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Calculus-Based Introductory Physics: Example Homework Problems:

The following homework problems (with accompanying solutions) that I have written are for calculus-based
introductory physics courses. They are examples of what I consider high quality problems that in themselves
act as complete presentations of main/special topics and that act as supplements/complements to coverage
of said topics in lectures. Not all introductory physics problems should be like these, of course, but I would
like to have one for every main/special topic that I teach. I will add to the set I have written already when
teaching introductory physics courses.

006 qfull 00740 1 3 0 easy math: drag equation drag solution
1. The drag equation drag law is

FDE =
1

2
ρv2CDA = bv2

where v is flow speed, ρ is fluid density, (1/2)ρv2 is the relative kinetic energy density of the fluid, CD is
the drag coefficient (which depends on many factors in general, but the always depends on the shape of
the object and probably is often determined empirically), and A is the reference area (for many objects
just projected frontal area of the object), and b is a combined coefficient introduced for simplicity.

a) Taking downward as positive, write down Newton’s 2nd law for an object of mass m falling under
Earth’s near-surface gravity with drag acting. Determine the formula for acceleration in the form
a = g[1− . . .] with v/vter as one for the terms with a velocity parameter vter defined appropriately.

b) Now define z = v/vter and reformulate the formula for acceleration a as a formula with differential
dt = (vter/g) dz/(. . .).

c) Integrate the dt expression from part (b) to obtain t = t(v) assuming initial time and velocity are
zero. You will need the table integral

∫

dz

1 − z2
= artanh(z) for z < 1 .

where artanh(z) is the inverse hyperbolic tangent function. Note, artanh is the preferred modern
symbol for the inverse hyperbolic tangent function (Wikipedia: Inverse hyperbolic functions:
Notation).

d) Invert the expression from part (c) to obtain the function v(t). Note, the hyperbolic tangent
function is defined and explicated by

tanh(x) =
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in general.

− tanh(−x) odd function behavior.

x for x small enough that the function is
in the linear regime.

x −
1

3
x3 +

2

15
x5 −

17

315
x7 + . . . expansion in small x.

0.761594 . . . for x = 1, the fiducial scale value
between small and large x regimes.

±(1 − 2e−2|x|) extreme ±x asymptotic behavior.

±1 for x = ±∞.

What is the terminal velocity (i.e., the velocity as t → ∞)? What is the scale time tscale (i.e, the
time when hyperbolic tangent argument is 1)? What is v at the scale time? What is the meaning
of the scale time?

SUGGESTED ANSWER:

a) Behold:

1) ma = mg − bv2 2) a = g



1 −

(

v
√

mg/b

)2


 = g

[

1 −

(

v

vter

)2
]

,
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where we define velocity parameter vter =
√

mg/b.

b) Behold:

dt =
vter

g

dz

1 − z2
.

c) Behold:

t =
vter

g
artanh(z)

d) Behold:

v = vter tanh

(

t

tscale

)

,

where we define tscale = vter/g =
√

m/(bg). Clearly, the terminal velocity is vter and the scale
time is tscale. At the scale time,

v(t = tscale) = vter tanh(1) = (0.761594 . . .) × vter .

Th scale time is a fiducial time for the change from the linear regime where tanh(x) ≈ x to
the regime where tanh(x) is asymptotically approaching 1, its maximum at t = ∞.

Fortran-95 Code

Redaction: Jeffery, 2025jul01

020 qfull 01650 1 3 0 easy math: adiabatic process and adiabatic index for an ideal gas
2. In this problem, we determine the adiabatic process curve (i.e., the adiabat) and the abiabatic index

for an ideal gas.

a) An ideal gas (assuming fixed degrees of freedom and energy equipartition) has internal energy given
by

E =
d

2
nmolRT ,

where d is number of degrees of freedom, (d=3: monatomic gas; d=5: diatomic gas; d=7: diatomic
gas with vibration; d=6: polyatomic gas with no vibration), nmol is the number of moles of the
gas, R = 8.31446261815324 J · K−1 · mol−1 (exact) is the gas constant, and T is temperature on the
Kelvin scale. Remarkably, the ideal gas internal energy is independent of volume and only depends
on nmol and T . Derive (∂E/∂T )nmol

/nmol: the rate of change of internal with temperature for
constant nmol.

b) The molar heat capacity CV at constant volume (and implicitly a constant number of moles) is the
amount of heat energy needed to raise the temperature of 1 mole of a species by 1 K at constant
volume. Given the rather general version of the 1st law of thermodynamics

dE = δQ − δW = δQ − p dV ,

derive CV . What is relationship of CV and (∂E/∂T )nmol
/nmol? Note, the symbol δ is used in this

context to mean inexact differential: i.e., a differential whose integral is path dependent (Wikipedia:
Inexact differential).

c) Because, in fact, the ideal gas internal energy E is independent of volume any change in E due to
a change in temperature can be written in terms of CV whether volume is constant or not. Given
this fact, determine the formula for dT in terms of CV and nmol moles in the case where δQ = 0
(i.e., the adiabatic case) and p dV 6= 0.

Note, the formula can be understood as a relationship between dT/dℓ and dp/dℓ where ℓ is
a path parameter parameterizing an adiabatic path (p(ℓ), V (ℓ), T (ℓ)) through pV T space. The
formula must be obeyed along any adiabatic path (i.e., along any adiabat). By a simplifying
convention of thermodynamics, one usually does not explicitly talk of paths and path parameters.
They are taken as understood.

d) Given the ideal gas law:
PV = nmolRT ,
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where P is pressure and V is volume, take the differentials of both sides and replace dT by the
part (c) result which has the effect of constraining the resulting expression to adiabatic changes
since the right-hand side forces the left-hand side to be consistent only with changes in temperature
that result from p dV work only. Collect all differentials of the same kind and simplify the expression
recalling the molar heat capacity at constant volume Cv = (d/2)R and the molar heat capacity at
constant pressure for an idea gas is Cp = CV + R.

Note, CV and Cp turn up in the derivation just as parameters since neither V nor p are constant
along an adiabat for an ideal gas.

e) The ideal gas adiabatic index is defined by

γ =
Cp

CV

=
d + 2

d
.

Substitute γ into the result from part (d). The resulting expression is, in fact, a diffential equation
for an adiabatic curve (i.e., an adiabat). Solve the differential equation by integration to get the
formula for an adiabat and simplify the formula in such way that left-hand side equals the constant
pfidV

γ
fid

, where pfid and V γ
fid

fiducial or reference values along the adiabat.

SUGGESTED ANSWER:

a) Behold:
1

nmol

(

∂E

∂T

)

nmol

=
d

2
R .

b) Given constant volume, the p dV work (AKA pressure-volume work) is zero, and we find

1) δQ = dQ = dE 2)

(

∂Q

∂T

)

V

=

(

∂E

∂T

)

V

=
d

2
nmolR 3) CV =

1

nmol

(

∂Q

∂T

)

V

=
d

2
R

4) CV =
d

2
R .

We find that CV and (∂E/∂T )nmol
/nmol are the same quantity which is a special feature of

the ideal gas.

c) Behold:

1) CV nmol dT = dE = −p dV 2) dT = −
p dV

CV nmol

.

d) Behold:

1) PV = nmolRT 2) p dV + V dp = nmolR dT = −
R

CV

p dV 3) V dp = −

(

1 +
R

CV

)

p dV

4) V dp = −

(

CV + R

CV

)

p dV 5) V dp = −

(

Cp

CV

)

p dV 6) V dp = −

(

d + 2

d

)

p dV .

To go beyond the required answer, we can recapitulate the derivation of the molar heat
capacity at constant pressure Cp for an ideal gas:

1) dE = δQ − p dV 2) CV n dT = dQ − nR dT 3) Cp =
1

nmol

(

∂Q

∂T

)

p

= CV + R .

e) Behold:

1) V dp = −

(

d + 2

d

)

p dV 2)
dp

p
= −γ

dV

V

3) ln(p) = −γ ln(V ) + C where C is a generic integration constant

4) ln(pV γ) = C 5) pV γ = pfidV γ
fid

.

Redaction: Jeffery, 2025jul01


