the fiducial primordial cosmic metallicity. Calculate Zasy with these values and discuss
whether the result is reasonable or not.
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Multiple-Choice Problems

025 qmult 00130 1 1 3 easy memory: virial mass range for ellipticals
90. The range of virial mass (which is the fiducial total mass of galaxies determined in a tricky way)

for elliptical galaxies (e.g., dwarf ellipticals (dEs), ellipticals (Es), and bright cluster ellipticals
(BCEs)) is

a) ∼ 105–106M⊙. b) ∼ 105–107M⊙. c) ∼ 108–1013M⊙ or more.
d) ∼ 105–1015M⊙. e) ∼ 105–1020M⊙.

025 qmult 00230 1 1 2 easy memory: galaxy ellipticity for ellipticals
91. More so than for disk galaxies, the shape and orientation of isophotes is dependent on

projected radius R (which could be the circularized radius) and position angle φ (measured
counterclockwise from north on the sky) and therefore there is an ellipticity profile ǫ(R, φ) (Ci-
126–127). However, since a fiducial or characteristic ellipticity is useful is the galaxy ellipticity
(Ci–127) defined by:

a) ǫ(Rd). b) ǫ(Re). c) ǫ(Rf). d) ǫ(Rg). e) ǫ(Rh).

025 qmult 00330 1 1 5 easy memory: ETG Sersic indices
92. When a Sérsic profile is fitted to the CENTRAL surface brightness of ETGs, the Sérsic index

range is ∼ 2 to ∼ 10. However, when a single Sérsic profile is fitted to a galaxy the dividing
line between later type galaxy Sérsic indices and ETG Sérsic indices is taken to be:

a) 1. b) 1.25. c) 1.3. d) 1.5. e) 2.5.

025 qmult 00430 1 1 1 easy memory: Hubble sequence E number
93. The Hubble sequence E number (E in range [0, 7]) is nowadays determined by

E = 10 × ǫ = 10 ×
(

1 − b

a

)

,

where ǫ is the:

a) ellipticity. b) eccentricity. c) effectiveness. d) e-folding. e) error.

025 qmult 00510 1 4 5 easy deducto-memory: LOSVD defined
94. “Let’s play Jeopardy! For $100, the answer is: It is the distribution of velocity measured by

the Doppler shift of some line along a line of sight (LOS) through an ETG using integral field
spectroscopy (whereby a spectrum is obtained at each spatial pixel in the field of view).”

What is a LOS , Alex?

a) Doppler distribution b) velocity disperson c) Doppler dispersion
d) integral dispersion e) velocity distribution

025 qmult 00630 1 1 3 easy memory: fast and slow rotators dividing line
95. The simple measure of ordered to random motions in ETGs is the ratio V/σ. The symbol V/σ

seems also to be the name of the measure (Ci-132). Now V and σ have various definitions, but
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V is often the maximum line-of-slight (los) velocity vmax and σ is the central velocity dispersion
defined by the surface brightness weighted los velocity dispersion formula

σ2
0 =

∫

Rap
σlos(R)2I(R) d2R
∫

Rap
I(R) d2R

,

where Rap stands for some aperature radius that is used for the determination (Ci-133). For
low-redshift galaxies, R is usually in the range 0.1Re to Re. When Re is used, one denotes σ0

by σe. For some darn good reason, the dividing line between fast rotators (above) and slow
rotators (below) on a V/σ versus ǫe plot is:

a) ∼ (1/5)ǫe. b) ∼ (1/5)
√
ǫe. c) ∼ (1/3)

√
ǫe. d) ∼ (1/3)ǫe. e) ǫe.

Full-Answer Problems

025 qfull 01000 1 3 0 easy math: proof of the virial theorem: On exams, do all parts.
96. The virial theorem is one most basic theorems of statistical mechanics taking the term statistical

mechanics to include stellar systems formalism (which is about point-mass systems interacting
by gravity) and other systems not ordinarily considered in conventional statistical mechanics.
Here we consider only the classical virial theorem and not the quantum mechanical version. The
general (non-quantum mechanical) virial theorem for a system of interacting particles isolated
from all other forces.

〈K〉 = −1

2

〈

∑

i

~Fi · ~ri
〉

,

where the average is over time and the average is constant in time (i.e., the system is stationary),

K is kinetic energy, the sum is over all particles in the system, ~Fi is the net force on particle i,
and ~ri position vector to particle i from a defined origin. The right-hand side of the equation
is the virial itself (Wikipedia: Virial theorem).

When all the forces in the system are interparticle forces derivable from potentials that
depend only powers ℓ of interparticle of distances, the virial theorem specializes to

〈K〉 =
1

2

∑

ℓ

ℓ 〈Uℓ〉 ,

where sum is over all the potential energies.
NOTE: There are parts a,b,c,d. All the parts can be done independently. So do not stop

if you cannot do any part. On exams, do all parts with minimal words.

a) Prove the general virial theorem starting from the scalar moment of inertia

I =
∑

i

mi~ri · ~ri .

HINT: Take the first and second time derivatives of I and making use of the definitions
of momentum and kinetic energy and Newton’s 2nd law as needed.

b) Prove the special case virial theorem specified in the preamble: i.e., the important special
case of the virial theorem where all the forces are derivable from potentials depending on
power-law interparticle forces: i.e., the force of particle j on particle i is given by

~Fji = −
∑

ℓ

∇Uℓ,jir
ℓ
ji = −

∑

ℓ

ℓUℓ,jir
ℓ−1
ji r̂ji .
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HINT: Just start from
∑

i
~Fi · ~ri and march forward. You will need to do some trickery

with indices.

c) Why must a stationary system have negative energy? What does this imply about a
system to which the virial theorem applies: i.e., to a virialized system? What does the last
implication imply about the kinds of potential energies of the special case virial theorem
and what does it imply if there is only one kind of potential energy?

d) Specialize the special case virial theorem to the case where only the inverse-square force
and linear force are present. This case actually the case for the large-scale structure of the
universe where there is only the gravitation force and the cosmological constant force. Of
course, this version of the virial theorem cannot apply to the universe as whole since one
needs general relativistic physics for that.

025 qfull 01230 1 3 0 easy math: mass determination using the virial theorem: On exams do all
parts.
97. The crudest way of determining a galaxy mass is by a simple use of the virial theorem.

NOTE: There are parts a,b,c,d. On exams, do all parts with minimal words.

a) What is called the virial velocity dispersion σvir is defined by

K =
1

2
Mvirσ

2
vir ,

where K is the total kinetic energy and Mvir is the mass out to some cutoff radius rcutoff .
If you actually knew everything about self-gravitating system that was virialized within
the shell defined by the cutoff radius rcutoff , then you would know K and Mvir. What is
the formula for σvir in this case?

b) What is called the gravitational radius rg (which is not the cutoff radius rcutoff) is defined
by

U = −GM
2
vir

rg
,

where U is total gravitational potential energy out to the cutoff radius. The gravitational
radius is just a characteristic radius since it is not the radius of anything in general. If you
actually knew everything about self-gravitating system that was virialized within the shell
defined by the cutoff radius rcutoff , then you would know U and Mvir. What is the formula
for rg in this case?

c) Since for actual galaxies, we do not know a priori Mvir, K, or U , we do not know σvir and
rg exactly and they are actually what we want in order to estimate Mvir. However, we
can guess that σvir and rg will be of order, respectively, the central velocity dispersion σ0

(however specified exactly) and the effective radius Re, but maybe only to within a factor
of 10 for each one. So we parameterize

σ2
0 = aσ2

vir and Re = brg ,

where a and b are fudge factors. Use the virial theorem for gravity to solve for Mvir

eliminating σvir and rg via the fudge factors and then eliminate the fudge factors via the
virial coefficient kvir = 1/(ab).

d) In fact, kvir can only be known accurately from detailed modeling. However, the fiducial
value is 5, but deviations from this can be large. Write the virial mass formula in terms of
fiducial values kvir = 5, Re = 1 kpc = (3.08567758 . . .) × 1019 m, σ0 = 200 km/s, and solar
masses M⊙ = 1.98847×1030 kg. Note the gravitational constantG = 6.67430×10−11 MKS.

In fact, the fiducial formula with kvir actually set to 5 is called the dynamical mass
Mdyn (Ci-147). When resolved kinematic information is not available for a galaxy, the virial
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mass from the formula (with kvir set to 5 or some other good value) given in the answer
to this question may be the best estimate of total mass one can get from observations of
stellar light.
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Multiple-Choice Problems

026 qmult 00210 1 1 3 easy memory: groups and clusters differentiated
98. There is no sharp distinction, in fact, between groups and clusters and one can regard groups

as just very poor clusters. However, by Ci-165,167,174’s account, fiducially groups have 3 to x
non-dwarf galaxies and clusters have x to a few thousand non-dwarf galaxies, and groups have
virial mass <∼ yM⊙ and clusters have virial mass y to 1015M⊙. Now x and y are, respectively:

a) 10 and 1010. b) 20 and 1011. c) 50 and 1014. d) 500 and 3 × 1014.
e) 1000 and 3 × 1014.

026 qmult 00320 1 1 5 easy memory: local group non-dwarf galaxies
99. The Local Group has only 3 non-dwarf galaxies (all spiral galaxies): the Milky Way, the

Andromeda Galaxy (M31), and the:

a) Aries Galaxy (M33). b) Boötes Galaxy (M33). c) Monoceros Galaxy (M33).
d) Pegasus Galaxy (M33). e) Triangulum Galaxy (M33).

026 qmult 00620 1 1 4 easy memory: cluster mass components and the cosmic baryonic mass fraction
100. Galaxy clusters have (1 − x) to 90 % of their mass as dark matter. Baryonic matter mostly in

the form of intracluster gas is the rest of the mass. Stars make up only 1 to 5 % of the mass.
The value x is, in fact, the cosmic baryonic mass fraction set by Big Bang nucleosynthesis and
other information. Among dark matter halo structures in the observable universe, only the
largest clusters have baryonic mass fraction as large as the cosmic mass fraction x whose value
is:

a) 50 %. b) 40 %. c) 33 %. d) 16 %. e) 12 %.

026 qmult 00810 1 1 1 easy memory: intracluster medium (ICM) temperature
101. The intracluster medium (ICM) temperature is

a) (2–10)× 107 K. b) (5–10)× 107 K. c) (2–10)× 108 K. d) (5–10)× 108 K.
e) (2–10)× 109 K.

Full-Answer Problems

026 qfull 01020 1 3 0 easy math: classical pressure force deriviation: On exams, do all parts
102. In this problem, we derive the general classical pressure for formula and some special cases. A

remarkable fact is that the same formula follows from a quantum mechanical derivation with
box quantization (Wikipedia: Particle in a box). This suggests that the formula is really very
general.

NOTE: There are parts a,b,c,d. On exams, do all parts with minimal words.

a) Draw a diagram with a horizontal differential surface area vector d ~A with the vector

pointing up. Now consider a flow of particles in a general direction through d ~A. Write
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down the formula for the differential dP dt dA (where capital P is pressure) for the flow of
particles of momentum p through dA with velocity v in differential time dt, in differential
particle momentum range dp, in differential angle dΩ = dµ dφ (where µ = cos(θ) and
dµ = d cos(θ) = − sin(θ) dθ), and given the isotropic directional distribution of particles
per volume per momentum N(p)/(4π) (where the angle-integrated distribution is N(p)).
HINT: You will need two factors of cos(θ): one to account for the fact that it is only the

component of mometum in the direction of d ~A that contributes to pressure and the other
to account for the fact that there is reduced area for the beam of particles going through
dA obliquely.

b) Now write down the momentum integral for pressure after having integrated over all angle.

c) Let ε be kinetic energy density. Write for formula for pressure as a function of ε in two
limits: the non-relativistic (NR) limit where p = mv and the extreme relativistic (ER)
limit where v = c and p = K/c, where K is kinetic energy per particle.

d) We note that the pressure formulae of parts (b) and (c) are independent of the nature
of the distribution N(p). It could be a thermodynamic equilibrium distribution, but also
anything else. For the (thermodynamic equilibrium) Maxwell-Boltzmann distribution for
NR classical particles N(p) dp = nf(v) dv (where n is particle density),

〈v2〉 =
3kT

m
and Eenergy per particle =

3

2
kT

(Wikipedia: Maxwell-Boltzmann distribution; Wikipedia: Ideal gas law: Energy associated
with a gas). On the other hand for a photon gas (which is made of ER particles),

ε = aT 4 ,

where a is the radiation density constant (Wikipedia: Photon gas; Wikipedia: Stefan-
Boltzmann law). Write down the pressure formulae for the cases of the Maxwell-Boltzmann
distribution and the photon gas.

026 qfull 01040 1 3 0 easy math: mean atomic weight with electrons: On exams, do all parts
103. The mean atomic mass is defined

1

µ
=
∑

i

Xi

Ai
,

where the sum is over all species present, Xi is the mass fraction of species i and Ai is the
atomic mass (i.e., the mass in a standard microscopic unit). Cimatti (2020) uses the proton
mass mp as the standard microscopic mass probably since the universe is made of hydrogen
and not of daltons (i.e., 1/12 of an unperturbed carbon-12 atom). Written it as we have, the
quantity 1/µ = n/(ρ/mp) (where n is the number of free particles) is the mean number of free
particles per proton mass in the substance and µ = (ρ/mp)/n is the mean mass in units of the
proton mass of the free particles.

NOTE: There are parts a,b,c. On exams, do all parts with minimal words.

a) What is the formula for the number density of a substance with mass density ρ?

b) Say you have a gas of completely ionized hydrogen. What is the exact formula for 1/µ and
what is the approximate value of 1/µ. Assume mp is the exactly the proton mass and not
just the hydrogen atom mass.

c) In this part, assume that the sum is only over nuclides and does not include free electrons.
Say you have a completely ionized gas with the hydrogen mass fraction X1 and everything
else collective mass fraction (1 −X1). Assume the atomic mass of hydrogen is A1 = 1 and
for everything not hydrogen approximate (Zi + 1)/Ai = 1/2. What is the formula for the
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approximate mean atomic mass in terms of X1? Give the special cases where X1 equals 1,
3/4, 1/2, 1/3, and 0.

026 qfull 01050 1 3 0 easy math: the beta-model: On exams, do only parts a,b,c
104. In this problem we investigate the β-model of (galaxy cluster) gas particle density. The β-model

is probably only order of magnitude accurate, but it is a standard fiducial model for the gas
particle density.

NOTE: There are parts a,b,c,d. On exams, do ONLY parts a,b,c with minimal words.

a) The hydrostatic equililibrium equation for a spherically symmetric mass distribution is

dp

dr
= −Gm(r)

r2
ρ ,

where r is radius coordinate, p is pressure, ρ is density, and m(r) is interior mass (i.e., the
mass interior to a shell of radius r). In fact, the equation can be written separately for
each species in the distribution if they are decoupled: i.e., the pressure of one species is felt
only by that species. In galaxy clusters, there are 3 decoupled species:
1) Gas with particle density n = ρ/(µmp) and p = nkT (with T approximated as

constant for the β-model).
2) Galaxies with galaxy number density ngal, galaxy mass density ngalmgal (with

mgal approximated as constant for the β-model), and pressure approximated
ngalmgalσ

2
los (where σlos the mean line-of-sight dispersion for the galaxies for the

β-model). Note d ln(ngalmgalσ
2
los) = d ln(ngal) since mgal and σ2

los are constants.
3) Dark matter with density ρDM and effective pressure pDM (whatever that may

be).
Write the hydrostatic equililibrium equation in terms of the (p/ρ)d ln(p)/d ln(r) specialized
for each species compactly on one line.

b) Using the results of part (a), solve for the proportionality between n and ngal in terms of
the constant

β =
σ2

los

kT/(µmp)
=

(µmp)σ2
los

kT
.

c) Given fiducial (but probably only order a magnitude accurate) King profile

ngal(r) = ngal,0

[

1 +

(

r

rc

)2
]−3/2

=
ngal,0

[

1 + (r/rc)
2
]3/2

(where ngal,0 is central galaxy density and rc a core radius), determine a β-model density
profile. Given that fiducial range for β is [1/2, 1], what can one say about the gas density
profile relative to the galaxy density profile.

d) The X-ray emissivity from galaxy clusters is approximately given jX ∝ n2 and the line-of-
sight surface brightness at project radius R is for optically thin gas

IX(R) = 2

∫ ∞

R

jXr dr√
r2 −R2

,

where r radial coordinate to the line-of-sight coordinate and spherical symmetry is assumed.
Solve the integral approximately to within an unspecified factor for part (c) gas density
profile. You will have to make an order of magnitude approximation whose chief virtue is
that it makes the integral analytically tractable.

026 qfull 01550 1 3 0 easy math: 2-point correlation function. On exams, do all parts.
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105. There are many statistical measures for the distribution of galaxies. All of them are trying
to capture aspects of large-scale structure. The ideal statistical measure would capture all
aspects and would exactly specify large-scale strurcture completely. But the ideal has not been
reached, and so multiple statistical measures are used. Comparing a statistical measure’s values
for large-scale structure simulations and those for observed large-scale structure is a test of the
simulations.

Probably the simplest statistical measure is the 2-point correlation function ξ(r) which
appears in the following equation

dN = n[1 + ξ(r)] dV ,

where n is the mean number of galaxies per unit volume in the observable universe and dN
is the mean number of galaxies in volume dV located at a distance r from a reference galaxy
at r = 0 (Ci-188–190). There must be some probability distribution from which this mean is
derived, but yours truly cannot located it at the moment. However, if the ξ(r) = 0 everywhere,
the distribution is the Poisson distribution and the mean number of galaxies in dV is just n dV .
Note if ξ(r) > 0 for small r, galaxies tend to cluster and if ξ(r) < 0 for small r, galaxies tend
to avoid each other.

NOTE: There are parts a,b,c. On exams, do all parts with minimal words.

a) Prove

lim
V →∞

∫

V

ξ(r) dV = 0 .

b) For r ≤ 10 Mpc, the fiducial version of the 2-point correlation function is

ξ(r) =
(rs
r

)α

= x−α ,

where scale radius rs = 5 Mpc, α = 1.8, and x = r/rs (Ci-189). For r >∼ 10 Mpc, ξ(r)
oscillates around zero, but there is a positive feature at the baryon acoustic oscillation
(BAO) scale ∼ (140/h70)Mpc (Ci-189). Determine the function N(x) for x ≤ 2 and give
expressions for N(0), N(1), and N(2): numerical evaluation is not required.

c) As mentioned above, the probability distribution from which the mean given by the 2-point
correlation function is derived has not been located at the moment by yours truly. However,
the Poisson distribution is

P (k) = e−µµ
k

k!
,

where k is the number of events and µ is the mean of the distribution (i.e., the mean
number of events) (Be-36–43,53). The Poisson distribution can be viewed as the extreme
limit of the binomial distribution where total possible number of events is infinity, and so
the number of events observed is always small and the mean number of events is nonzero.
The ℓth moment of the Poisson distribution is given by

〈kℓ〉 = e−µ
∞
∑

k=0

kℓµk

k!
= e−µ

(

µ
d

dµ

)ℓ

eµ ,

where the last formula is a trick where you treat µ as variable. Evaluate the moments for
ℓ ∈ [0, 2] and the standard deviation for the Poisson distribution.
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Multiple-Choice Problems

027 qmult 01110 1 4 5 easy deducto-memory: MOND defined
106. “Let’s play Jeopardy! For $100, the answer is: A paradigm (i.e., a broad theory with many

versions) that posits that there is no dark matter and that dark matter effects are really caused
by some modification of dynamics and gravity (both classically and relativistically) for very low
accelerations of order 10−13 km/s.”

What is , Alex?

a) dark energy b) baryonic dark matter c) WHIM d) WHINE e) MOND

Full-Answer Problems

027 qfull 01020 1 3 0 easy math: standard dark matter halo profiles: On exams, omit part d.
107. There several standard dark matter parameterized density profiles (i.e., profiles of density as a

function of radius from the center of dark matter halos) that can be fitted to observed galaxy
rotation curves with varying goodness. Here we study the behavior of some of them.

NOTE: There are parts a,b,c,d. On exams, omit part d.

a) The NFW profile (i.e., Navarro-Frenck-White profile, 1996) is

ρ(r) =
4ρs

(r/rs)(1 + r/rs)2

where the parameters are rs the scale radius and ρs the density at the scale radius (e.g., Lin
& Li 2019, p. 4). The NFW profile was suggeted by N-body simulations with dark matter
particles, and so is a true theoretical dark matter halo density profile. It is a cusp profile in
that ρ(r → 0) diverges. Show the limiting behaviors of ρ(r) for r/rs << 1, r/rs = 1, and
r/rs >> 1. Find the outer shell mass M(r) from radius router >> rs to general r. Discuss
the converge/divergence properties of M(r).

b) The Burkert profile (1995) is

ρ(r) =
4ρs

(1 + r/rs)[1 + (r/rs)2]

where the parameters are rs the scale radius and ρs the density at the scale radius (e.g.,
Lin & Li 2019, p. 4). The Burkert profile is a phenomenological profile chosen to fit
galaxy rotation curves. If dark matter exists, ρs is true density parameter. If dark matter
does not exist and MOND is true, then ρs is parameter with dimensions of density, but
whose meaning is vague. The Burkert profile is a core profile in that ρ(r → 0) does not
diverge. Show the limiting behaviors of ρ(r) for r/rs = 0, r/rs << 1, r/rs = 1, and
r/rs >> 1. Find the outer shell mass M(r) from radius router >> rs to general r. Discuss
the converge/divergence properties of M(r).
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c) The Einasto profile (in the version of Wang 2020 September, Nature, p. 40) is

ρ(r) = ρ−2 exp

{

−
(

2

α

)[(

r

r−2

)α

− 1

]}

,

where the parameters are r−2 the scale radius where the logarithmic slope is −2, ρ−2 the
density at the scale radius, and α = 0.16 ≈ 1/6. The Einasto profile (in this version) is a
fit to a huge number of high accuracy N-body simulation that span 20 orders of magnitude
in dark matter halo mass. Almost everywhere the fit is accurate to within a few percent.
The NFW profile is accurate to within 10 % almost everywhere, but has distinct shape
relative to the Einasto profile. The Einasto profile is a core profile in that ρ(r → 0) does
not diverge. Show the limiting behaviors of ρ(r) for r/r−2 = 0, r/r−2 << 1, r/r−2 = 1,
and r/r−2 >> 1.

d) For the Einasto profile of part (c), find the interior M(r) from radius r = 0 to general r in
terms of the incomplete factorial function

z(y′)! =

∫ y′

0

e−yyz dy

(e.g., Ar-543). making the approximation α = 1/6. You will find it convenient to make
two transformations of the variable of integration. Determine the total mass M(r = ∞)
for general r−2 and ρ−2 by evaluating the factorial function (i.e., z(y′ = ∞)!) making the
approximation α = 1/6.

027 qfull 01030 1 3 0 easy math: the NFW profile explored: On exams, do only parts b,c.
108. The Navarro-Frenck-White (NFW) profile for the density profile of a quasi-equilibrium

spherically symmetric dark matter halo derived from N-body simulations with scale radius
rs, scale density, ρs, and x = r/rs is

ρ(r) =











































4ρs

x(1 + x)2
=

4ρs

x+ 2x2 + x3
in general;

4ρs

x
for x << 1;

ρs for x = 1;

4ρs

x3
for x >> 1.

(Wikipedia: Navarro-Frenk-White profile). The logarithmic slope is

d ln(ρ)

d ln(r)
=
d ln(ρ)

d ln(x)
=
x

ρ

dρ

dx
= −x

ρ
(4ρs)

[

1 + 4x+ 3x2

(x+ 2x2 + x3)2

]

=







−1 + 4x+ 3x2

1 + 2x+ x2
in general;

−2 for x = 1.

The scale radius rs and scale density, ρs were chosen to yield logarithmic slope −2 when x = 1
and density is ρs.

The logarithmic slope −2 gives a flat (circular) velocity profile everywhere if it applies
everywhere and gives an asymptotically flat velocity profile as radius r → ∞ if it applies in the
outer region of a mass distribution. However, the NFW profile actually only has logarithmic
slope −2 at one point and does not yield an exactly flat density profile anywhere as we shall
see.
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Note an approximately flat velocity profile over some extended range of radius is
characteristic of galaxy rotation curves for disk galaxies. However, the approximate flatness
is a combination of dark matter and baryonic matter in actual galaxies and not of dark matter
alone.

NOTE: There are parts a,b,c,d,e,f,g. On exams, do ONLY parts b,c.

a) In fact, there is a semi-analytic argument for the NFW profile. Given that a dark matter
halo density profile is approximately ∝ 1/r2 in its most characteristic region (which we
center on x = 1), one might be tempted to Taylor expand around the point where the
logarithmic slope is exactly −2: i.e., where x = 1. Argue that it is better to expand the
specific volume Vsp (i.e., 1/ρ) around x = 1? Do the expansion for Vsp to 3rd order, collect
like terms, and take the inverse using general symbols for the coefficients: i.e., ρ0, ρ1 = c,
ρ2 = b, and ρ3 = a, where c, b, and a are chosen to conform to the conventions of tables of
integrals. Why set the zeroth coefficent to zero? Why choose the 1st, 2nd, and 3rd order
coefficients to be, respectively 1, 2, and 1 (given overall coefficient is set to be ρs times
the sum of the coefficients in order to yield ρs) other than the fact that that choice turns
out to be good fitting parameters? HINT: To answer the last question, look at a table of
integrals for the integrals needed to integrate density to get mass interior to radius x?

b) Determine the formula for M(x) as a function of rs and ρs. You will have to use the table
integrals:

∫

xdx

ax2 + bx+ c
=

1

2a
ln(ax2 + bx+ c) − b

2a

∫

dx

ax2 + bx+ c
,

∫

dx

ax2 + bx+ c
= − 2

2ax+ b
for b2 − 4ac = 0.

c) Rewrite the formula using the coefficient Ms = M(x = 1) parameterized by rsv
2
s where vs

is the circular velocity Do not forget to normalize the function of x (i.e., the dimensionless
mass function f(x)) that is required in the rewritten formula) to 1 at x = 1 using a
normalization constant A. In fact, a vast set of N-body simulations purely for dark matter
particles shows that the NFW profile can be expected to hold usually to within 10 % for
x ∈ [0, 30], but with some systematic deviations (Jie Wang et al. 2020, Nature, Sep02).
For x > 30, large deviations from the NFW profile can be expected.

d) Compute f(x) for x values 0, 0.1, 0.3, 1, 3, 10, and 30. What is f(x) for x→ ∞ and what
does this mean? HINT: Write a small computer program for the calculation.

e) Write the dimensionless circular velocity formula g(x) normalized to 1 at x = 1.

f) Compute a list of g(x) values from x = 0 to x = 30. Describe the behavior. HINT: Extend
your write small computer program to do the calculation.

g) The machine precision maximum characteristics of g(x) can be determined by numerical
methods. Setting the derivative of g(x) to zero gives you a non-anaytically solvable equation
for the maximizing x. An iteration formula that always converges can be obtained by
isolating x on the left-hand side on on the right-hand side having a function where the
expression under the square-root sign is never negative for x > 0. Convergence to machine
precision however is slow. Convergence to machine precision is faster using the Newton-
Raphson method (Wikipedia: Newton’s method). If you feel ambitious, use one or other
some combination of both approaches to solve for xmax and g(xmax). HINT: Extend your
write small computer program to do the calculation.
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Multiple-Choice Problems

Full-Answer Problems

028 qfull 00350 1 3 0 easy math: free-fall time and collapse to star time: On exams, only do
parts a,b,c.
109. The free-fall time for a straight line fall of a particle of mass m starting from rest to a point

source or spherically symmetric source of mass M (always interior to the infalling particle) is

tff =
torbit

2
=

π
√

G(M +m)

(r

2

)3/2

,

where torbit is the orbital period predicted by the Newtonian physics version of Kepler’s 3rd
law and r is the initial distance from the particle to the source center and is twice the relative
semi-major axis of an elliptical orbit of the particle to the source (Wikipedia: Free-fall time;
Wikipedia: Kepler’s laws of planetary motion Third law; Ci-246). The Kepler’s 3rd law orbital
period is independent of eccentricity e ≤ 1, and so half of it is the free-fall time.

NOTE: There are parts a,b,c,d,e,f. On exams, do ONLY parts a,b,c.

a) What is the free-fall time for test particle (i.e., one of negligible mass)?

b) What is the free-fall time as a function of r for a spherical mass distribution with initially
constant density ρ and outer radius r ≤ R. The matter is initiall all at rest and there is
zero pressure at all times. Assume the (infinitely thin) shells of matter in the distribution
at all the r values never cross during free fall which is true and plausible, but seems tricky
to prove. Describe the order of arrival of the shells at the center?

HINT: Remember the shell theorem

~g = −GM(r)

r2
r̂

where the mass distribution is sperically symmetric and M(r) is the interior mass to radius
r. Note M(r) must increase monotonically since there is no negative mass, but it can be
zero out some radius r.

NOTE: For all subsequent parts, we assume a spherically symmetric mass distribution
at all times with initial outer radius R and there is zero pressure at all times.

c) Say that the interior mass M(r) to radius r obeys a power law M(r) = M0(r/r0)
α where

α ≤ 3. When does the mass all collapse to the center assuming that it magically all stops
there on arrival and the shells of matter at all the r values never cross during free fall which
is true and plausible, but seems tricky to prove.

d) For star formation, we want to relate density ρ to the particle density n which can be
measured more directly. The relating formula is

n = ρ

(

∑

i

Xi

Aimp

)

,
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where Xi is the mass fraction of species i (which could be any atom or a molecule including
those that are distinct due to their isotopic nature), Ai is the atomic mass number (which
could be a molecular mass number), and mp = 1.67262192369(51)× 10−24 g is the proton
mass. Note this special case atomic mass number is in units of proton masses, not daltons
(symbol u or Da and AKA atomic mass units). The fact is most of the universe is
made of hydrogen (which made of protons) and not made of daltonium (which is made
of daltons). Worrying about corrections due to electron masses, binding energies, and
isotopes abundances (which aside from hydrogen and helium are rather uncertain) is below
the level of accuracy of this problem. The mean atomic mass is defined by

µ−1 =
∑

i

Xi

Ai

which gives

n =
ρ

µmp
or ρ = nµmp .

Fiducial cosmic values for Xi are: X = 0.73 for H, Y = 0.25 for He, and Z = 0.02 for
metals. Two fiducial mean atomic masses are given by

µH1,dominated =

(

X

1
+
Y

2
+
Z

30

)−1

and µH2,dominated =

(

X

2
+
Y

2
+
Z

30

)−1

,

where the atomic mass for Z is a rough fiducial average based on the fiducial atomic
masses of very abundant metals: i.e., AC,6 = 12, AO,8 = 16, ASi,14 = 28, and AFe,28 = 56.
Compute the µH1,dominated and µH2,dominated values to 3-digit precision which probably 1
more digit than is significant, but it is useful to know insignificant digits sometimes to
check for consistency between different calculations.

HINT: Write a small computer program to do the calculation.

f) The part (b) answer gives a fiducial lower limit for the formation time for a star. It is just a
fiducial lower limit since real initial clouds of molecular gas do not have uniform density, are
not spherically symmetric, and do not have zero pressure and zero initial kinetic energy. It
is just a lower limit since the pressure force and kinetic energy in the molecular cloud resist
collapse during the collapse process and delay collapse to a star sized object. However, it
is useful to rewrite the part (b) answer in terms fiducial values: particle density 103 cm−3,
µH2,dominated from part (e), and Julian years (i.e., 365.25 days). Do the rewrite.

HINT: Write a small computer program to do the calculation.

028 qfull 00360 1 3 0 easy math: Free-fall time and shells crossing: On exams, do all parts.
110. Consider free-falling spherical shells of matter that only interact gravitationally.

NOTE: There are parts a,b,c. On exams, do all parts, but answer with minimal words.

a) First we consider a single infinitely thin spherical shell of radius rs and mass m. What is
the gravitational field ~g at r < rs? What is the gravitational field ~g at r > rs? Justify your
answers.

b) What of the gravitational field ~g at rs? In one sense, the field is indeterminate since there
is a discontinuity in the field r and which value you get depends on the direction you take
the limit in. However, a limiting value often depends on the limiting process and some
limiting processes are physically realistic and others are not. A physically realistic limit
gravitational field at r does exist. The trick is consider tiny cylinder Gaussian surface
(see Wikipedia: Gaussian surface) placed on the shell of radius r that extends inward
and outward from r and whose top and bottom are parallel to the shell surface. In the
small limit, the cylindar straddles an infinite infinitely thin plane of surface mass density
σ = m/(4πr2s ). Determine the gravitational field on the top and bottom of the cylinder
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just due to the enclosed mass. Then find the gravitational field due the rest of the shell
on enclosed mass in the cylinder for all r including r = rs. That gravitational field is the
gravitational field that can accelerate the enclosed mass treating it as test particle.

c) Do infalling spherical shells ever cross for any possible mass distribution? Prove your
answer. HINT: Recall, the free-fall time for a straight line fall of a particle of mass m
starting from rest to a point source or spherically symmetric source of mass M (always
interior to the infalling particle) is

tff =
torbit

2
=

π
√

G(M +m)

(r

2

)3/2

,

where torbit is the orbital period predicted by the Newtonian physics version of Kepler’s
3rd law and r is the initial distance from the particle to the source center and is twice the
relative semi-major axis of an elliptical orbit of the particle to the source (Wikipedia: Free-
fall time; Wikipedia: Kepler’s laws of planetary motion Third law; Ci-246). The Kepler’s
3rd law orbital period is independent of eccentricity e ≤ 1, and so half of it is the free-fall
time.



Appendix 1 Classical Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore it
is neither intended to be complete nor completely explicit. There are fewer symbols than variables,
and so some symbols must be used for different things.

111 Some Operator Expressions

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

112 Binomial Theorem and Biderivative Formula

(a+ b)n =

n
∑

k=0

(

n

k

)

an−kbk binomial theorem

dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k
biderivative formula

113 Trigonometric Identities

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin θ = 2 sin(θ/2) cos(θ/2)

cos θ =
eiθ + e−iθ

2
sin θ =

eiθ − e−iθ

2i

114 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

115 Lagrangians and Lagrange Equation Versions

L = T − V L = T − U LF = L+
dF (qj , t)

dt
Lext = L+

∑

k

λkfk(qj , q̇j , t)
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d

dt

(

∂L

∂q̇j

)

− ∂L

∂qj
= 0

d

dt

(

∂L

∂q̇j

)

− ∂L

∂qj
= Qj

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
= Qj

116 Forces and Potentials

f(x) = −kx V (x) =
1

2
kx2 linear force

F(r) = q(E + v × B) U = q(φ− A · v) Lorentz force

F = −
∑

i

kivi F =
1

2

∑

i

kiv
2
i Rayleigh’s dissipation function

F12 = − k

r212
r̂12 V12 = − k

r12
inverse-square law

F12 = −Gm1m2

r212
r̂12 V12 = −Gm1m2

r12

∮

f · dA = −4πGMenc gravitation

117 Central Force Problem

r = r2 − r1 R =
m1r1 +m2r2

m1 +m2
r2 = R +

m1

M
r r1 = R − m2

M
r

M = m1 +m2 m =
m1m2

m1 +m2

ℓ = mr2θ̇
dA

dt
=

1

2

ℓ

m

mr̈ −mrθ̇2 = f(r) mr̈ − ℓ2

mr3
= f(r)

1

2
mṙ2 +

1

2
mr2θ̇2 + V = E

1

2
mṙ2 +

1

2

ℓ2

mr2
+ V = E

T = −1

2

∑

i

Fi · ri T = − (ℓ− 1)

2
V T = −1

2
V

(x

a

)2

±
(y

b

)2

= 1 r =
a(1 − ǫ2)

1 + ǫ cos θ
=

p(1 + ǫ)

1 + ǫ cos θ
rfocus 1 + rfocus 2 = 2a

ℓ

mk
= a(1 − ǫ2) = p(1 + ǫ) E = − k

2a
ǫ =

√

1 +
2Eℓ2

mk2
=

√

1 − ℓ2

mka

τ = 2π

√

ma3

k
θmean = ωt ω =

√

k

ma3
θmean = ωt
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r = a(1 − ǫ cosψ) ωt = ψ − ǫ sin(ψ)

cos θ =
cosψ − ǫ

1 − cosψ
tan

(

θ

2

)

=

√

1 + ǫ

1 − ǫ
tan

(

ψ

2

)

118 Hamiltonian Formulation

H = piq̇i − L ṗ = −∂H
∂q

q̇ =
∂H

∂p

∂H

∂t
= −∂L

∂t

if L = L0(q, t) + L1,j(q, t)q̇j + L2,jk(q, t)q̇j q̇k ,

then pi = L1,i + L2,ik(q, t)q̇k + L2,ji(q, t)q̇j

and H = piq̇i − L = L2,j,k(q, t)q̇j q̇k − L0

H = T + V

if L(q, q̇, t) = L0(q, t) + q̇T a(q, t) +
1

2
q̇T T(q, t)q̇ , then p = Tq̇ + a

and H =
1

2
(pT − aT )T−1(p− a) − L0(q, t)

dH

dt
=
∂H

∂t
= −∂L

∂t
I =

∫ t2

t1

[

piq̇i −H(q, p, t) +
dF (q, p, t)

dt

]

dt

119 Canonical Transformations

λ [piq̇i −H(q, p, t)] = PiQ̇i −K(Q,P, t) λ = uv K = λH Qi = uqi Pi = vpi

piq̇i −H(q, p, t) = PiQ̇i −K(Q,P, t) +
dF

dt
K = H +

∂Fi

∂t

F = F1(q,Q, t) pi =
∂F1

∂qi
Pi = −∂F1

∂Qi

F = F2(q, P, t) −QiPi pi =
∂F2

∂qi
Qi =

∂F2

∂Pi

F = F3(p,Q, t) + qipi qi = −∂F3

∂pi
Pi = −∂F3

∂Qi

F = F4(p, P, t) + qipi −QiPi qi = −∂F4

∂pi
Qi =

∂F4

∂Pi

F2 = fi(q, t)Pi + g(q, t) Qj = fj(q, t) pj =
∂fi

∂qj
Pi +

∂g

∂qj

p = Pfq + gq P = (p − gq)fq
−1
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120 Hamilton-Jacobi Theory

H

(

q,
∂S

∂q
, t

)

+
∂S

∂t
= 0 S = S(q, α, t)

Pi = αi pi =
∂S

∂qi
βi =

∂S

∂αi
qi = q(α, β, t) pi = p(α, β, t)

S(q, α, t) = W (q, α) − αtt pi =
∂W

∂αi
H

(

q,
∂W

∂q

)

= αt

Pi = αi Q̇i =
∂K

∂αi
=

{

1 , i = t
0 , i 6= t

Qi =
∂W

∂αi
=

{

t+ βt , i = t
βi , i 6= t

H

[

q′,
∂W ′

q′
, f

(

qj ,
∂Wj

qj

)]

= αt W (q, α) = W ′(q′, α) +Wj(qj , α)

f

(

qj ,
∂Wj

qj

)

= αj



Appendix 2 Multiple-Choice Problem Answer Tables

Note: For those who find scantrons frequently inaccurate and prefer to have their own table and
marking template, the following are provided. I got the template trick from Neil Huffacker at
University of Oklahoma. One just punches out the right answer places on an answer table and
overlays it on student answer tables and quickly identifies and marks the wrong answers

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

121. O O O O O 6. O O O O O

122. O O O O O 7. O O O O O

123. O O O O O 8. O O O O O

124. O O O O O 9. O O O O O

125. O O O O O 10. O O O O O

101
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Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

126. O O O O O 11. O O O O O

127. O O O O O 12. O O O O O

128. O O O O O 13. O O O O O

129. O O O O O 14. O O O O O

130. O O O O O 15. O O O O O

131. O O O O O 16. O O O O O

132. O O O O O 17. O O O O O

133. O O O O O 18. O O O O O

134. O O O O O 19. O O O O O

135. O O O O O 20. O O O O O


